
The fancynum package∗

J. J. Green

2000/08/08

1 Introduction

The fancynum package is designed to aid the typesetting of numbers, particularly
(but not exclusively) the ASCII representation of floating point numbers as written
by computers.

In the sequel we refer to the glyph used to separate the integer and decimal
parts of a decimal number as the decimal symbol, and that used to group the digits
of the integer and decimal parts as the group symbol.

The author invites suggestions on improvements to the package. In particular,
any information on the typographic conventions for setting numbers in different
languages would be most welcome.

2 Usage

The fancynum package is quite standard in its usage. After including the pack-
age in the preamble, the macro \fnum is available in mathematics mode. A call
to $\fnum{3.141593e+05}$ will be set as 3·141,593 × 105, and so on. Further
examples can be found in the file examples.tex included in the distribution.

The operation of the \fnum macro can be modified with the commands
\setfnumdsym, \setfnumgsym and \setfnummsym, which set the value of the dec-
imal, group and multiplication symbols, respectively.

3 Limitations

The \fnum has some limitations on the form of its argument:

• A decimal must have at least one digit either side of the decimal symbol;

• The optional exponential symbol must be e;

• If the exponent must have at least one digit.

Consequently the strings .312e20, 312.e20 and 3.142E20 are not acceptable ar-
guments. I hope to remove these restrictions at some point.

∗This file has version number 0.92, last revised 2000/08/08.

1

4 Package Options

The package supports a small number of options. The locale-specific options set
default values for all of the typographic parameters. The english option uses the
centred dot as the decimal symbol and a comma as the group symbol. The french
option uses the comma as the decimal symbol and a lower dot as the group symbol.
Compare the English 3·141,593 against the French 3,141.593. If no local-specific
option is specified then English will be taken as the default.

The remaining options give specific values over the typographic parameters,
and override the locale-specific options.

The tight and loose options specify space around the × in the setting of
numbers in exponential form. Compare the loose 2.3×103 with the tight 2.3×103.
This option is useful where space is at a premium, or may be preferred for æsthetic
reasons.

The commas, thinspaces and plain options specify the group symbol to be
used, respectively {,}, \, and \relax.

5 Thanks

I am grateful to Heiko Oberdiek, Norman Gray, Michael Downes and Donald
Arseneau for their assistance on comp.text.tex, and to Jerzy Kucharczyk for
providing a bug report.

6 Implementation

1 〈∗package〉
6.1 Typographic parameters

The decimal, group and multiplication symbols are stored in the global variables
\fn@decimalsym etc. The following macros give access to the values used in the
package.
2 \def\setfnumdsym#1{\gdef\fn@decimalsym{#1}}

3 \def\setfnumgsym#1{\gdef\fn@groupsym{#1}}

4 \def\setfnummsym#1{\gdef\fn@multsym{#1}}

6.2 Package options

The package options are simply calls the macro for the appropriate parameter.
5 \DeclareOption{english}{\setfnumdsym{{\cdot}}\setfnumgsym{{,}}}

6 \DeclareOption{french}{\setfnumdsym{{,}}\setfnumgsym{{.}}}

7 \DeclareOption{tight}{\setfnummsym{{\times}}}

8 \DeclareOption{loose}{\setfnummsym{\times}}

9 \DeclareOption{commas}{\setfnumgsym{{,}}}

10 \DeclareOption{thinspaces}{\setfnumgsym{\,}}

11 \DeclareOption{plain}{\setfnumgsym{\relax}}

We set the default values before processing the options
12 \ExecuteOptions{english,loose}

13 \ProcessOptions\relax

2

6.3 Utility macros

\fn@length Find the length of a string mod 3 (taken directly from the example on p. 219 of
the TEXbook). Here though, a call to \fn@length assigns the calculated value the
(global) variable \fn@strlen.
14 \newcount\fn@strlen

15 \def\fn@length#1{\fn@strlen=0 \fn@getlength#1\end}

16 \def\fn@getlength#1{\ifx #1\end \let\next=\relax \else

17 \advance\fn@strlen by1

18 \ifnum\fn@strlen=3 \fn@strlen=0 \fi

19 \let\next=\fn@getlength\fi \next}

6.4 Typesetting

6.4.1 The decimal

\fn@fracpunct Punctuate the fractional part of a decimal. An easy cyclic recursion.
20 \def\fn@fracpunct#1{\fn@fpa#1@ }

21 \def\fn@fpa#1#2#3 {#1\if #2@ \else \fn@fpb#2#3 \fi}

22 \def\fn@fpb#1#2#3 {#1\if #2@ \else \fn@fpc#2#3 \fi}

23 \def\fn@fpc#1#2#3 {#1\if #2@ \else \fn@groupsym\fn@fpa#2#3 \fi}

\fn@intpunct Punctuate the integer part of a decimal. This is not as easy as the fractional
part since we need to know the length before we start (no doubt there is a direct
recursive method to do this, but I’m not clever enough to work it out).
24 \def\fn@intpunct#1{\fn@ipa#1 }

The macro \fn@ipa prints the string’s initial ± and passes on the rest of the string
to the \fn@ipb macro. It might be worthwhile stripping the redundant ‘+’ here,
but I am minded not to do this since whether it is present is the choice of the user
(unlike the redundancy in the sign of the exponent — see below).
25 \def\fn@ipa#1#2 {%

26 \if +#1 +\fn@ipb#2 \else

27 \if -#1 -\fn@ipb#2 \else

28 \fn@ipb#1#2 \fi \fi}

The \fn@ipab macro finds the length (modulo 3) with \fn@strlen and calls the
appropriate output macro.
29 \def\fn@ipb#1 {\fn@length{#1}

30 \ifcase\fn@strlen

31 \fn@ipc#1 \or

32 \fn@ipd#1 \or

33 \fn@ipe#1 \fi}

The \fn@ip[cde] macro prints the first couple of characters and then calls
\fn@ipf which calls \fn@fpa (see above) to finish the job.
34 \def\fn@ipc#1#2#3#4 {#1#2#3\fn@ipf#4@ }

35 \def\fn@ipd#1#2 {#1\fn@ipf#2@ }

36 \def\fn@ipe#1#2#3 {#1#2\fn@ipf#3@ }

37 \def\fn@ipf#1#2 {\if #1@ \else \fn@groupsym\fn@fpa#1#2 \fi}

\fn@decimal Set a proper decimal. The pattern matching trick used here (and for the expo-
nent) is due to a conversation between Heiko Oberdiek and Michael Downs on
comp.text.tex. See the file ctt.txt included in the distribution for details.

3

38 \def\fn@propdecimal#1#2{\fn@intpunct{#1}\fn@decimalsym\fn@fracpunct{#2}}

39 \def\fn@impropdecimal#1#2{\fn@intpunct{#1}}

40 \def\fn@decimalsplit#1.#2.#3#4#5{#4{#1}{#2}}

41 \def\fn@decimal#1{\fn@decimalsplit#1..\fn@propdecimal\fn@impropdecimal\empty}

6.4.2 The exponent

\fn@signedint Set a signed exponent. The C standard I/O library functions printf, fprintf, etc.,
as well as many Fortran compilers, write a ‘+’ in the exponent if it is positive.
Since this is superfluous, both typographically and mathematically, we remove it
if we find it.
42 \def\fn@signedint#1#2 {%

43 \if +#1

44 \fn@unsignedint#2\relax

45 \else

46 \if -#1

47 -\fn@unsignedint#2\relax

48 \else

49 \fn@unsignedint#1#2\relax

50 \fi

51 \fi}

\fn@unsignedint Set an unsigned exponent. Here we remove leading zeros.
52 \def\fn@unsignedint#1#2{%

53 \ifx #2\relax \let\next=#1

54 \else

55 \ifx 0#1 \let\next=\fn@unsignedint

56 \else

57 \let\next=#1

58 \fi

59 \fi

60 \next #2}

6.4.3 The general number

\fnum The setting of an floating point number. Our processing is dependent on whether
the argument contains the letter ‘e’.
61 \def\fn@exp#1#2{\fn@decimal{#1}\fn@multsym10^{\fn@signedint#2 }}

62 \def\fn@noexp#1#2{\fn@decimal{#1}}

63 \def\fn@realsplit#1e#2e#3#4#5{#4{#1}{#2}}

64 \def\fnum#1{\fn@realsplit#1ee\fn@exp\fn@noexp\empty}

65 〈/package〉

4

