
CrossTEX Tutorial

Emin Gün Sirer and Robert Burgess

This tutorial will show you everything you need to know about CrossTEX. It
assumes basic familiarity with BibTEX. You should have CrossTEX installed.

CrossTEX is a modern bibliography typesetting tool that works in conjunc-
tion with LATEX. It first builds an object hierarchy based on the bibliography
database. Then it parses the text at hand to determine which objects are being
cited. Then it formats these objects according to the style selected in the doc-
ument, as modified by the command line options. It then produces a references
section that LATEX can incorporate into the original document.

1 Quick start

First, make sure CrossTEX is installed. Then, where you used to type:

$ latex paper # Generate the .aux file

$ bibtex paper # Generate the .bbl file

$ latex paper # Incorporate the bibliographic information

$ latex paper # Get the labels right

Instead use:

$ latex paper # Generate the .aux file

$ crosstex paper # Generate the .bbl file

$ latex paper # Incorporate the bibliographic information

$ latex paper # Get the labels right

CrossTEX is backwards-compatible with BibTEX and supports the standard
abbrv, alpha, full, and plain bibliography styles.

2 Defining Objects: Inside the .xtx file

2.1 Objects

Everything in CrossTEX is an object. Every object has a key that can be used
to refer to it, and fields containing values. Here are some objects:

@month{sep, name = "September"}

@location{rio, name = "Rio de Janeiro, Brazil"}

1



@author{egs, name = "Emin {G\"un} Sirer"}

@article{mypaper,

author = egs,

title = "This is My Paper",

journal = "Journal of Improbable Results",

address = rio,

year = 2018,

month = sep

}

The first line defines a month object, henceforth known as sep, that has a
single field called name, which consists of the string “September”. From here
on, other objects can simply refer to sep wherever a month is called for, and
they will be referring to this object. The second line defines a location object
named rio, while the third line defines an author object whose name requires
complicated LATEX punctuation to format properly. The final entry defines an
article, published in Rio de Janeiro in September. Note how it refers to the
previous objects by their keys. The fields of mypaper end up as though it had
been defined thus:

@article{mypaper,

author = "Emin {G\"un} Sirer",

title = "This is My Paper",

journal = "Journal of Improbable Results",

address = "Rio de Janeiro, Brazil",

year = 2018,

month = "September"

}

Objects can be given multiple keys, as well. Take for example the following
author:

@author{rama, name="Venugopalan Ramasubramanian"}

However, Rama uses Venu and Arun as names for his alter egos. So we can
define his object as follows:

@author{rama = arun = venu, name="Venugopalan Ramasubramanian"}

Thereafter, the following are equivalent.

author = "rama and egs"

author = "arun and egs"

author = "venu and egs"

2



2.2 Representation

Every kind of object, such as month, location, author, and article, knows
how to convert itself into a string suitable for inclusion in the references section
of a scholarly publication. For example, when mypaper referred to sep in the
example, the actual value assigned was “September”. Some objects, such as
mypaper itself, will produce entire bibliography entries when referred to. In
fact, when generating bibliographies, crosstex simply prints out the string
representations of all the objects cited in the document. Each object takes
note of options passed into CrossTEX and generates a string representation
accordingly.

Simple, named objects, such as month, location, author, and others, have
two forms: A long form and a short form. The object sep could be defined:

@month{sep,

name = "September",

shortname = "Sept."

}

By default, long names are used when generating bibliographic entries. If,
however, the option --short month were given, the same month object would
be shown as “Sept.” instead of “September”. If only a name (no shortname) is
specified, or, conversely, if only a shortname but no name is specified, the name
given will be used in all cases. All named objects follow this pattern.

However, because person names are so complicated, author objects are
somewhat magical. If --short author is specified, authors will be represented
with initials and a last name—the object egs would be represented “E. G. Sirer”.
If a shortname field is explicitly given for an author, that takes precedence and
can be used for special cases. By default, CrossTEX is aware of many kinds of
names and can correctly handle suffixes and last name modifiers such as Jr.,
Sr., III, IV, von, van, de, bin, and ibn. Just write the names out in full in their
natural order, and CrossTEX will render them properly, including such entries
as:

@author{rvr, name = "Robbert van Renesse"}

@author{ldv, name = "Louis de Vargas, III"}

The author field is also somewhat special. Users of BibTEX are familiar
with specifying multiple authors as follows:

@inproceedings{credence,

title = "{Experience with an Object

Reputation System for

Peer-to-Peer Filesharing}",

author = "Kevin Walsh and Emin {G\"un} Sirer",

...

}

3



Having looked up the rather non-trivial escape sequence to get the umlaut
correct, and having made sure that all names are spelled correctly, there is no
need to repeat or cut-and-paste the same information over and over again. The
following sequence has the same effect as the previous one, and is much easier
to maintain:

@author{kwalsh, name = "Kevin Walsh"}

@author{egs, name = "Emin {G\"un} Sirer"}

@inproceedings{credence,

title = "{Experience with an Object

Reputation System for

Peer-to-Peer Filesharing}",

author = "kwalsh and egs",

...

}

In all other contexts, string literals and object references are quite different:
month = sep refers to the sep object, which carries additional fields and is ren-
dered differently depending on the context and options, while month = "sep"
always generates the literal string “sep”.

2.3 Under the hood: References

Referring to an object, as in month = sep, assigns the stringified value of the
object sep, in this case “September”, to the month field of the object. In
addition, it triggers something else to happen after all the fields have been
assigned: Any required or optional fields in the referring object that do not
yet have values will try to inherit them from the referenced object sep, if it
has them. The actual month objects defined in the included dates.xtx, for
example, define monthno fields in addition to their names. This value will be
pulled along into objects that refer to months, enabling such objects to be sorted
by month number easily. Power-users of BibTEX will note that this mechanism
is essentially equivalent to the crossref field in BibTEX. The main difference
here is that CrossTEX supports this mechanism in a uniform manner across all
object fields.

This can be combined with a new, advanced feature of CrossTEX, conditional
fields, to greatly simplify object specifications. Here is an example:

@conference{nsdi,

shortname = "NSDI",

longname = "Symposium on Networked System Design and Implementation",

[year=2006] address=SanJose, month=may,

[year=2005] address=Boston, month=may,

[year=2004] address=SF, month=mar,

}

This is a simple conference object whose short name is “NSDI” and long
name is “Symposium on Networked System Design and Implementation”. In

4



addition, it carries some conditional fields; that is, fields that are included in the
object only if they match the data in the referring context. For instance, if the
year field of the referring object is equal to 2006, the nsdi object additionally
has the fields address=SanJose, month=may. In a different year, a different
conditional might be triggered. Any, all, or none of the conditionals mentioned
may be appropriate (although obviously in this case, the year can only have one
value).

By itself, conditional fields are not very useful; their value in simplifying
object references becomes apparent when they are used in context. Look at the
following reference:

@inproceedings{credence,

title = "Experience with an Object Reputation System for Peer-to-Peer Filesharing",

author = "kwalsh and egs",

booktitle = nsdi,

year = 2006

}

Conditional fields defined in the nsdi object will define the address and
month fields of the conference based on the reference, and the resulting credence
object will know that it occurred in San Jose in May through inheritance. This
allows paper citations to avoid common errors by allowing all conference dates
and locations to be defined in one place, and inherited correctly, without typos,
by all papers that appeared at that conference.

If one wanted to override field inheritance for whatever reason, it would
suffice to specify, say, a different month for the credence object. Only those
fields that are missing in the referring context are inherited. Thus explicitly
assigned information has precedence.

2.4 Including other databases

Obviously, re-inventing sep and SanJose in every database would be exhausting.
Instead, similar objects can be collected together—for example, the standard
CrossTEX distribution provides dates.xtx, which defines English month names,
and locations.xtx, which defines all locations at which a major computer
science conference was held in the recent years. Such modules can be includes
with the @include primitive. For example, here is a complete .xtx file based
on the standard CrossTEX distribution:

@include conferences-cs

@author{egs, name = "Emin {G\"un} Sirer"}

@author{kwalsh, name = "Kevin Walsh"}

@inproceedings{credence,

title = "Experience with an Object Reputation System for Peer-to-Peer Filesharing",

author = "kwalsh and egs",

booktitle = nsdi,

5



year = 2006

}

This will search for conferences-cs.xtx or conferences-cs.bib and in-
clude it in the appropriate place before parsing the rest of the file. CrossTEX by
default looks in a standard system directory and the directory containing the
database or document being processed; additional search paths can be specified
with the --dir option. The standard conferences-cs.xtx begins:

@include dates

@include locations

...

Thus, the credence object has access to well-defined locations, dates, and
conference names.

On startup, crosstex will read in the database standard, which in the dis-
tribution pulls in the dates database and some information to help accurate
formatting of titles. Having the dates available by default is necessary for back-
wards compatibility with BibTEX; the administrator may also edit the standard
database in order to automatically include additional important files such as an
institution-local bibliography.

It is possible for the same object to be defined multiple times under the
same key (sometimes, this is inevitable when there are multiple bibliographic
databases involved maintained by different entities). By default, CrossTEX will
silently ignore such definitions as long as all versions of the object are identical.
When two separate objects defined under the same key are not identical, it points
to an inconsistency in the bibliographic database, which will cause CrossTEX
to issue a warning. Passing CrossTEX the --strict flag will force it to issue
such warnings even when the objects are identical, to help facilitate people who
might want to maintain databases free of duplicate entries.

2.5 Extending objects

Occasionally it is useful to add information to an object that already exists.
For example, say you have a paper to cite that appeared in USENIX 2006,
but the system database only has the following information about the USENIX
conference:

@conference{usenix = usenixg,

shortname = "USENIX",

longname = "USENIX Annual Technical Conference",

[year=2005] address=Anaheim, month=apr,

[year=2004] address=Boston, month=jun,

[year=2003] address=SanAntonio, month=jun,

[year=2002] address=Monterey, month=jun,

[year=2001] address=Boston, month=jun,

[year=2000] address=SanDiego, month=jun,

6



[year=1999] address=Monterey, month=jun,

[year=1996] address=SanDiego, month=jan,

}

Obviously, the best solution is to add the following line to the entry in the
system conferences database:

[year=2006] address=Boston, month=may,

However, you may not have permission to edit the database. Now there are
two options: Cut-and-paste the usenix object into some local database with a
new name so there is no conflict, or put the address and month directly into the
paper’s entry. Neither one is a good solution. What you want is to be able to
extend the usenix object even though it is in another database you can’t edit.

Enter the @extend primitive. The following solves the example:

@extend{usenix,

[year=2006] address=Boston, month=may,

}

An @extend entry looks just like an object definition. However, rather than
defining a new object, the object with the specified key is re-built with the in-
formation provided, inheriting its old fields with lower priority so that extended
fields take precedence.

It is possible to create new aliases along the way. Simply list aliases in
the exact same syntax as for object definition; all the aliases listed must either
be a new, unused alias or refer to the same unique object. After the object
is extended, all the aliases mentioned will be handles to refer to the newly-
extended object. This can be useful for defining shorter, easier-to-remember
names for database objects.

2.6 Default fields

When databases get exceptionally long and many elements have very similar
fields—e.g., they are all in the same conference or have the same informa-
tive category field—you can make use of another special CrossTEX command,
@default. For example, here is the beginning of the usenix.xtx database:

@include conferences-cs

@inproceedings{DBLP:conf/usenix/RuanP04,

author = {Yaoping Ruan and

Vivek S. Pai},

title = {Making the "Box" Transparent: System Call Performance as

a First-Class Result},

booktitle = usenixg,

year = 2004,

pages = {1-14},

7



ee = {http://www.usenix.org/publications/library/proceedings/usenix04/t

ech/general/ruan.html},

bibsource = {DBLP, http://dblp.uni-trier.de}

}

@inproceedings{DBLP:conf/usenix/CantrillSL04,

author = {Bryan Cantrill and

Michael W. Shapiro and

Adam H. Leventhal},

title = {Dynamic Instrumentation of Production Systems},

booktitle = usenixg,

year = 2004,

pages = {15-28},

ee = {http://www.usenix.org/publications/library/proceedings/usenix04/t

ech/general/cantrill.html},

bibsource = {DBLP, http://dblp.uni-trier.de}

}

...

With @default, it could be shortened:

@include conferences-cs

@default booktitle = usenixg

@default year = 2004

@default bibsource = {DBLP, http://dblp.uni-trier.de}

@inproceedings{DBLP:conf/usenix/RuanP04,

author = {Yaoping Ruan and

Vivek S. Pai},

title = {Making the "Box" Transparent: System Call Performance as

a First-Class Result},

pages = {1-14},

ee = {http://www.usenix.org/publications/library/proceedings/usenix04/t

ech/general/ruan.html},

}

@inproceedings{DBLP:conf/usenix/CantrillSL04,

author = {Bryan Cantrill and

Michael W. Shapiro and

Adam H. Leventhal},

title = {Dynamic Instrumentation of Production Systems},

pages = {15-28},

ee = {http://www.usenix.org/publications/library/proceedings/usenix04/t

ech/general/cantrill.html},

}

...

8



Later in the file are entries with different years. A new @default command
takes precedence over the first:

...

@default year = 2003

@inproceedings{DBLP:conf/usenix/PadioleauR03,

author = {Yoann Padioleau and

Olivier Ridoux},

title = {A Logic File System},

pages = {99-112},

ee = {http://www.usenix.org/events/usenix03/tech/padioleau.html},

}

@inproceedings{DBLP:conf/usenix/DouglisI03,

author = {Fred Douglis and

Arun Iyengar},

title = {Application-specific Delta-encoding via Resemblance Detection},

pages = {113-126},

ee = {http://www.usenix.org/events/usenix03/tech/douglis.html},

}

...

As with field values inherited from references objects, field values inherited
from default definitions have lower precedence. Any object that explicitly
assigns a value to a field will override any default definitions in effect at that
point in the bibliography.

2.7 Comments

Comments in CrossTEX can be accomplished in a number of ways. Simple
comments that last until the end of the line are introduced with a % character.
For example:

@include conferences-cs % Because we need nsdi later on

More involved, potentially multi-line comments appear as their own kind of
primitive:

@comment "This is a database for...

Yadda yadda...

Now I’ve said enough."

This syntax can also take advantage of the {. . .} form of strings in order
to comment out whole objects or sets of objects, since braces are counted and
matched correctly so that embedded strings don’t accidentally end the comment.

9



@comment {

@inproceedings{bad,

title = "Some paper we want to temporarily comment out",

author = "Somebody and Somebody Else",

...

}

}

3 Citing References

Once you have defined your objects in the .xtx file, you may refer to them in
your .tex file. Such references are known as citations, and are accomplished
with the \cite command in LATEX. CrossTEX supports two kinds of citations,
both backwards compatible with standard LATEX citations.

3.1 Plain Citations

The first type are plain citations based on an object key. Plain citations simply
take a comma-separated list of object keys, and cite the objects whose keys,
specified in the XTX file as the first item following the object definition, match
the cited key. For instance, given the definitions above, the following are exam-
ples of plain citations:

Credence~\cite{credence} provides a reputation

system for peer-to-peer systems. These two

papers~\cite{DBLP:conf/usenix/PadioleauR03,DBLP:conf/usenix/DouglisI03}

appeared at the Usenix annual conference.

The key used in a plain citation must match, exactly, the key used in the
object definition. The matching is case sensitive, so “foo” and “FOO” refer to
different objects.

Recall that CrossTEX enables an object to appear under multiple keys. This
aliasing can be done for any object and can be used anywhere in the database.
The .tex file can cite any object by any one of its synonymous keys. There is
a strange quirk with the use of synonymous keys stemming from a design error
in LATEX, which users should keep in mind: LATEX assumes that each object has
only one key, and thus citing the same object under two different keys would
require it appearing twice in the references. Therefore, authors must be careful
to cite each paper by only one of its aliases. Fortunately, it does not matter
which alias is used in the document, so long as it is consistent, and it is easy for
CrossTEX to detect when multiple aliases are being used, so an error message
will appear.

Overall, there really are not that many frills to plain citations. They work
exactly the way one would imagine they would. Their big drawback, however,
is that you need to remember the precise key for every object you want to cite.
Often, this requires browsing database files, searching for author names and

10



keywords in the title so you can figure out whether you named the key “cre-
dence” or “credence nsdi04” or “nsdi04 credence”. Even though the standard
libraries that come with CrossTEX follow the uniform naming rule from the
DBLP database, figuring out the uniform name still requires knowing the au-
thors and the year, which often requires a Google search. To make the citation
process even easier and simpler, CrossTEX supports a second kind of citation,
where the user need not recall the object key precisely.

3.2 Constrained Citations

The second kind of citation that CrossTEX supports is known as a constrained
citation. Constrained citations enable the user to cite a paper by specifying
pieces of information about the reference that uniquely identify it. For instance,
suppose you want to reference that paper I wrote in 1999 on how to split up
virtual machines, and you remember that it appeared at SOSP. You could search
your database for some partial terms that appear in the entry (e.g. 1999, sosp,
sirer), copy the key for the entry, and issue a plain citation using that precise
key. This is what many BibTEX users do without thinking. But it is a lot of
pointless boring work, and computers were supposed to automate boring tasks.
That’s where constrained citations come in.

A constrained citation begins with an exclamation point, and specifies a
series of colon-separated terms that identify the reference being cited. Some
examples of constrained citations are:

\cite{!author=sirer:title=virtual:year=1999}

\cite{!author=sirer:title=virtual:title=machines:year=1999}

\cite{!author=sirer:author=walsh:year=2006}

Colons separate constraints. Each constraint identifies a field that the refer-
ence must have, as well as a string that should appear somewhere within that
named field.

Each string in a constrained citation is checked for a partial match in the
corresponding field. So “author=smith” will match both “Smith” and “Smith-
son.”

Sometimes, there are multiple constraints that apply to the same field. Spec-
ifying the same field multiple times, as in the second and third examples above,
is perfectly acceptable, but gets tedious. So CrossTEX provides a way to specify
multiple constraints for the same field; every word separated by a “-” sign is
treated as a separate constraint. So the examples above can be shortened down
to:

\cite{!author=sirer:title=virtual:year=1999}

\cite{!author=sirer:title=virtual-machines:year=1999}

\cite{!author=sirer-walsh:year=2006}

Multiple constraints within a given field are not ordered and can appear
anywhere in the string, so “virtual-machines” will match “virtual machines,” as
well as “machines virtual,” and even “building a machineshop virtually.”

11



Several shorthands make constrained citations even easier to specify by pro-
viding defaults for fieldnames. If the fieldnames are missing, the first constraint
defaults to “author.” The second constraint defaults to “title” if the value is
not numeric; if it is, it defaults to “year.” Finally, the last constraint defaults
to “year.” So the examples above can be shortened even further:

\cite{!sirer:virtual:1999}

\cite{!sirer:virtual-machines:1999}

\cite{!sirer-walsh:2006}

Two caveats are worth remembering about constrained citations. First, the
citation needs to be uniquely identifiable. If the constraints you specified match
more than one object, CrossTEX will print an error and identify the matching
objects. You can then specify more constraints until you have nailed down
the reference you had in mind or switch to a plain citation. Second, due to a
limitation in LATEX mentioned above for plain citations, referring to the same
paper through different constraints (e.g. “!sirer:virtual:1999” and “!sirer:virtual-
machines:1999”) will cause an error so the paper does not appear twice in the
references section. For each paper, you should figure out the constraints you
had in mind and stick to them throughout your document.

Overall, constrained citations are a very convenient way to cite papers with-
out having to look anything up. They fit naturally to the way people recall
citations. The concept was entirely lifted from Norman Ramsey’s nbibtex sys-
tem.

3.3 Citation Appearance

How the citation itself appears is controlled by the citation style, and is con-
trolled by options specified to crosstex either in the LATEX file or passed on
the command line during invocation. The argument to the --cite-by option
determines how the citations appear in the body of the text. There are three
possible arguments to --cite-by.

numeric produces citations that appear like this “[1]”. The numbers cor-
respond to the location of the entry in the references section. Another option
determines how the references section is sorted (e.g. in the order cited, alpha-
betized by author, or sorted according to any field of choice), and thus affects
the particular number used to refer to a particular reference.

initials produces citations that appear like this “[WS04]”. The particular
rule used to derive the initials from author names is somewhat complex, but
roughly speaking, the citation string consists of the first initials of the authors
last names, appended with the year of publication. If there is a single author,
then the first three letters of the author’s last name is used instead. A paper
by Sirer in 2006 would be cited as “[Sir06]” under this scheme. If there are five
or more authors, the first three initials are appended with a “+” sign and the
year. For instance, a paper by Aardvark, Dewey, Chethem, and Howe would be
cited as “[ADCH06]”, but if Aardvark and friends sign on Elvis as a coauthor,
the citation string becomes “[ADC+06]”. Finally, last name modifiers (such as

12



“van”) are preserved in lower case. A paper by Sirer and van Renesse would be
cited as “[SvR07]”.

fullname produces citations that appear like this “[Walsh and Sirer 06]”.
The last names appear in full for references authored by up to two authors. A
paper by Dewey, Chethem and Howe would be cited as “[Dewey et al. 06]”.
Fullname citations are the most readable and should be used whenever possible.

4 The References Section

CrossTEX provides many options that enable the user to control the appearance
of the references within a document. This section describes various options that
can be passed to the crosstex tool for achieving the precise formatting desired.

4.1 Invoking CrossTEX

In its simplest invocation, crosstex takes a file name, e.g. crosstex file1 . Any
included files are found in a search path containing the directory with the file be-
ing processed and a central system directory (e.g. /usr/local/crosstex/lib);
this search path can be extended with the --dir option. Extensions (.aux,
.xtx, .bib) will be added if necessary to find the file. Each output will always
appear in the same directory as the file processed, under the same name but
with the extension changed to .bbl. crosstex will exit with an error code if
any warning or error messages were printed.

If crosstex is invoked as xtx2bib or the --xtx2bib option is given, the
output extension will be .bib, and the bibliographic information will be back-
converted to plain BibTEX.

If crosstex is invoked as bib2xtx or the --bib2xtx option is given, the
output extension will be .xtx, and the bibliographic information will be output
using CrossTEX’s advanced features where possible. Currently, it is possible to
use the --heading and --reverse-heading as usual to specify any hierarchy
of fields to pull out with @default statements. This feature can be very conve-
nient for converting old BibTEX databases to CrossTEX, but might lose some
information if used on an already optimized CrossTEX database.

If crosstex is invoked as xtx2html or the --xtx2html option is given,
the output extension will be .html; some style information will be changed as
appropriate for formatting a web bibliography, and the output will be wrapped
into a LATEX document and translated into HTML by piping it through hevea.
Sometimes it is necessary to run this more than once to get labels right, as with
LATEX; hevea will print an appropriate message if this is necessary. By default,
the style used for HTML is pretty non-traditional, but can be overridden by
further options: xtx2html --style plain file looks nice and tame.

A number of options can be specified to change the style of the bibliography
to override or tweak that specified by a document.

13



4.2 Optional fields

Optional fields in any object can be “turned off” with the --no-field option.
The option can be specified multiple times with different fields, and if any of
those fields are specified in the database where they are optional, the fields will
be ignored and left blank. As a result, for example, to avoid displaying page
numbers is as simple as --no-field pages.

4.3 Abbreviation

The --short option allows many kinds of objects to be abbreviated in the bibli-
ography. For example, to use shortened month names (‘Jan.’, ‘Feb.’) instead of
long ones (‘January’, ‘February’), simply use the option --short month. This
allows the creators of the database to specify both month names just once, re-
fer to the relevant month objects in their entries, and the formatting of month
names to be consistently chosen when the bibliography is formatted.

Anything with a name can be abbreviated this way—so a conference can be
shortened from “Networked Systems Design and Implementation” to “NSDI”
when under the space crunch or filled back out later with a simple option.
Databases mention each name only once, and, even more importantly, what
name to use is left to the document and the user and is not imposed on the
database maintainer.

Objects that can be shortened include author, conference, conferencetrack,
country, journal, month, state, string, and workshop.

4.4 Authors

Author names can be complicated, and are the source of much confusion in
BibTEX. The same author might appear with a middle name, without a middle
name, last name first, with abbreviated first names, mis-spelled, with different
combinations of accents, and so forth.

In CrossTEX, the database maintainer can enter the name just once in an
author object and control the way it is formatted via options. The --short
author option generates abbreviated author names automatically if an author
doesn’t have an explicitly mentioned short name, and CrossTEX is careful to
handle complicated names with accents and modifiers correctly when abbrevi-
ating or generating citation keys.

The option --last-first causes the first author in each list to be format-
ted ‘Last, First’ instead of ‘First Last’. CrossTEX does the Right Thing with
modifiers here, too. When author names are capitalized with --capitalize
author, CrossTEX carefully works around LATEX commands and accents to pro-
duce clean-looking names.

4.5 Capitalization

Any object that can be abbreviated with --short can be coerced to all upper
case with --capitalize. For example, to cause authors to appear capitalized,

14



issue --capitalize author.

4.6 Titles

Title case is one of the most common inconsistencies when using BibTEX. Often,
some papers are cited with lower-case titles, some are all upper-case, and some
follow mixed title-case. Key acronyms (e.g. BGP) and proper nouns (e.g.
Internet) are haphazardly capitalized, or not, depending on how diligent the
author was when putting together the bibliographic database.

CrossTEX ensures that all titles follow the same uniform capitalization stan-
dard, even if they appear in a wild variety of styles in the database. The
first letter of each word will become capitalized, the rest lower, the standard
known as “titlecase”. CrossTEX is very careful to ensure the titles come out
looking “good”—words in StudlyCaps or ALLCAPS are retained as-is, LATEX
commands and anything in math mode are protected, compound words such
as “Peer-to-Peer” are split into words, capitalized correctly, and re-assembled,
and additionally a list of known phrases are carefully found and formatted.
For example, any appearance of a string that is (ignoring case) equivalent to
“USENIX” appears as “USENIX”. These phrases are found at run-time by
CrossTEX in @titlephrase commands, such as:

@titlephrase "USENIX"

@titlephrase "Linux"

The standard include files define certain common Computer Science phrases
such as these, but they can appear anywhere in the .xtx file. Small words,
such as “a”, “an”, “the”, etc. are also handled specially: They are made lower-
case except at the beginning of the title or after certain punctuation, such as
long dashes or colons. These, too, are defined at run-time by @titlesmall
commands:

@titlesmall "a"

@titlesmall "the"

Again, the standard include files define important English small words to
start with.

An example title with the default might be “Aardvark: A System for Peer-
to-Peer BGP Routing on the Internet”.

With --titlecase lower, Only the first letter of the title and those follow-
ing punctuation are capitalized, the rest put into lower-case. All of the special
cases for the default title-case still apply. Thus, the example title would appear
“Aardvark: A system for peer-to-peer BGP routing on the Internet”.

With --titlecase upper, everything, even known phrases and small words,
are put into upper-case thus: “AARDVARK: A SYSTEM FOR PEER-TO-
PEER BGP ROUTING ON THE INTERNET”. Commands and math-mode
are still protected.

Finally, to allow titles to appear as they are specified in the database, use
--titlecase as-is.

15



4.7 Proceedings

There are a variety of styles in use when citing papers at conferences. Some
people prefer to precede the conference name with “In Proceedings of the ”.
These same people usually use “In Proc. of ” when pressed for space. With
--add-proceedings, CrossTEX will generate book titles for conferences begin-
ning with “In Proceedings of”, while --add-proc uses the shorter “In Proc.”
and without any options, only “In ” is used for papers in conferences with
proceedings.

For journal articles, the usual convention is to simply put the journal name in
italics following the author names, and this is the default CrossTEX and BibTEX
behavior. Some people prefer to prepend “In ” to the name of the journal; this
can be accomplished with the --add-in option.

BibTEX users affect these personal preferences by modifying the biblio-
graphic database. Such changes are potentially disruptive and can introduce
errors. CrossTEX enables such stylistic changes, which do not affect the under-
lying data, to be affected without modifying the database, and ensures that the
choice will be applied consistently throughout.

4.8 Sorting and Headings

Sorting affects the order in which references will appear in the bibliography. By
default, entries will be sorted by their citation keys, or by their authors and
publication dates, depending on the citation style. The --sort option provides
finer control over the sort order. By specifying --sort field , the database will
be stably sorted by field; later specifying --sort field2 will cause the bibliog-
raphy to be sorted by field2, but the entries will still be sub-sorted by the first
field. To sort in descending order, use --reverse-sort in the same way.

When processing large bibliographies, it can be nice to partition the entries
into labeled categories. Specifying the --heading field option specifies a field
to be used to divide the entries into sections. For example, --heading year
will cause the entries to be grouped by year and given headings for each different
year. (--reverse-heading will reverse the order in which the sections appear.)
When converting a bibliography of personal publications to HTML, for example,
it might be convenient to group by an information field such as --heading
category to nicely organize the produced bibliography.

4.9 Hyperlinks

CrossTEX supports searching fields to find hyperlinks and presenting them in
the references section. This is useful for any target format with hyperlinks,
including PDF and HTML. Normally, no fields are treated as possible links,
except when converting to HTML, when the list defaults to Abstract, URL,
PS, PDF, HTML, DVI, TEX, BIB, FTP, HTTP, and RTF. A new field can
be added with -l field or --link field ; --no-link clears the list in order to
disable link-finding or start over.

16



If any of the fields, case insensitive (e.g. --link PDF and --link pdf are
equivalent), consists of a URL, it will appear at the end of the reference as
a hyperlink with its label as the name of the field given to --link (e.g. the
former would match the same field, but produce links labeled “PDF” and “pdf”
respectively).

4.10 Abstracts and Keywords

Some detailed database entries might include a list of keywords related to the
paper or even a complete abstract. By default, these fields are accepted but
do not appear in the reference. With --abstract, abstracts will appear in
blocks following the appropriate entries. The --keywords option invokes similar
behavior for keyword lists. To explicitly set the defaults, --no-abstract and
--no-keywords disable these extra blocks.

When converting to HTML, it may occasionally be desirable to make use of
the dynamic nature of web sites and cause abstracts and keywords to appear
as tooltip-like popups attached to each entry rather than taking up space on
their own. The --popups option will cause the appropriate style manipula-
tions (but does nothing without --xtx2html and at least one of --abstract or
--keywords).

4.11 Putting the title first

Ordinarily, each entry begins with the author or editor first, then the title. A
simple kind of re-ordering can be accomplished by specifying --title-head,
which causes the title to come first and bold. This option can be negated with
--no-title-head, but it is default only with --style html or --xtx2html.

4.12 Splitting up lines

Ordinarily, each entry takes up one logical line, which might wrap. The --break-lines
option instead puts each major field (author, title, publication information,
any hyperlinks, etc.) on its own line, in the same order they would have ap-
peared on a single line. This can be combined with putting the title first with
--title-head to cause the title to come on the first line all by itself, which is
the default with --style html or --xtx2html. To explicitly cause entries to
appear on a single logical line, use --no-break-lines.

4.13 Label appearance

By default, each entry in the references section is labeled with its citation key as
it would appear in the document, e.g. “[1]” or “[WS04]”. It is also possible, with
the option --blank-labels, to leave entries un-labeled; this does not influence
how citations appear in the document body in any way, but leaves out labels in
the bibliography.

17



By itself, this option would probably produce a bibliography in which it is
impossible to track down citations. However, it can be useful when converting
a database to HTML, for example, when there is no document anyway and the
labels look messy. Thus, leaving labels blank is the default with --style html
or --xtx2html. To explicitly include labels, use --no-blank-labels.

4.14 Styles

Whole styles can be conveniently changed with the --style option, which over-
rides the style specified by the document with the specified style. When pro-
cessing databases directly, the style defaults to plain; this option can force
the database to be formatted with any style desired. CrossTEX styles are im-
plemented as small, simple Python files in CrossTEX’s path, and any style
that happens to be installed at the site can be used with this option or the
\bibliographystyle command in the document.

4.15 Inside the .tex file

The .tex source file never needs to know you’re using CrossTEX, because it is
completely backwards compatible with normal LATEX auxiliary files that note
citations and styles. The \bibliographystyle{foo} command will cause the
equivalent of the command-line option --style foo.

However, the \bibliographystyle command can cause other magic as well.
Arbitrary command line options may be specified after the style name, separated
by single spaces. For example:

\bibliographystyle{plain --add-in --add-proceedings --short author}

This allows documents to have fine-grained control over styling. Run-time
options will still take precedence over document defaults.

4.16 Adding citations

Normally, only entries that are cited in the LATEX document appear in the
references section. When processing a database directly, the default is for all
entries to appear. These behaviors can be manipulated at run-time with the
--cite option. It behaves exactly as a LATEX \cite command, including the
use of the asterisk (--cite *, modulo shell-escaping) to cite all entries, and
constrained citation. When processing LATEX documents, this adds entries to
the references; when processing databases directly, this overrides the default to
cite everything and cites only the entries specifically mentioned on the command
line.

4.17 Manipulating crosstex

Numerous options help control or debug crosstex itself. The --version op-
tion will cause crosstex to print out its version and exit. To get a list of all
supported options and brief descriptions, use --help or -h.

18



Two options change the level of error reporting. By default, only errors that
will definitely change the appearance of the bibliography are produced. With
--strict, more warnings, such as for unknown fields or other problems, will be
printed. With --quiet, on the other hand, no errors or warnings will appear
at all.

The --dump option provides very detailed debugging. Processing will con-
tinue exactly as normal, but at the end, any kinds of objects specified to --dump
will be listed as output. For example, to list all the author objects defined in a
bibliography foo, crosstex --dump author foo would process foo and print a
list.

Two additional, non-object dumps are permitted. With --dump file, crosstex
will print a trace of the path to every database it processes; this allows one to
examine whether it is choosing the right files based on the search path and ex-
plore what standard databases are being automatically pulled in. The various
title phrases and small words that control title capitalization can be dumped
with --dump titlephrase.

5 Extending CrossTEX

CrossTEX is designed to be easy to extend with very trivial knowledge of
Python. Before continuing, it is very important to have a look at the stan-
dard object types and fields in Appendix A, which are already supported by
CrossTEX. New objects or fields are defined by editing the standard objects
module crosstex.objects, which is typically installed as /usr/local/crosstex/lib/crosstex/objects.py
or similar.

To create a new field for a particular object type, find its definition (e.g.,
the section defining the string object begins class string). Most objects
already define some fields; simply copy that syntax for your own field. To
create an entirely new class foo which is identical to a current one named bar,
add the following to the end of the list of objects:

class foo(bar):

pass # ’pass’ is only necessary if no fields are defined.

Fields are defined as optional or required by assigning them the values
OPTIONAL and REQUIRED, respectively. To make an optional field required or
a required field optional, simply assign it the new value in the class where you
want the change. To allow a field to inherit its value from another field in the
same object if left blank, assign a string containing the name of the other field.
A list containing OPTIONAL, REQUIRED, and one or more string field names will
be processed and define several sibling fields and the given requirement level.
For example, given:

class foo(bar):

baz = REQUIRED

blah = OPTIONAL

quux = [REQUIRED, ’baz’, ’blah’]

19



This defines a new kind of object named foo, which behaves the same as
bar ; additionally, the ‘baz’ field is required, the ‘blah’ field is optional, and the
‘quux’ field is required but if unspecified will try to take its value from ‘baz’ or
‘blah’ in that order.

Styles are defined in small Python modules in the style directory in the same
place you found objects.py. There you will find the default styles, plain.py,
full.py, etc. Styles are built up from small filter functions mainly defined in
crosstex.objects. Each field is filtered through four phases: Production, in
which an initial value is generated from the object itself; List filtering, if the
value is a list (otherwise irrelevant); List formatting, to turn a list into a string
for the final step; and Filtering, in which the string is run through zero or more
filters to come up with a final value. Look at the examples to see the syntax for
hooking filters to each of the four stages in given contexts and for given types.
Take as a simple starter the following statements:

misc._addproducer(emptyproducer, ’label’)

conference._addfilter(proceedingsfilter, ’value’)

misc._addfilter(emphfilter, ’fullpublication’, ’booktitle’)

The first states that the label attribute of any object derived from misc
can be produced by emptyproducer if it returns anything other than None.
(emptyproducer is defined in crosstex.objects.) The second statement causes
the value of conference objects (and objects derived from conference) to be
filtered through a filter that, in this case, prepends ‘Proceedings of the’ to the
value. The last statement filters the ‘booktitle’ field of misc-derived objects,
but only when included as part of the ‘fullpublication’ field (which happens to
be a virtual field defined solely by attaching producers to it). It is important
to note that filters and producers are applied starting from the most recent, so
later producers will take precedence and later filters will be nested inside ear-
lier filters. The standard styles are well-commented and should provide a good
start.

Happy hacking!

A Standard object types

These are the kinds of objects CrossTEX knows about by default. For informa-
tion about extending this notion, see Extending CrossTEX in Section 5.

string Required: name and/or shortname (longname is an alias for name.)
Relevant arguments: --short

author As string, except: Optional: address, affiliation, email, institution,
organization, phone, school, url

state As string, except: Optional: country

country As string.

20



location Optional: city, state, country

month As string.

journal As string.

newspaper As journal.

misc Optional: abstract, address, affiliation, annote, author, bib,
bibsource, booktitle, category, chapter, contents, copyright, crossref,
doi, dvi, edition, editor, ee, ftp, howpublished, html, http, institution,
isbn, issn, journal, key, keywords, language, lccn, location, month,
monthno, mrnumber, note, number, organization, pages, pdf, price, ps,
publisher, rtf, school, series, size, title, type, url, volume, year
Relevant arguments: --cite-by, --titlecase, --link, --abstract,
--keywords

article As misc, except: Required: author, title, journal, year Rele-
vant arguments: --add-in

newspaperarticle As article, except: (newspaper is an alias for journal)

book As misc, except: Required: author and/or editor, title, publisher,
year

booklet As misc, except: Required: title

inbook As misc, except: Required: author and/or editor, title, chapter
and/or pages, publisher, year

incollection As misc, except: Required: author, title, booktitle, publisher,
year

inproceedings As misc, except: Required: author, title, booktitle, year
Relevant arguments: --add-proceedings, --add-proc

manual As misc, except: Required: title

thesis As misc, except: Required: author, title, school, year

mastersthesis As thesis.

phdthesis As thesis.

patent As misc, except: Required: author, title, number, month, year

proceedings As misc, except: Required: title, year

collection As proceedings.

techreport As misc, except: Required: author, title, institution, year

unpublished As misc, except: Required: author, title, note

21



conference As string, except: Optional: address, crossref, editor, institution,
isbn, key, keywords, language, location, month, publisher, url, year

conferencetrack As conference, except: Optional: conference

workshop As conferencetrack.

rfc As misc, except: Required: author, title, number, month, year

url As misc, except: Required: url Optional: accessyear, accessmonth

22


	Quick start
	Defining Objects: Inside the .xtx file
	Objects
	Representation
	Under the hood: References
	Including other databases
	Extending objects
	Default fields
	Comments

	Citing References
	Plain Citations
	Constrained Citations
	Citation Appearance

	The References Section
	Invoking CrossTeX
	Optional fields
	Abbreviation
	Authors
	Capitalization
	Titles
	Proceedings
	Sorting and Headings
	Hyperlinks
	Abstracts and Keywords
	Putting the title first
	Splitting up lines
	Label appearance
	Styles
	Inside the .tex file
	Adding citations
	Manipulating crosstex

	Extending CrossTeX
	Standard object types

