
The soul package

Melchior FRANZ

November 17, 2003

Abstract

This article describes the soul package1, which provides h y -
p h e n a t a b l e l e t t e r s p a c i n g (s p a c i n g o u t) , under-
lining and some derivatives such as overstriking and highlighting.
Although the package is optimized for LATEX 2ε, it also works with
Plain TEX and with other flavors of TEX like, for instance, ConTEXt.
By the way, the package name soul is only a combination of the two
macro names \so (space out) and \ul (underline)—nothing poetic at
all.

Contents

1 Typesetting rules 2

2 Short introduction and com-
mon rules 3

2.1 Some things work . . . 3
2.2 . . . others don’t 5
2.3 Troubleshooting 6

3 L e t t e r s p a c i n g 8

3.1 How it works 8
3.2 Some examples 9
3.3 Typesetting caps-

and-small-caps fonts 10
3.4 Typesetting Fraktur . 11
3.5 Dirty tricks 12

4 Underlining 12

4.1 Settings 12
4.2 Some examples 14

5 Customization 15

5.1 Adding accents 15

5.2 Adding font commands 15
5.3 Changing the internal

font 16
5.4 The configuration file . 16

6 Miscellaneous 17
6.1 Using soul with

other flavors of TEX . 17
6.2 Using soul com-

mands for logical
markup 17

6.3 Typesetting long
words in narrow
columns 19

6.4 Using soul com-
mands in section
headings 20

7 How the package works 22
7.1 The kernel 22
7.2 The interface 22
7.3 A driver example . . . 25

1 Typesetting rules

There are several possibilities to emphasize parts of a paragraph, not all of
which are considered good style. While underlining is commonly rejected,

1This file has version number 2.19, last revised 2001/01/27.

1

experts dispute about whether letterspacing should be used or not, and in
which cases. If you are not interested in such debates, you may well skip
to the next section.

Theory . . .

To understand the experts’ arguments we have to know about the con-
ception of page grayness. The sum of all characters on a page represents
a certain amount of grayness, provided that the letters are printed black
onto white paper.

Jan Tschichold [10], a well known and recognized typographer, ac-
cepts only forms of emphasizing, which do not disturb this grayness. This
is only true of italic shape, caps, and caps-and-small-caps fonts, but not of
ordinary letterspacing, underlining, bold face type and so on, all of which
appear as either dark or light spots in the text area. In his opinion empha-
sized text shall not catch the eye when running over the text, but rather
when actually reading the respective words.

Other, less restrictive typographers [11] call this kind of emphasizing
‘integrated’ or ‘aesthetic’, while they describe ‘active’ emphasizing apart
from it, which actually has to catch the reader’s eye. To the latter group
belong commonly despised things like letterspacing, demibold face type and
even underlined and colored text.

On the other hand, Tschichold suggests to space out caps and caps-
and-small-caps fonts on title pages, headings and running headers from 1 pt
up to 2 pt. Even in running text legibility of uppercase letters should be
improved with slight letterspacing, since (the Roman) majuscules don’t
look right, if they are spaced like (the Carolingian) minuscules.2

. . . and Practice

However, in the last centuries letterspacing was excessively used, under-
lining at least sometimes, because capitals and italic shape could not be
used together with the Fraktur font and other black-letter fonts, which are
sometimes also called “old German” fonts. This tradition is widely contin-
ued until today. The same limitations apply still today to many languages
with non-latin glyphs, which is why letterspacing has a strong tradition in
eastern countries where Cyrillic fonts are used.

The Duden [4], a well known German dictionary, explains how to
space out properly: Punctuation marks are spaced out like letters, except
quotation marks and periods. Numbers are never spaced out. The Ger-
man syllable -sche is not spaced out in cases like “der V i r c h o w sche
Versuch”3. In the old German Fraktur fonts the ligatures ch, ck, sz (ß)
and tz are not broken within spaced out text.

While some books follow all these rules [6], others don’t [7]. In fact,
most books in my personal library do not space out commas.

2This suggestion is followed throughout this article, although Prof. Knuth already
considered slight letterspacing with his cmcsc fonts.

3the Virchow experiment

2

2 Short introduction and common rules

The soul package provides five commands that are aimed at emphasizing
text parts. Each of the commands takes one argument that can either be
the text itself or the name of a macro that contains text (e. g. \so\text)4.
See table 1 for a complete command survey.

\so{letterspacing} l e t t e r s p a c i n g
\caps{CAPITALS, Small Capitals} CAPITALS, Small Capitals

\ul{underlining} underlining
\st{overstriking} overstriking
\hl{highlighting} highlighting5

The \hl command does only highlight if the color package was loaded,
otherwise it falls back to underlining.6 The highlighting color is by default
yellow, underlines and overstriking lines are by default black. The colors
can be changed using the following commands:

\setulcolor{red} set underlining color
\setstcolor{green} set overstriking color
\sethlcolor{blue} set highlighting color

\setulcolor{} and \setstcolor{} turn coloring off. There are only few
colors predefined by the color package, but you can easily add custom
color definitions. See the color package documentation [3] for further
information.

\usepackage{color,soul}
\definecolor{lightblue}{rgb}{.90,.95,1}
\sethlcolor{lightblue}
...
\hl{this is highlighted in light blue color}

2.1 Some things work . . .

The following examples may look boring and redundant, because they de-
scribe nothing else than common LATEX notation with a few exceptions,
but this is only the half story: The soul package has to pre-process the
argument before it can split it into characters and syllables, and all de-
scribed constructs are only allowed because the package explicitly imple-
ments them.

4See § 25 for some additional information about the latter mode.
5The look of highlighting is nowhere demonstrated in this documentation, because

it requires a Postscript aware output driver and would come out as ugly black bars on
other devices, looking very much like censoring bars. Think of it as the effect of one of
those coloring text markers.

6Note that you can also use LATEX’s color package with Plain TEX. See 6.1 for details.

3

§ 1 Accents:
Example: \so{na\"\i ve}
Accents can be used naturally. Support for the following accents is
built-in: \‘, \’, \^, \", \~, \=, \., \u, \v, \H, \t, \c, \d, \b, and
\r. Additionally, if the german package [8] is loaded you can also
use the " accent command and write \so{na"ive}. See section 5.1
for how to add further accents.

§ 2 Quotes:
Example: \so{‘‘quotes’’}
The soul package recognizes the quotes ligatures ‘‘, ’’ and ,,.
The Spanish ligatures !‘ and ?‘ are not recognized and have, thus,
to be written enclosed in braces like in \caps{{!‘}Hola!}.

§ 3 Mathematics:
Example: \so{foox^3bar}
Mathematic formulas are allowed, as long as they are surrounded
by $. Note that the LATEX equivalent \(...\) does not work.

§ 4 Hyphens and dashes:
Example: \so{re-sent}
Explicit hyphens as well as en-dashes (--), em-dashes (---) and
the \slash command work as usual.

§ 5 Newlines:
Example: \so{new\\line}
The \\ command fills the current line with white space and starts
a new line. Spaces or linebreaks afterwards are ignored. Unlike the
original LATEX command soul’s version does not handle optional
parameters like in *[1ex].

§ 6 Breaking lines:
Example: \so{foo\linebreak bar}
The \linebreak command breaks the line without filling it with
white space at the end. soul’s version does not handle optional
parameters like in \linebreak[1]. \break can be used as a syn-
onym.

§ 7 Unbreakable spaces:
Example: \so{don’t~break}
The ~ command sets an unbreakable space.

§ 8 Grouping:
Example: \so{Virchow{sche}}
A pair of braces can be used to let a group of characters be seen
as one entity, so that soul does for instance not space it out. The
contents must, however, not contain potential hyphenation points.
(See § 9)

§ 9 Protecting:
Example: \so{foo \mbox{little} bar}
An \mbox also lets soul see the contents as one item, but these

4

may even contain hyphenation points. \hbox can be used as a
synonym.

§ 10 Omitting:
Example: \so{\soulomit{foo}}
The contents of \soulomit bypass the soul core and are typeset as
is, without being letterspaced or underlined. Hyphenation points
are allowed within the argument. The current font remains active,
but can be overridden with \normalfont etc.

§ 11 Font switching commands:
Example: \so{foo \texttt{bar}}
All standard TEX and LATEX font switching commands are al-
lowed, as well as the yfonts package [9] font commands like
\textfrak etc. Further commands have to be registered using
the \soulregister command (see section 5.2).

§ 12 Breaking up ligatures:
Example: \ul{Auf{}lage}
Use {} or \null to break up ligatures like ‘fl’ in \ul, \st and \hl
arguments. This doesn’t make sense for \so and \caps, though,
because they break up every unprotected (ungrouped/unboxed)
ligature, anyway, and would then just add undesirable extra space
around the additional item.

2.2 . . . others don’t

Although the new soul is much more robust and forgiving than versions
prior to 2.0, there are still some things that are not allowed in arguments.
This is due to the complex engine, which has to read and inspect every
character before it can hand it over to TEX’s paragraph builder.

§ 20 Grouping hyphenatable material:
Example: \so{foo {little} bar}
Grouped characters must not contain hyphenation points. Instead
of \so{foo {little}} write \so{foo \mbox{little}}. You get
a ‘Reconstruction failed’ error and a black square like in
the DVI file where you violated this rule.

§ 21 Discretionary hyphens:
Example: \so{Zu\discretionary{k-}{}{c}ker}
The argument must not contain discretionary hyphens. Thus, you
have to handle cases like the German word Zu\discretionary{k-}{}{c}ker
by yourself.

§ 22 Nested soul commands:
Example: \ul{foo \so{bar} baz}
soul commands must not be nested. If you really need such, put
the inner stuff in a box and use this box. It will, of course, not get
broken then.

\newbox\anyboxname
\sbox\anyboxname{ \so{the worst} }

5

\ul{This is by far{\usebox\anyboxname}example!}
yields:

This is by far t h e w o r s t example!

§ 23 Leaking font switches:
Example: \def\foo{\bf bar} \so{\foo baz}
A hidden font switching command that leaks into its neighborship
causes a ‘Reconstruction failed’ error. To avoid this either
register the ‘container’ (\soulregister{\foo}{0}), or limit its
scope as in \def\foo{{\bf bar}}. Note that both solutions yield
slightly different results.

§ 24 Material that needs expansion:
Example: \so{\romannumeral\year}
In this example \so would try to put space between \romannumeral
and \year, which can, of course, not work. You have to expand
the argument before you feed it to soul, or even better: Wrap
the material up in a command sequence and let soul expand it:
\def\x{\romannumeral\year} \so\x. soul tries hard to expand
enough, yet not too much.

§ 25 Unexpandable material in command sequences:
Example: \def\foo{\bar} \so\foo
Some macros might not be expandable in an \edef definition7

and have to be protected with \noexpand in front. This is au-
tomatically done for the following tokens: ~, \,, \TeX, \LaTeX,
\S, \slash, \textregistered, \textcircled, and \copyright,
as well as for all registered fonts and accents. Instead of
putting \noexpand manually in front of such commands, as in
\def\foo{foo {\noexpand\bar} bar} \so\foo, you can also reg-
ister them as special (see section 5.2).

§ 26 Other weird stuff:
Example: \so{foo \verb|\bar| baz}
soul arguments must not contain LATEX environments, command
definitions, and fancy stuff like \vadjust. soul’s \footnote com-
mand replacement does not support optional arguments. As long
as you are writing simple, ordinary ‘horizontal’ material, you are
on the safe side.

2.3 Troubleshooting

Unfortunately, there’s just one helpful error message provided by the soul
package, that actually describes the underlying problem. All other mes-
sages are generated directly by TEX and show the low-level commands that
TEX wasn’t happy with. They’ll hardly point you to the violated rule as de-
scribed in the paragraphs above. If you get such a mysterious error message
for a line that contains a soul statement, then comment that statement

7Try \edef\x{\copyright}. Yet \copyright works in soul arguments, because it is
explicitly taken care of by the package

6

page

\so{letterspacing} 8 l e t t e r s p a c i n g
\caps{CAPITALS, Small Capitals} 10 CAPITALS, Small Capitals

\ul{underlining} 12 underlining
\st{striking out} 12 striking out
\hl{highlighting} 12 highlighting

\soulaccent{\cs} 15 add accent \cs to accent list
\soulregister{\cs}{0} 15 register command \cs

\sloppyword{text} 19 typeset text with stretchable spaces

\sodef\cs{1em}{2em}{3em} 8 define new spacing command \cs
\resetso 9 reset \so dimensions

\capsdef{////}{1em}{2em}{3em}∗ 10 define (default) \caps data entry
\capssave{name}∗ 11 save \caps database under name name

\capsselect{name}∗ 11 restore \caps database of name name
\capsreset∗ 11 clear caps database

\setul{1ex}{2ex} 12 set \ul dimensions
\resetul 13 reset \ul dimensions

\setuldepth{y} 13 set underline depth to depth of an y
\setuloverlap{1pt} 13 set underline overlap width

\setulcolor{red} 13 set underline color
\setstcolor{green} 13 set overstriking color
\sethlcolor{blue} 13 set highlighting color

Table 1: List of all available commands. The number points to the page
where the command is described. Those marked with a little asterisk are
only available when the package is used together with LATEX, because they
rely on the New Font Selection Scheme (NFSS) used in LATEX.

7

out and see if the message still appears. ‘Incomplete \ifcat’ is such a
non-obvious message. If the message doesn’t appear now, then check the
argument for violations of the rules as listed in §§ 20–26.

2.3.1 ‘Reconstruction failed’

This message appears, if § 20 or § 23 was violated. It is caused by the fact
that the reconstruction pass couldn’t collect tokens with an overall width
of the syllable that was measured by the analyzer. This does either occur
when you grouped hyphenatable text or used an unregistered command
that influences the syllable width. Font switching commands belong to the
latter group. See the above cited sections for how to fix these problems.

2.3.2 Missing characters

If you have redefined the internal font as described in section 5.3, you
may notice that some characters are omitted without any error message
being shown. This happens if you have chosen, let’s say, a font with only
128 characters like the cmtt10 font, but are using characters that aren’t
represented in this font, e. g. characters with codes greater than 127.

3 L e t t e r s p a c i n g

3.1 How it works

The base macro for letterspacing is called \so. It typesets the given ar-\so

gument with inter-letter space between every two characters, inner space
between words and outer space before and after the spaced out text. If we
let “·” stand for inter-letter space, “∗” for inner spaces and “•” for outer
spaces, then the input on the left side of the following table will yield the
schematic output on the right side:

1. XX\so{aaa bbb ccc}YY XXa·a·a∗b·b·b∗c·c·cYY
2. XX \so{aaa bbb ccc} YY XX•a·a·a∗b·b·b∗c·c·c•YY
3. XX {\so{aaa bbb ccc}} YY XX•a·a·a∗b·b·b∗c·c·c•YY
4. XX \null{\so{aaa bbb ccc}}{} YY XX a·a·a∗b·b·b∗c·c·c YY

Case 1 shows how letterspacing macros (\so and \caps) behave if they
aren’t following or followed by a space: they omit outer space around
the soul statement. Case 2 is what you’ll mostly need—letterspaced text
amidst running text. Following and leading space get replaced by outer
space. It doesn’t matter if there are opening braces before or closing braces
afterwards. soul can see through both of them (case 3). Note that leading
space has to be at least 5sp wide to be recognized as space, because LATEX
uses tiny spaces generated by \hskip1sp as marker. Case 4 shows how
to enforce normal spaces instead of outer spaces: Preceding space can be
hidden by \kern0pt or \null or any character. Following space can also
be hidden by any token, but note that a typical macro name like \relax
or \null would also hide the space thereafter.

The values are predefined for typesetting facsimiles mainly with Fraktur
fonts. You can define your own spacing macros or overwrite the original
\so meaning using the macro \sodef:\sodef

8

\sodef〈cmd〉{〈font〉}{〈inter-letter space〉}{〈inner space〉}{〈outer space〉}

The space dimensions, all of which are mandatory, should be defined in
terms of em letting them grow and shrink with the respective fonts.

\sodef\an{}{.4em}{1em plus1em}{2em plus.1em minus.1em}

After that you can type ‘\an{example}’ to get ‘e x a m p l e’. The
\resetso command resets \so to the default values.\resetso

3.2 Some examples

Ordinary text. \so{electrical industry}
e l e c t r i c a l i n d u s t r y

e l e c -
t r i -
c a l
i n -
d u s -
t r y

Use \- to mark
hyphenation points.

\so{man\-u\-script}
m a n u s c r i p t

m a n -
u -
s c r i p t

Accents are recognized. \so{le th\’e\^atre}
l e t h é â t r e

l e
t h é â t r e

\mbox and \hbox protect
material that contains
hyphenation points. The
contents are treated as one,
unbreakable entity.

\so{just an \mbox{example}}
j u s t a n example

j u s t
a n
example

Punctuation marks are
spaced out, if they are put
into the group.

\so{inside.} \& \so{outside}.
i n s i d e . & o u t s i d e.

i n -
s i d e .
&
o u t -
s i d e.

Space-out skips may be
removed by typing \<. It’s,
however, desirable to put
the quotation marks out of
the argument.

\so{‘‘\<Pennsylvania\<’’}
“P e n n s y l v a n i a”

“P e n n -
s y l -
v a -
n i a”

Numbers should never be
spaced out.

\so{1\<3 December {1995}}
13 D e c e m b e r 1995

13
D e -
c e m -
b e r
1995

Explicit hyphens like -, --
and --- are recognized.
\slash outputs a slash and
enables TEX to break the
line afterwards.

\so{input\slash output}
i n p u t / o u t p u t

i n -
p u t /
o u t -
p u t

9

To keep TEX from breaking
lines between the hyphen
and ‘jet’ you have to
protect the hyphen. This is
no soul restriction but
normal TEX behavior.

\so{\dots and \mbox{-}jet}
. . . a n d - j e t

. . . a n d
- j e t

The ~ command inhibits
line breaks.

\so{unbreakable~space}
u n b r e a k a b l e s p a c e

u n -
b r e a k -
a b l e s p a c e

\\ works as usual.
Additional arguments like *

or vertical space are not
accepted, though.

\so{broken\\line}
b r o k e n
l i n e

b r o -
k e n
l i n e

\break breaks the line
without filling it with white
space.

\so{pretty awful\break test}
p r e t t y a w f u l
t e s t

p r e t t y
a w -
f u l
t e s t

3.3 Typesetting capitals-and-small-capitals fonts

There is a special letterspacing command called \caps, which differs from\caps

\so in that it switches to caps-and-small-caps font shape, defines only slight
spacing and is able to select spacing value sets from a database. This is
a requirement for high-quality typesetting [10]. The following lines show
the effect of \caps in comparison with the normal textfont and with small-
capitals shape:

\normalfont DONAUDAMPFSCHIFFAHRTSGESELLSCHAFT
\scshape DONAUDAMPFSCHIFFAHRTSGESELLSCHAFT

\caps DONAUDAMPFSCHIFFAHRTSGESELLSCHAFT

The \caps font database is by default empty, i. e., it contains just a
single default entry, which yields the result as shown in the example
above. New font entries may be added on top of this list using the
\capsdef command, which takes five arguments: The first argument de-\capsdef

scribes the font with encoding, family, series, shape, and size,8 each op-
tionally (e. g. OT1/cmr/m/n/10 for this very font, or only /ppl///12 for
all palatino fonts at size 12 pt). The size entry may also contain a size
range (5-10), where zero is assumed for an omitted lower boundary (-10)
and a very, very big number for an omitted upper boundary (5-). The
upper boundary is not included in the range, so, in the example below, all
fonts with sizes greater or equal 5 pt and smaller than 15 pt are accepted
(5 pt ≤ size < 15 pt). The second argument may contain font switch-
ing commands such as \scshape, it may as well be empty or contain de-
bugging commands (e. g. \message{*}). The remaining three, mandatory
arguments are the spaces as described in section 3.1.

\capsdef{T1/ppl/m/n/5-15}{\scshape}{.16em}{.4em}{.2em}

8as defined by the NFSS, the “New Font Selection Scheme”

10

The \caps command goes through the data list from top to bottom and
picks up the first matching set, so the order of definition is essential. The
last added entry is examined first, while the pre-defined default entry will
be examined last and will match any font, if no entry was taken before.

To override the default values, just define a new default entry using the
identifier {////}. This entry should be defined first, because no entry after
it can be reached.

The \caps database can be cleared with the \capsreset command and\capsreset

will only contain the default entry thereafter. The \capssave command\capssave

saves the whole current database under the given name. \capsselect\capsselect

restores such a database. This allows to predefine different groups of \caps
data sets:

\capsreset
\capsdef{/cmss///12}{}{12pt}{23pt}{34pt}
\capsdef{/cmss///}{}{1em}{2em}{3em}
...
\capssave{wide}

%---------------------------------------
\capsreset
\capsdef{/cmss///}{}{.1em}{.2em}{.3em}
...
\capssave{narrow}

%---------------------------------------
{\capsselect{wide}
\title{\caps{Yet Another Silly Example}}
}

See the ‘example.cfg’ file for a detailed example. If you have defined a
bunch of sets for different fonts and sizes, you may lose control over what
fonts are used by the package. With the package option capsdefault selected,capsdefault
\caps prints its argument underlined, if no set was specified for a particular
font and the default set had to be used.

3.4 Typesetting Fraktur

Black letter fonts9 deserve some additional considerations. As stated in
section 1, the ligatures ch, ck, sz (\ss), and tz have to remain unbroken
in spaced out Fraktur text. This may look strange at first glance, but you’ll
get used to it:

\textfrak{\so{S{ch}u{tz}vorri{ch}tung}}

You already know that grouping keeps the soul mechanism from sepa-
rating such ligatures. This is quite important for s:, a*, and "a. As
hyphenation is stronger than grouping, especially the sz may cause an er-
ror, if hyphenation happens to occur between the letters s and z. (TEX
hyphenates the German word auszer wrongly like aus-zer instead of like

9See the great black letter fonts, which Yannis Haralambous kindly provided,
and the oldgerm and yfonts package [9] as their LATEX interfaces.

11

Some
magazines and
newspapers
prefer this
kind of spacing
because it
reduces
hyphenation
problems to a
minimum.
Unfortunately,
such
paragraphs
aren’t
especially
beautiful.

S o m e m a g -
a z i n e s a n d
n e w s p a p e r s
p r e f e r t h i s
kind of spac-
i n g b e c a u s e
it reduces hy-
p h e n a t i o n
p r o b l e m s t o
a m i n i m u m.
Unfortunately,
s u c h p a r a -
graphs aren’t
e s p e c i a l l y
beautiful.

Some magazines
and newspapers
prefer this kind
of spacing because
it reduces hyphen-
ation problems
to a minimum.
Unfortunately, such
paragraphs aren’t
especially beau-
tiful.

Table 2: Ragged-right, magazine style (using soul), and block-aligned in
comparison. But, frankly, none of them is really acceptable. (Don’t do this
at home, children!)

au-szer, because the German hyphenation patterns do, for good reason,
not see sz as ‘\ss’.) In such cases you can protect tokens with the sequence
e. g. \mbox{sz} or a properly defined command. The \ss command, which
is defined by the yfonts package, and similar commands will suffice as well.

3.5 Dirty tricks

Narrow columns are hard to set, because they don’t allow much spacing
flexibility, hence long words often cause overfull boxes. A macro could
use \so to insert stretchability between the single characters. Table 2
shows some text typeset with such a macro at the left side and under plain
conditions at the right side, both with a width of 6 pc.

4 Underlining

The underlining macros are my answer to Prof. Knuth’s exercise 18.26
from his TEXbook [5]. :-) Most of what is said about the macro \ul is\ul

also true of the striking out macro \st and the highlighting macro \hl,\st

\hl both of which are in fact derived from the former.

4.1 Settings

4.1.1 Underline depth and thickness

The predefined underline depth and thickness work well with most fonts.
They can be changed using the macro \setul.\setul

\setul{〈underline depth〉}{〈underline thickness〉}

12

Either dimension can be omitted, in which case there has to be an empty
pair of braces. Both values should be defined in terms of ex, letting them
grow and shrink with the respective fonts. The \resetul command restores\resetul

the standard values.
Another way to set the underline depth is to use the macro \setuldepth.\setuldepth

It sets the depth such that the underline’s upper edge lies 1 pt beneath the
given argument’s deepest depth. If the argument is empty, all letters—i. e.
all characters whose \catcode currently equals 11—are taken. Examples:

\setuldepth{ygp}
\setuldepth\strut
\setuldepth{}

4.1.2 Line color

The underlines are by default black. The color can be changed by using
the \setulcolor command. It takes one argument that can be any of the\setulcolor

color specifiers as described in the color package. This package has to be
loaded explicitly.

\documentclass{article}
\usepackage{color,soul}
\definecolor{darkblue}{rgb}{0,0,0.5}
\setulcolor{darkblue}

\begin{document}
...
\ul{Cave: remove all the underlines!}
...
\end{document}

The colors for overstriking lines and highlighting are likewise set with
\setstcolor (default: black) and \sethlcolor (default: yellow). If the\setstcolor

\sethlcolor color package wasn’t loaded, underlining and overstriking color are black,
while highlighting is replaced by underlining.

4.1.3 The dvips problem

Underlining, striking out and highlighting build up their lines with many
short line segments. If you used the ‘dvips’ program with default settings,
you would get little gaps on some places, because the maxdrift parameter
allows the single objects to drift this many pixels from their real positions.

There are two ways to avoid the problem, where the soul package chooses
the second by default:

1. Set the maxdrift value to zero, e. g.: dvips -e 0 file.dvi. This is
probably not a good idea, since the letters may then no longer be
spaced equally on low resolution printers.

2. Let the lines stick out by a certain amount on each side so that they
overlap. This overlap amount can be set using the \setuloverlap\setuloverlap

13

command. It is set to 0.25 pt by default. \setuloverlap{0pt} turns
overlapping off.

4.2 Some examples

Ordinary text. \ul{electrical industry}
electrical industry

elec-
tri-
cal
in-
dus-
try

Use \- to mark
hyphenation points.

\ul{man\-u\-script}
manuscript

man-
u-
script

Accents are recognized. \ul{le th\’e\^atre}
le théâtre

le
théâtre

\mbox and \hbox protect
material that contains
hyphenation points. The
contents are treated as one,
unbreakable entity.

\ul{just an \mbox{example}}
just an example

just
an
example

Explicit hyphens like -, --
and --- are recognized.
\slash outputs a slash and
enables TEX to break the
line afterwards.

\ul{input\slash output}
input/output

in-
put/
out-
put

To keep TEX from breaking
lines between the hyphen
and ‘jet’ you have to
protect the hyphen. This is
no soul restriction but
normal TEX behavior.

\ul{\dots and \mbox{-}jet}
. . . and -jet

. . . and
-jet

The ~ command inhibits
line breaks.

\ul{unbreakable~space}
unbreakable space

un-
break-
able space

\\ works as usual.
Additional arguments like *

or vertical space are not
accepted, though.

\ul{broken\\line}
broken
line

bro-
ken
line

\break breaks the line
without filling it with white
space.

\ul{pretty awful\break test}
pretty awful
test

pretty
aw-
ful
test

14

Italic correction needs to be
set manually.

\ul{foo \emph{bar\/} baz}
foo bar baz

foo
bar
baz

5 Customization

5.1 Adding accents

The soul scanner generally sees every input token separately. It has to
be taught that some tokens belong together. For accents this is done by
registering them via the \soulaccent macro.\soulaccent

\soulaccent{〈accent command〉}

The standard accents, however, are already pre-registered: \‘, \’, \^, \",
\~, \=, \., \u, \v, \H, \t, \c, \d, \b, and \r. If used together with the
german package, soul automatically adds the " command. Let’s assume
you have defined \% to put some weird accent on the next character. Simply
put the following line into your soul.cfg file (see section 5.4):

\soulaccent{\%}

Note that active characters like the " command have already to be \active
when they are stored or they won’t be recognized later. This can be done
temporarily, as in {\catcode\‘"\active\soulaccent{"}}.

5.2 Adding font commands

To convince soul not to feed font switching (or other) commands to the
analyzer, but rather to execute them immediately, they have to be regis-
tered, too. The \soulregister macro takes the name of a command name\soulregister

and either 0 or 1 for the number of arguments:

\soulregister{〈command name〉}{〈number of arguments〉}

If \bf and \emph weren’t already registered, you would write the following
into your soul.cfg configuration file:

\soulregister{\bf}{0} % {\bf foo}
\soulregister{\emph}{1} % \emph{bar}

All standard TEX and LATEX font commands, as well as the yfonts com-
mands are already pre-registered:

\em, \rm, \bf, \it, \tt, \sc, \sl, \sf, \emph, \textrm,
\textsf, \texttt, \textmd, \textbf, \textup, \textsl,
\textit, \textsc, \textnormal, \rmfamily, \sffamily,
\ttfamily, \mdseries, \upshape, \slshape, \itshape,
\scshape, \normalfont, \tiny, \scriptsize, \footnotesize,
\small, \normalsize, \large, \Large, \LARGE, \huge, \Huge,
\MakeUppercase, \textsuperscript, \footnote,
\textfrak, \textswab, \textgoth, \frakfamily,
\swabfamily, \gothfamily

15

You can also register other commands as fonts, so the analyzer won’t see
them. This may be necessary for some macros that soul refuses to typeset
correctly. But note, that \so and \caps won’t put their letter-skips around
then.

5.3 Changing the internal font

The soul package uses the ectt1000 font while it analyzes the syllables.
This font is used, because it has 256 mono-spaced characters without any
kerning. It belongs to Jörg Knappen’s EC-fonts, which should be part
of every modern TEX installation. If TEX reports “I can’t find file
‘ectt1000’” you don’t seem to have this font installed. It is recommended
that you install at least the file ectt1000.tfm which has less than 1.4 kB.
Alternatively, you can let the soul package use the cmtt10 font that is part
of any installation, or some other mono-spaced font:

\font\SOUL@tt=cmtt10

Note, however, that soul does only handle characters, for which the inter-
nal font has a character with the same character code. As cmtt10 contains
only characters with codes 0 to 127, you can’t typeset characters with
codes 128 to 255. These 8-bit character codes are used by many fonts with
non-ascii glyphs. So the cmtt10 font will, for example, not work for T2A
encoded cyrillic characters.

5.4 The configuration file

If you want to change the predefined settings or add new features, then cre-
ate a file named ‘soul.cfg’ and put it in a directory, where TEX can find
it. This configuration file will then be loaded at the end of the soul.sty
file, so you may redefine any settings or commands therein, select package
options and even introduce new ones. But if you intend to give your docu-
ments to others, don’t forget to give them the required configuration files,
too! That’s how such a file could look like:

% define macros for logical markup
\sodef\person{\scshape}{0.125em}{0.4583em}{0.5833em}

\sodef\SOUL@@@versal{\upshape}{0.125em}{0.4583em}{0.5833em}
\DeclareRobustCommand*\versal[1]{%

\MakeUppercase{\SOUL@@@versal{#1}}%
}

% load the color package and set
% a different highlighting color
\RequirePackage{color}
\definecolor{lightblue}{rgb}{.90,.95,1}
\sethlcolor{lightblue}
\endinput

You can safely use the \SOUL@@@ namespace for internal macros—it won’t
be used by the soul package in the future.

16

6 Miscellaneous

6.1 Using soul with other flavors of TEX

This documentation describes how to use soul together with LATEX 2ε, for
which it is optimized. It works, however, with all other flavors of TEX, too.
There are just some minor restrictions for Non-LATEX use:

The \caps command doesn’t use a database, it is only a dumb defi-
nition with fixed values. It switches to \capsfont, which—unless defined
explicitly like in the following example—won’t really change the used font
at all. The commands \capsreset and \capssave do nothing.

\font\capsfont=cmcsc10
\caps{Tschichold}

None of the commands are made ‘robust’, so they have to be explicitly
protected in fragile environments like in \write statements. To make use
of colored underlines or highlighting you have to use the color package
wrapper from CTAN10, instead of the color package directly:

\input color
\input soul.sty
\hl{highlighted}
\bye

The capsdefault package option is mapped to a simple command \capsdefault.\capsdefault

6.2 Using soul commands for logical markup

It’s generally a bad idea to use font style commands like \textsc in running
text. There should always be some reasoning behind changing the style,
such as “names of persons shall be typeset in a caps-and-small-caps font”.
So you declare in your text just that some words are the name of a person,
while you define in the preamble or, even better, in a separate style file
how to deal with persons:

\newcommand*\person{\textsc}
...
‘‘I think it’s a beautiful day to go to the zoo and feed
the ducks. To the lions.’’ --~\person{Brian Kantor}

It’s quite simple to use soul commands that way:

\newcommand\comment*{\ul} % or \let\comment=\ul
\sodef\person{\scshape}{0.125em}{0.4583em}{0.5833em}

Letterspacing commands like \so and \caps have to check whether they
are followed by white space, in which case they replace that space by outer
space. Note that soul does look through closing braces. Hence you can
conveniently bury a soul command within another macro like in the fol-
lowing example. Use any other token to hide following space if necessary,
for example the \null macro.

10CTAN:/macros/plain/graphics/{miniltx.tex,color.tex}

17

\DeclareRobustCommand*\versal[1]{%
\MakeUppercase{\SOUL@@@versal{#1}}%

}
\sodef\SOUL@@@versal{\upshape}{0.125em}{0.4583em}{0.5833em}

But what if the soul command is for some reason not the last one in that
macro definition and thus cannot look ahead at the following token?

\newcommand*\somsg[1]{\so{#1}\message{#1}}
...
foo \somsg{bar} baz % wrong spacing after ‘bar’!

In this case you won’t get the following space replaced by outer space
because when soul tries to look ahead, it only sees the token \message
and consequently decides that there is no space to replace. You can get
around this by explicitly calling the space scanner again.

\newcommand*\somsg[1]{{%
\so{#1}%
\message{bar}%
\let\\\SOUL@socheck
\\%

}}

However, \SOUL@socheck can’t be used directly, because it would discard
any normal space. \\ doesn’t have this problem. The additional pair of
braces avoids that its definition leaks out of this macro. In the example
above you could, of course, simply have put \message in front, so you
hadn’t needed to use the scanner macro \SOUL@socheck at all.

Many packages do already offer logical markup commands that de-
fault to some standard LATEX font commands or to \relax. One exam-
ple is the jurabib package [1], which makes the use of soul a challenge.
This package implements lots of formatting macros. Let’s have a look
at one of them, \jbauthorfont, which is used to typeset author names
in citations. The attempt to simply define \let\jbauthorfont\caps
fails, because the macro isn’t directly applied to the author name as in
\jbauthorfont{Don Knuth}, but to another command sequence: \jbauthorfont{\jb@@author}.
Not even \jb@@author contains the name, but instead further commands
that at last yield the requested name. That’s why we have to expand the
contents first. This is quite tricky, because we must not expand too much,
either. Fortunately, we can offer the contents wrapped up in yet another
macro, so that soul knows that it has to use its own macro expansion
mechanism:

\renewcommand*\jbauthorfont[1]{{%
\def\x{#1}%
\caps\x

}}

Some additional kerning after \caps\x wouldn’t hurt, because the look-
ahead scanner is blinded by further commands that follow in the jurabib
package. Now we run into the next problem: cited names may contain
commands that must not get expanded. We have to register them as special
command:

18

\soulregister\jbbtasep{0}
...

But such registered commands bypass soul’s kernel and we don’t get the
correct spacing before and afterwards. So we end up redefining \jbbtasep,
whereby you should, of course, use variables instead of numbers:

\renewcommand*\jbbtasep{%
\kern.06em
\slash
\hskip.06em
\allowbreak

}

Another problem arises: bibliography entries that must not get teared apart
are supposed to be enclosed in additional braces. This, however, won’t work
with soul because of § 20. A simple trick will get you around that problem:
define a dummy command that only outputs its argument, and register that
command:

\newcommand*\together[1]{#1}
\soulregister\together{1}

Now you can write “Author = {\together{Don Knuth}}” and jurabib
won’t dare to reorder the parts of the name. And what if some name
shouldn’t get letterspaced at all? Overriding a conventional font style like
\textbf that was globally set is trivial, you just have to specify the style
that you prefer in that very bibliography entry. In our example, if we
wanted to keep soul from letterspacing a particular entry, although they
are all formatted by our \jbauthorfont and hence fed to \caps, we’d use
the following construction:

Author = {\soulomit{\normalfont\huge Donald E. Knuth}}

The jurabib package is probably one of the more demanding packages to
collaborate with soul. Everything else can just become easier.

6.3 Typesetting long words in narrow columns

Narrow columns are best set flushleft, because not even the best hy-
phenation algorithm can guarantee acceptable line breaks without overly
stretched spaces. However, in some rare cases one may be forced to typeset
block aligned. When typesetting in languages like German, where there are
really long words, the \sloppyword macro might help a little bit. It adds\sloppyword

enough stretchability between the single characters to make the hyphen-
ation algorithm happy, but is still not as ugly as the example in section 3.5
demonstrates. In the following example the left column was typeset as
“Die \sloppyword{Donau...novelle} wird ...”:

Die Donaudampfschiff-
fahrtsgesellschaftska-
pitänswitwenpensi-
onsgesetznovelle wird
mit sofortiger Wirkung
außer Kraft gesetzt.

Die Donaudampfschiff-
fahrtsgesellschaftska-
pitänswitwenpensions-
gesetznovelle wird mit
sofortiger Wirkung
außer Kraft gesetzt.

19

6.4 Using soul commands in section headings

Letterspacing was often used for section titles in the past, mostly centered
and with a closing period. The following example shows how to achieve
this using the titlesec package [2]:

\newcommand*\periodafter[2]{#1{#2}.}
\titleformat{\section}[block]

{\normalfont\centering}
{\thesection.}
{.66em}
{\periodafter\so}

...
\section{Von den Maassen und Maassst\"aben}

This yields the following output:

1. V o n d e n M a a s s e n u n d M a a s s s t ä b e n.

The \periodafter macro adds a period to the title, but not to the entry
in the table of contents. It takes the name of a command as argument, that
shall be applied to the title, for example \so. Here’s a more complicated
and complete example:

\documentclass{article}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{german,soul}
\usepackage[indentfirst]{titlesec}

\newcommand*\sectitle[1]{%
\MakeUppercase{\so{#1}.}\\[.66ex]
\rule{13mm}{.4pt}}

\newcommand*\periodafter[2]{#1{#2.}}

\titleformat{\section}[display]
{\normalfont\centering}
{\S. \thesection.}
{2ex}
{\sectitle}

\titleformat{\subsection}[block]
{\normalfont\centering\bfseries}
{\thesection.}
{.66em}
{\periodafter\relax}

20

\begin{document}
\section{Von den Maassen und Maassst\"aben}
\subsection{Das L\"angenmaass im Allgemeinen}

Um L\"angen genau messen und vergleichen zu k\"onnen,
bedarf es einer gewissen, bestimmten Einheit, mit der
man untersucht, wie oft sie selbst, oder ihre Theile,
in der zu bestimmenden L\"ange enthalten sind.
...
\end{document}

This example gives you roughly the following output, which is a facsimile
from [6].

§. 1.

V O N D E N M A A S S E N U N D M A A S S S T Ä B E N.

1. Das Längenmaass im Allgemeinen.

Um Längen genau messen und vergleichen zu können, bedarf es einer
gewissen, bestimmten Einheit, mit der man untersucht, wie oft sie selbst,
oder ihre Theile, in der zu bestimmenden Länge enthalten sind.

Note that the definition of \periodafter decides if the closing period shall
be spaced out with the title (1), or follow without space (2):

1. \newcommand*\periodafter[2]{#1{#2.}}
2. \newcommand*\periodafter[2]{#1{#2}.}

If you need to underline section titles, you can easily do it with the help of
the titlesec package. The following example underlines the section title,
but not the section number:

\titleformat{\section}
{\LARGE\titlefont}
{\thesection}
{.66em}
{\ul}

The \titlefont command is provided by the “KOMA script” package.
You can write \normalfont\sffamily\bfseries instead. The following
example does additionally underline the section number:

\titleformat{\section}
{\LARGE\titlefont}
{\ul{\thesection{\kern.66em}}}
{0pt}
{\ul}

21

7 How the package works

7.1 The kernel

L e t t e r s p a c i n g , underlining, striking out and highlighting use the
same kernel. It lets a word scanner run over the given argument, which in-
spects every token. If a token is a command registered via \soulregister,
it is executed immediately. Other tokens are only counted and trigger
some action when a certain number is reached (quotes and dashes). Three
subsequent ‘-’, for example, trigger \SOUL@everyexhyphen{---}. A third
group leads to special actions, like \mbox that starts reading-in a whole
group to protect its contents and let them be seen as one entity. All other
tokens, mostly characters and digits, are collected in a word register, which
is passed to the analyzer, whenever a whole word was read in.

The analyzer typesets the word in a 1 sp (= 1
65536 pt) wide \vbox, hence

encouraging TEX to break lines at every possible hyphenation point. It
uses the mono-spaced \SOUL@tt font (ectt1000), so as to avoid any inter-
character kerning. Now the \vbox is decomposed splitting off \hbox after
\hbox from the bottom. All boxes, each of which contains one syllable,
are pushed onto a stack, which is provided by TEX’s grouping mechanism.
When returning from the recursion, box after box is fetched from the stack,
its width measured and fed to the “reconstructor”.

This reconstruction macro (\SOUL@dosyllable) starts to read tokens
from the just analyzed word until the given syllable width is obtained. This
is repeated for each syllable. Every time the engine reaches a relevant state,
the corresponding driver macro is executed and, if necessary, provided with
some data. There is a macro that is executed for each token, one for each
syllable, one for each space etc.

The engine itself doesn’t know how to letterspace or to underline. It just
tells the selected driver about the structure of the given argument. There’s
a default driver (\SOUL@setup) that does only set the interface macros to
a reasonable default state, but doesn’t really do anything. Further drivers
can safely inherit these settings and only need to redefine what they want
to change.

7.2 The interface

7.2.1 The registers

The package offers eight interface macros that can be used to define the
required actions. Some of the macros receive data as macro parameter or
in special token or dimen registers. Here is a list of all available registers:

\SOUL@token This token register contains the current token.
It has to be used as \the\SOUL@token. The
macro \SOUL@gettoken reads the next token
into \SOUL@token and can be used in any in-
terface macro. If you don’t want to lose the
old meaning, you have to save it explicitly.
\SOUL@puttoken pushes the token back into
the queue, without changing \SOUL@token.

22

You can only put one token back, otherwise
you get an error message.

\SOUL@lasttoken This token register contains the last token.

\SOUL@syllable This token register contains all tokens that
were already collected for the current syllable.
When used in \SOUL@everysyllable, it con-
tains the whole syllable.

\SOUL@charkern This dimen register contains the kerning value
between the current and the next charac-
ter. Since most character pairs don’t re-
quire a kerning value to be applied and the
output in the logfile shouldn’t be cluttered
with \kern0pt it is recommended to write
\SOUL@setkern\SOUL@charkern, which sets kern-
ing for non-zero values only.

\SOUL@hyphkern This dimen register contains the kerning value
between the current character and the hyphen
character or, when used in \SOUL@everyexhyphen,
the kerning between the last character and the
explicit hyphen.

7.2.2 The interface macros

The following list describes each of the interface macros and which registers
it can rely on. The mark between label and description will be used in
section 7.2.3 to show when the macros are executed. The addition #1
means that the macro takes one argument.

\SOUL@preamble P executed once at the beginning

\SOUL@postamble E executed once at the end

\SOUL@everytoken T executed after scanning a token; It gets that
token in \SOUL@token and has to care for in-
serting the kerning value \SOUL@charkern be-
tween this and the next character. To look at
the next character, execute \SOUL@gettoken,
which replaces \SOUL@token by the next to-
ken. This token has to be put back into the
queue using \SOUL@puttoken.

\SOUL@everysyllable S This macro is executed after scanning a whole
syllable. It gets the syllable in \SOUL@syllable.

\SOUL@everyhyphen − This macro is executed at every implicit hy-
phenation point. It is responsible for set-
ting the hyphen and will likely do this in a
\discretionary statement. It has to care
about the kerning values. The registers \SOUL@lasttoken,

23

\SOUL@syllable, \SOUL@charkern and \SOUL@hyphkern
contain useful information. Note that \discretionary
inserts \exhyphenpenalty if the first part of
the discretionary is empty, and \hyphenpenalty
else.

\SOUL@everyexhyphen#1= This macro is executed at every explicit hy-
phenation point. The hyphen ‘character’ (one
of hyphen, en-dash, em-dash or \slash) is
passed as parameter #1. A minimal implemen-
tation would be {#1\penalty\exhyphenpenalty}.
The kerning value between the last character
and the hyphen is passed in \SOUL@hyphkern,
that between the hyphen and the next charac-
ter in \SOUL@charkern. The last syllable can
be found in \SOUL@syllable, the last charac-
ter in \SOUL@lasttoken.

\SOUL@everyspace#1 This macro is executed between every two
words. It is responsible for setting the space.
The engine submits a \penalty setting as pa-
rameter #1 that should be put in front of
the space. The macro should at least do
{#1\space}. Further information can be found
in \SOUL@lasttoken and \SOUL@syllable. Note
that this macro does not care for the lead-
ing and trailing space. This is the job of
\SOUL@preamble and \SOUL@postamble.

7.2.3 Some examples

The above list’s middle column shows a mark that indicates in the following
examples, when the respective macros are executed:

P
w
T

o
T

r
T

d
T SE

\SOUL@everytokenT is executed for every to-
ken. \SOUL@everysyllableS is additionally
executed for every syllable. You will mostly
just want to use either of them.

P
o
T

n
T

e
T S

 t
T

w
T

o
T SE

The macro \SOUL@everyspace is executed at
every space within the soul argument. It has
to take one argument, that can either be empty
or contain a penalty, that should be applied to
the space.

P
e
T

x
T S−

a
T

m
T S−

p
T

l
T

e
T SE

The macro \SOUL@everyhyphen is executed at
every possible implicit hyphenation point.

P
b
T

e
T

t
T

a
T S

-
=

t
T

e
T

s
T

t
T SE

Explicit hyphens trigger \SOUL@everyexhyphen.

It’s only natural that these examples, too, were automatically typeset by
the soul package using a special driver:

24

\DeclareRobustCommand*\an{%
\def\SOUL@preamble{$^{^P}$}%
\def\SOUL@everyspace##1{##1\texttt{\char‘\ }}%
\def\SOUL@postamble{$^{^E}$}%
\def\SOUL@everyhyphen{$^{^-}$}%
\def\SOUL@everyexhyphen##1{##1$^{^=}$}%
\def\SOUL@everysyllable{$^{^S}$}%
\def\SOUL@everytoken{\the\SOUL@token$^{^T}$}%
\def\SOUL@everylowerthan{$^{^L}$}%
\SOUL@}

7.3 A driver example

Let’s define a soul driver that allows to typeset text with a \cdot at every
potential hyphenation point. The name of the macro shall be \sy (for syl-
lables). Since the soul mechanism is highly fragile, we use the LATEX com-
mand \DeclareRobustCommand, so that the \sy macro can be used even
in section headings etc. The \SOUL@setup macro sets all interface macros
to reasonable default definitions. This could of course be done manually,
too. As we won’t make use of \SOUL@everytoken and \SOUL@postamble
and both default to \relax, anyway, we don’t have to define them here.

\DeclareRobustCommand*\sy{%
\SOUL@setup

We only set \lefthyphenmin and \righthyphenmin to zero at the begin-
ning. All changes are restored automatically, so there’s nothing to do at
the end.

\def\SOUL@preamble{\lefthyphenmin=0 \righthyphenmin=0 }%

We only want simple spaces. Note that these are not provided by default!
\SOUL@everyspace may get a penalty to be applied to that space, so we
set it before.

\def\SOUL@everyspace##1{##1\space}%

There’s nothing to do for \SOUL@everytoken, we rather let \SOUL@everysyllable
handle a whole syllable at once. This has the advantage, that we don’t have
to deal with kerning values, because TEX takes care of that.

\def\SOUL@everysyllable{\the\SOUL@syllable}

The TEX primitive \discretionary takes three arguments: 1. pre-hyphen
material 2. post-hyphen material, and 3. no-hyphenation material.

\def\SOUL@everyhyphen{%
\discretionary{%

\SOUL@setkern\SOUL@hyphkern
\SOUL@sethyphenchar

}{}{%
\hbox{\kern1pt\cdot}%

}%
}%

25

Explicit hyphens like dashes and slashes shall be set normally. We just
have to care for kerning. The hyphen has to be put in a box, because, as
\hyphenchar, it would yield its own, internal \discretionary. We need
to set ours instead, though.

\def\SOUL@everyexhyphen##1{%
\SOUL@setkern\SOUL@hyphkern
\hbox{##1}%
\discretionary{}{}{%

\SOUL@setkern\SOUL@charkern
}%

}

Now that the interface macros are defined, we can start the scanner.

\SOUL@
}

This lit ·tle macro will hard ·ly be good e ·nough for lin ·guists, al ·though it
us ·es TEX’s ex ·cel ·lent hy ·phen ·ation al ·go ·rithm, but it is at least a nice
al ·ter ·na ·tive to the \showhyphens com ·mand.

Acknowledgements

A big thank you goes to Stefan Ulrich for his tips and bug reports
during the development of versions 1.* and for his lessons on high qual-
ity typesetting. The \caps mechanism was very much influenced by
his suggestions. Thanks to Alexander Shibakov and Frank Mit-
telbach, who sent me a couple of bug reports and feature requests, and
finally encouraged me to (almost) completely rewrite soul. Thorsten
Manegold contributed a series of bug reports, helping to fix soul’s
macro expander and hence making it work together with the jurabib pack-
age. Thanks to Axel Reichert, Anshuman Pandey, and Peter
Kreynin for detailed bug reports. Rowland McDonnel gave useful
hints for how to improve the documentation, but I’m afraid he will still not
be satisfied, and rightfully so. If only documentation writing weren’t that
boring. ;-)

References

[1] Berger, Jens: The jurabib package. CTAN-Archive, 2002, v0.52h.

[2] Bezos, Javier: The titlesec and titletoc package. CTAN-Archive,
1999, v2.1.

[3] Carlisle, D. P.: The color package. CTAN-Archive, 1997, v1.0d.

[4] Duden, Volume 1. Die Rechtschreibung. Bibliographisches Institut,
Mannheim–Wien–Zürich, 1986, 19th edition.

[5] Knuth, Donald E.: The TEXbook. Addison–Wesley Publishing
Company, Reading/Massachusetts, 1989, 16th edition.

26

[6] Muszynski, Carl and Přihoda, Eduard: Die Terrainlehre
in Verbindung mit der Darstellung, Beurtheilung und Beschreibung
des Terrains vom militärischen Standpunkte. L. W. Seidel & Sohn,
Wien, 1872.

[7] Normalverordnungsblatt für das k. u. k. Heer. Exercier-Reglement für
die k. u. k. Cavallerie, I. Theil. Wien, k. k. Hof- und Staatsdruckerei,
1898, 4th edition.

[8] Raichle, Bernd: The german package. CTAN-Archive, 1998,
v2.5e.

[9] Schmidt, Walter: Ein Makropaket für die gebrochenen
Schriften. CTAN-Archive, 1998, v1.2.

[10] Tschichold, Jan: Ausgewählte Aufsätze über Fragen der Gestalt
des Buches und der Typographie. Birkhäuser, Basel, 1987,
2nd edition.

[11] Willberg, Hans Peter and Forssmann, Friedrich:
Lesetypographie. H. Schmidt, Mainz, 1997.

27

	Typesetting rules
	Short introduction and common rules
	Some things work
	... others don't
	Troubleshooting

	Letterspacing
	How it works
	Some examples
	Typesetting caps-and-small-caps fonts
	Typesetting Fraktur
	Dirty tricks

	Underlining
	Settings
	Some examples

	Customization
	Adding accents
	Adding font commands
	Changing the internal font
	The configuration file

	Miscellaneous
	Using soul with other flavors of TeX
	Using soul commands for logical markup
	Typesetting long words in narrow columns
	Using soul commands in section headings

	How the package works
	The kernel
	The interface
	A driver example

