leecheng

PSTricks.

PostScript macros for Generic TeX.

blo

= o\

Mathematical Model for
Dripping Faucet a Dripping Faucet

o o o o

User’'s Guide

Timothy Van Zandt

12 March 1993
Version 0.93a

Author’s address:
Department of Economics, Princeton University,
Princeton, NJ 08544-1021, USA. Internez@Princeton.EDU

Contents

Welcome to PSTricks 1
Partl The Essentials 3
1 Arguments and delimiters 3
2 Color 4
3 Setting graphics parameters 5
4 Dimensions, coordinates and angles 7
5 Basic graphics parameters 8
Part Il Basic graphics objects 10
6 Lines and polygons 10
7 Arcs, circles and ellipses 11
8 Curves 13
9 Dots 15
10 Grids 17
11 Plots 19
Part Il More graphics parameters 24
12 Coordinate systems 24
13 Line styles 24
14 Fill styles 27
15 Arrowheads and such 28
16 Custom styles 31
Part IV Custom graphics 32
17 The basics 32
18 Parameters 32
19 Graphics objects 33

Table of contents

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Safe tricks

Pretty safe tricks

For hackers only

PartV Picture Tools
Pictures

Placing and rotating whatever
Repetition

Axes

Part VI Text Tricks

Framed boxes

Clipping

Rotation and scaling boxes

Part VIl Nodes and Node Connections
Nodes

Node connections

Attaching labels to node connections
Part VIII Special Tricks

Coils and zigzags

Special coordinates

Overlays

The gradient fill style

Adding color to tables

Typesetting text along a path
Stroking and filling character paths

Importing EPS files

Table of contents

36
39
39
41
41
42
46
47
52
52
54
55
58
59
60
66
70
70
71
73
74
75
76
77

78

41 Exporting EPS files

Help

>

Boxes

o8]

Tips and More Tricks

Including PostScript code

o O

Troubleshooting

Table of contents

79
82

82
85

86

87

Welcome to PSTricks

PSTricks is a collection of PostScript-basegKTmacros that is com-
patible with most BX macro packages, including PlaineX, 1&gX,
AMSTEX, and AMS-BIX. PSTricks gives you color, graphics, rota-
tion, trees and overlays. PSTricks puts the icing (PostScript) on your

cake (EX)!

To install PSTricks, follow the instructions in the filead-me.pst that
comes with the PSTricks package. Even if PSTricks has already been
installed for you, giveead-me.pst a look over.

ThisUser’s Guideverges on being a reference manual, meaning that itis
not designed to be read linearly. Here is arecommended strategy: Finish
reading this brief overview of the features in PSTricks. Then thumb
through the entirdJser’'s Guideto get your own overview. Return to
Part | (Essentials) and read it carefully. Refer to the remaining sections
as the need arises.

When you cannot figure out how to do something or when trouble arises,
check out the appendices (Help). You just might be lucky enough to
find a solution. There is also &§X file samples.pst of samples that is
distributed with PSTricks. Look to this file for further inspiration.

This documentation is written witlll=X. Some examples us€TEX
specific constructs and some don't. However, there is noti#ipeX L
specific about any of the macros, nor is there anything that does not work
with |&X. This package has been tested with PlagiX, X, AMS-
[@Xand AMSTEX, and should work with othergX macro packages

as well.

The main macro file igpstricks.tex/pstricks.sty. Each of the PSTricks
macro files comes with aex extension and asty extension; these are
equivalent, but thesty extension means that you can include the file
name as aX document style option.

There are numerous supplementary macro files. A file, like the one
above and the left, is used in tHilser’'s Guideto remind you that you
must input a file before using the macros it contains.

For most PSTricks macros, even if you misuse them, you will not get
PostScript errors in the output. However, it is recommended that you
resolve any X errors before attempting to print your document. A

few PSTricks macros pass on PostScript errors without warning. Use

Welcome to PSTricks 1

these with care, especially if you are using a networked printer, because
PostScript errors can cause a printer to bomb. Such macros are pointed
out in strong terms, using a warning like this one:

Warning: Use macros that do not check for PostScript
errors with care. PostScript errors can cause a printer to
bomb!

Keep in mind the following typographical conventions in this User’s
Guide.

 Allliteral input characters, i.e., those that should appear verbatim
in your input file, appear in uprighelvetica and Helvetica-Bold
fonts.

» Meta arguments, for which you are supposed to substitute a value
(e.g., angle) appear in slanteéhelvetica-Oblique and Helvetica-
BoldOblique fonts.

» The main entry for a macro or parameter that states its syntax
appears in a large bold forgxcept for the optional arguments,
which are in medium weighfThis is how you can recognize the
optional arguments.

» References to PSTricks commands and parameters within para-
graphs are set iHelvetica-Bold .

Welcome to PSTricks 2

The Essentials

1 Arguments and delimiters

Here is some nitty-gritty about arguments and delimiters that is really
important to know.

The PSTricks macros use the following delimiters:

Curly braces {arg}

Brackets (only for optional arguments)arg]

Parentheses and commas for coordinatesy)
= and, for parameters parl=vall, ...

Spaces and commas are also used as delimiters within arguments, but
in this case the argument is expanded before looking for the delimiters.

Always use a period rather than a comma to denote the decimal point,
so that PSTricks doesn’t mistake the comma for a delimiter.

The easiest mistake to make with the PSTricks macros is to mess up the
delimiters. This may generate complaints frogKTr PSTricks about
bad arguments, or other unilluminating errors such as the following:

I Use of \get@coor doesn’t match its definition.
I Paragraph ended before \pst@addcoor was complete.
I Forbidden control sequence found while scanning use of \check@arrow.

I File ended while scanning use of \Iput.

Delimiters are generally the first thing to check when you get errors with
a PSTricks macro.

Since PSTricks macros can have many arguments, it is useful to know

that you can leave a space or new line between any arguments, except
between arguments enclosed in curly braces. If you need to insert a

new line between arguments enclosed in curly braces, put a comment
characteps at the end of the line.

The Essentials 3

As a general rule, the first non-space character after a PSTricks macro
should not be @or (. Otherwise, PSTricks might think that ther (is
actually part of the macro. You can always get around this by inserting
a pair{} of braces somewhere between the macro an@iah¢

2 Color

The grayscales

black, darkgray, gray, lightgray, andwhite,
and the colors

red, green, blue, cyan, magenta, andyellow

are predefined in PSTricks.

This means that these names can be used with the graphics objects that
are described in later sections. This also means that the command
(or\red, etc.) can be used much liken or\tt, as in

{\gray This stuff should be gray.}

The commandgyray, \red, etc. can be nested like the font commands
as well. There are a few important ways in which the color commands
differ from the font commands:

1. The color commands can be used in and out of math mode (there
are no restrictions, other than propgXIgrouping).

2. The color commands affect whatever is in their scope (e.g., lines),
not simply characters.

3. The scope of the color commands does not extend across pages.

4. The color commands are not as robust as font commands when
used inside box macros. See page 89 for details. You can avoid
most problems by explicitly grouping color commands (e.g., en-
closing the scope in bracgywhenever these are in the argument
of another commantl.

IHowever, this is not necessary with the PSTricks LR-box commands, expect when
\psverbboxtrue is in effect. See Section A.

Color 4

You can define or redefine additional colors and grayscales with the
following commands. In each caseymi is a number between 0 and 1.
Spaces are used as delimiters—don’t add any extraneous spaces in the
arguments.

\newgray{ color {num}
num is the gray scale specification, to be set by PostScrgtiisay
operator. 0 is black and 1 is white. For example:
\newgray{darkgray}{.25}

\newrgbcolor{ color {numl num2 num3 }
numl num2 num3 is ared-green-bluespecification, to be set by
PostScript'setrgbcolor operator. For example,
\newrgbcolor{greenH{0 1 0}

\newhsbcolor{ color {{num1l num2 num3 }
num1 num2 num3 is anhue-saturation-brightnesspecification, to
be set by PostScript'sthshcolor operator. For example,

\newhshcolor{mycolor}{.3 .7 .9}

\newcmykcolor{ color {numl1 num2 num3 num4 }

numl num2 num3 num4 iS a cyan-magenta-yellow-blacgpeci-
fication, to be set by PostScriptigwcmykcolor operator. For
example,

\newcmykcolor{hercolor{.5 1 0 .5}

For defining new colors, thebg model is a sure thing.hsbis not
recommendedcmykis not supported by all Level 1 implementations of
PostScript, although itis best for color printing. For more information on
color models and color specifications, consult BostScript Language
Reference Manuaknd Edition (Red Book), and a color guide.

Driver notes: The commangstverb must be defined.

3 Setting graphics parameters

PSTricks uses a key-value system of graphics parameters to customize
the macros that generate graphics (e.g., lines and circles), or graphics
combined with text (e.g., framed boxes). You can change the default
values of parameters with the commapsket, as in

Setting graphics parameters 5

\pssetffillcolor=yellow}
\psset{linecolor=blue,framearc=.3,dash=3pt 6pt}

The general syntax is:

\psset{ parl=valuel ,par2=value2,...}

As illustrated in the examples above, spaces are used as delimiters for
some of the values. Additional spaces are allowed only following the
comma that separatpsr=value pairs (which is thus a good place to start

a new line if there are many parameter changes). E.g., the first example
is acceptable, but the second is not:

\pssetffillcolor=yellow, linecolor=blue}
\psset{fillcolor=yellow,linecolor =blue }

The parameters are described throughoutlitlsier's Guide as they are
needed.

Nearly every macro that makes use of graphics parameters allows you
to include changes as an optional first argument, enclosed in square
brackets. For example,

\psline[linecolor=green,linestyle=dotted](8,7)
draws a dotted, green line. It is roughly equivalent to
{\psset{linecolor=green,linestyle=dotted}\psline(8,7)}

For many parameters, PSTricks processes the value and stores it in a
peculiar form, ready for PostScript consumption. For others, PSTricks
stores the value in a form that you would expect. In the latter case, this
User’s Guidewill mention the name of the command where the value

is stored. This is so that you can use the value to set other parameters.
E.g.,

\psset{linecolor=\psfillcolor,doublesep=.5\pslinewidth}

However, even for these parameters, PSTricks may do some processing
and error-checking, and you should always set them ugisgt or as
optional parameter changes, rather than redefining the command where
the value is stored.

Setting graphics parameters 6

4 Dimensions, coordinates and angles

Whenever an argument of a PSTricks macro is a dimension, the unit is
optional. The default unit is set by the

unit= dim Default; 1cm

parameter. For example, with the default valuerof, the following
are equivalent:

\psset{linewidth=.5cm}
\psset{linewidth=.5}

By never explicitly giving units, you can scale graphics by changing the
value ofunit .

You can use the default coordinate when setting non-PSTricks dimen-
sions as well, using the commands

\pssetlength{ cmd H{dim}
\psaddtolength{ cmd }dim}

wherecmd is a dimension register (iflX parlance, a “length”), and
dim is a length with optional unit. These are analogousdgX’s
\setlength and\addtolength.

Coordinate pairs have the fory). The origin of the coordinate system

is at T|eX’s currentpoint. The comman@pecialCoor lets you use polar
coordinates, in the forrer;a), wherer is the radius (a dimension) anad

is the angle (see below). You can still use Cartesian coordinates. For a
complete description aBpecialCoor , see Section 34.

Theunit parameter actually sets the following three parameters:

xunit= dim Default: 1cm
yunit= dim Default: 1cm
runit= dim Default; 1cm

These are the default units for x-coordinates, y-coordinates, and all
other coordinates, respectively. By setting these independently, you can
scale the x and y dimensions in Cartesian coordinate unevenly. After
changingyunit to 1pt, the two\psline 's below are equivalent:

\psset{yunit=1pt}

\psline(Ocm,20pt)(5¢cm,80pt)
\psline(0,20)(5,80)

Dimensions, coordinates and angles 7

The values of theunit, xunit andyunit parameters are stored in the
dimension registergsunit (also\psrunit), \psxunit and\psyunit .

Angles, in polar coordinates and other arguments, should be a number
giving the angle in degrees, by default. You can also change the units
used for angles with the command

\degrees [num]

num should be the number of units in a circle. For example, you might
use

\degrees[100]

to make a pie chart when you know the shares in percentagpgseces
without the argument is the same as

\degrees[360]

The command

\radians
is short for
\degrees[6.28319]

\SpecialCoor lets you specify angles in other ways as well.

5 Basic graphics parameters

The width and color of lines is set by the parameters:

linewidth="dim Default: .8pt
linecolor= color Default: black

Thelinewidth is stored in the dimension regist@slinewidth , and the
linecolor is stored in the commangslinecolor .

The regions delimited by open and closed curves can be filled, as deter-
mined by the parameters:

Basic graphics parameters 8

fillstyle= style
fillcolor= color

Whenfillstyle=none , the regions are not filled. Whéitistyle=solid , the
regions are filled withiilicolor . Otherfillstyle 's are described in Section
14.

The graphics objects all have a starred version (&gframe *) which
draws a solid object whose colorlisecolor . For example,

- \psellipse*(1,.5)(1,.5)

Open curves can have arrows, according to the

arrows= arrows

parameter. larrows=-, you getno arrows. Hrrows=<->, you get arrows

on both ends of the curve. You can also@eiws=-> andarrows=<-, if

you just want an arrow on the end or beginning of the curve, respectively.
With the open curves, you can also specify the arrows as an optional
argument enclosed if) brackets. This should come after the optional
parameters argument. E.g.,

/ \psline[linewidth=2pt]{<-}(2,1)

Other arrow styles are described in Section 15

If you set the
showpoints= true/false Default: false

parameter tarue, then most of the graphics objects will put dots at
the appropriate coordinates or control points of the oljeSection 9
describes how to change the dot style.

2The parameter value is stored in the conditiofigdowpoints.

Basic graphics parameters 9

Basic graphics objects

6 Lines and polygons

The objects in this section also use the following parameters:

linearc= dim Default: opt
The radius of arcs drawn at the corners of lines byhie and
\pspolygon graphics objectsdim should be positive.

framearc= num Default: 0

In the\psframe and the related box framing macros, the radius
of rounded corners is set, by default, to one-math times the
width or height of the frame, whichever is lessum should be
between 0 and 1.

cornersize= relative/absolute Default; relative

If cornersize Is relative, then theframearc parameter determines
the radius of the rounded corners fgsframe , as described above
(and hence the radius depends on the size of the frame). If
cornersize IS absolute, then thedinearc parameter determines the
radius of the rounded corners fpsframe (and hence the radius

is of constant size).

Now here are the lines and polygons:

\psline *[par]{arrows}(x0,y0)(x1,y1)...(xn,yn)
This draws a line through the list of coordinates. For example:

\psline[linewidth=2pt,linearc=.25}{->}(4,2)(0,1)(2,0)

\gline(coor0)(coorl)

Basic graphics objects 10

This is a streamlined version gkline that does not pay attention

to thearrows parameter, and that can only draw a single line
segment. Note that both coordinates are obligatory, and there is
no optional argument for setting parameters (wseet if you

need to change thmewidth , or whatever). For example:

\gline(0,0)(2,1)

\pspolygon *[par](x0,y0)(x1,y1)(x2,y2)...(xn,yn)
This is similar topsline , but it draws a closed path. For example:

\pspolygon[linewidth=1.5pt](0,2)(1,2)
\pspolygon*[linearc=.2,linecolor=darkgray](1,0)(1,2)(4,0)(4,2)

\psframe *[par](x0,y0)(x1,y1)

\psframe draws a rectangle with opposing cornéxs,yo) and
(x1,y1). For example:

\psframe[linewidth=2pt,framearc=.3fillstyle=solid,
fillcolor=lightgray](4,2)
\psframe*[linecolor=white](1,.5)(2,1.5)

7 Arcs, circles and ellipses

\pscircle *[par](x0,y0){radius }

This draws a circle whose center is(at,y0) and that has radius
radius. For example:

\pscircle[linewidth=2pt](.5,.5){1.5}

\qdisk(coor){radius }

This is a streamlined version @fscircle* . Note that the two
arguments are obligatory and there is no parameters arguments.
To change the color of the disks, you have to \pseet :

Arcs, circles and ellipses 11

\psset{linecolor=gray}

¢ \gdisk(2,3){4pt}

\pswedge *[par](x0,y0){radius }{anglel }{angle2 }

This draws a wedge whose center ispar y0), that has radius
radius, and that extends counterclockwise franglel to angle2.
The angles must be specified in degrees. For example:

\pswedge[linecolor=gray,linewidth=2pt fillstyle=solid][{2{0K 70}

2
\psellipse *[par](x0,y0)(x1,yl)

(x0,y0) is the center of the ellipse, arntlandy1 are the horizontal
and vertical radii, respectively. For example:

\psellipse[fillcolor=lightgray](.5,0)(1.5,1)

\psarc *[par[{arrows}(x,y){radius {angleA }{angleB }

This draws an arc frorngleA to angleB, going counter clockwise,
for acircle of radiusadius and centered @t,y). You mustinclude
either the arrows argument or they) argument. For example:

\psarc*[showpoints=true](1.5,1.5){1.5{215}0}

See howshowpoints=true draws a dashed line from the center to
the arc; this is useful when composing pictures.

\psarc also uses the parameters:

arcsepA= dim Default: opt

angleA is adjusted so that the arc would just touch a line of
width dim that extended from the center of the arc in the
direction ofangleA.

arcsepB= dim Default: opt
This is likearcsepA , butangleB is adjusted.

Arcs, circles and ellipses 12

arcsep=dim Default: 0
This just sets bothrcsepA andarcsepB .

These parameters make it easy to draw two intersecting lines and
then useapsarc with arrows to indicate the angle between them.
For example:

\SpecialCoor
\psline[linewidth=2pt](4;50)(0,0)(4;10)
\psarc[arcsepB=2pt|{->}{3{10H{50}

\psarcn *[par]{arrows}(x,y){radius }{angleA {angleB }

Thisis like\psarc , but the arc is drawolockwise You can achieve
the same effect usingsarc by switchingangleA andangleB and
the arrows’

8 Curves

\psbezier *[par]{arrows}(x0,y0)(x1,y1)(x2,y2)(x3,y3)

\psbezier draws a bezier curve with the four control points. The
curve starts at the first coordinate, tangent to the line connecting
to the second coordinate. It ends at the last coordinate, tangent to
the line connecting to the third coordinate. The second and third
coordinates, in addition to determining the tangency of the curve
at the endpoints, also “pull” the curve towards themselves. For
example:

\psbezier[linewidth=2pt,showpoints=true]{->}(0,0)(1,4)(2,1)(4,3.5)

SHowever, with\pscustom graphics object, described in Part I\dsarcn is not
redundant.

Curves 13

showpoints=true puts dots in all the control points, and connects
them by dashed lines, which is useful when adjusting your bezier
curve.

\parabola *[par]{arrows}(x0,y0)(x1,yl)

Starting at(x0,y0), \parabola draws the parabola that passes
through(xo,y0) and whose maximum or minimum ¢&L,y1). For
example:

\parabola*(1,1)(2,3)
\psset{xunit=.01}
\parabola{<->}(400,3)(200,0)

The next three graphics objects interpolate an open or closed curve
through the given points. The curve at each interior point is perpendic-
ular to the line bisecting the angle ABC, where B is the interior point,
and A and C are the neighboring points. Scaling the coordirtiies

not cause the curve to scale proportionately.

The curvature is controlled by the following parameter:

curvature= numl1 num2 num3 Default;: 1.1 0

You have to just play around with this parameter to get what you
want. Individual values outside the range -1to 1 are either ignored
or are for entertainment only. Below is an explanation of what

each number does. A, B and C refer to three consecutive points.

Lower values ohum1 make the curve tighter.

Lower values ohum?2 tighten the curve where the angle ABC is
greater than 45 degrees, and loosen the curve elsewhere.

num3 determines the slope at each point.nlin3=0, then the
curve is perpendicular at B to the bisection of ABCndfn3=-1,

then the curve at B is parallel to the line AC. With this value (and
only this value), scaling the coordinates causes the curve to scale
proportionately. However, positive values can look better with
irregularly spaced coordinates. Values less than -1 or greater than
2 are converted to -1 and 2, respectively.

Here are the three curve interpolation macros:

Curves 14

\pscurve *[par[{arrows}(x1,yl)...(xn,yn)

This interpolates an open curve through the points. For example:

\pscurve[showpoints=true]{<->}(0,1.3)(0.7,1.8)
(3.3,0.5)(4,1.6)(0.4,0.4)

Note the use adhowpoints=true to see the points. This is helpful
when constructing a curve.

\psecurve *[par[{arrows}(x1,yl1)...(xn,yn)]

This is like\pscurve , but the curve is not extended to the first and
last points. This gets around the problem of trying to determine
how the curve should join the first and last points. Ehkas
something to do with “endpoints”. For example:

\psecurve[showpoints=true](.125,8)(.25,4)(.5,2)
(1,1)(2,.5)(4,.25)(8,.125)

\psccurve *[par{arrows}(x1,yl)...(xn,yn)

This interpolates a closed curve through the pointstands for
“closed”. For example:

\psccurve[showpoints=true]
(.5,0)(3.5,1)(3.5,0)(.5,1)

9 Dots

The graphics object

\psdots *[par](x1,y1)(x2,y2)...(xn,yn)

Dots 15

puts a dot at each coordinate. What a “dot” is depends on the value of
the

dotstyle= style Default: *

parameter. This also determines the dots you get si@vpoints=true .
The dot styles are also pretty intuitive:

Style Example Style Example
* o« e e o square e s o n om
o o o o o square* * = =
+ v+ o+ 4 pentagon ° ¢ ° ° °

triangle * * * * * pentagon* * * * * *

trianglex + * *+ * * [I
As with arrows, there is a parameter for scaling the dots:
dotscale= num1 num2 Default: 1

The dots are scaled horizontally laym1 and vertically bynum2. If
you only include one number, the arrows are scaled the same in both
directions.

There is also a parameter for rotating the dots:
dotangle= angle Default: 0

Thus, e.g., by settingptangle=45 , the+ dotstyle gives you arx, and the
square dotstyle gives you a diamond. Note that the dots are first scaled
and then rotated.

The unscaled size of tihdot style is controlled by thearsize parameter,

and the unscaled size of the remaining dot styles is controlled by the
dotsize . These are described in Section 15. The radius as determined
by the value oftiotsize is the radius of solid or open circles. The other
types of dots are of similar siZe.

The dot sizes are allowed to depend on lthewidth because of the
showpoints parameter. However, you can setthe dot sizes to an absolute
dimension by setting the second number indbgize parameter to O.
E.g.,

\psset{dotsize=3pt 0}

sets the size of the dots 3pt, independent of the value tfewidth .

4The polygons are sized to have the same area as the circles. A diamond is just a
rotated square.

Dots 16

Grids

PSTricks has a powerful macro for making grids and graph paper:

\psgrid (x0,y0)(x1,y1)(x2,y2)

\psgrid draws a grid with opposing cornegsl,yl) and (x2,y2). The
intervals are numbered, with the numbers positioned a@indyo. The
coordinates are always interpreted as Cartesian coordinates. For exam-
ple:

\psgrid(0,0)(-1,-1)(3,2)

o
<O

1
—
A2

(Note that the coordinates and label positioning work the same as with
\psaxes .)

The main grid divisions occur on multiplesxafnit andyunit . Subdivi-
sions are allowed as well. Generally, the coordinates would be given as
integers, without units.

If the (x0,y0) coordinate is omitted(x1,y1) is used. The default for
(x1,y1) is (0,0). If you don’t give any coordinates at all, then the coordi-
nates of the currenpspicture environment are used or a 10x10 grid is
drawn. Thus, you can include\@sgrid command without coordinates
in a \pspicture environment to get a grid that will help you position
objects in the picture.

The main grid divisions are numbered, with the numbers drawn next to
the vertical line ako (away fromx2) and next to the horizontal line at

x1 (away fromy2). (x1,y1) can be any corner of the grid, as long as
(x2,y2) is the opposing corner, you can position the labels on any side
you want. For example, compare

\psgrid(0,0)(4,1)

\psgrid(4,1)(0,0)

Grids 17

The following parameters apply only Yasgrid :

gridwidth= dim Default: .8pt
The width of grid lines.

gridcolor= color Default: black
The color of grid lines.

griddots= num Default: 0
If num is positive, the grid lines are dotted, witlam dots per
division.

gridlabels= dim Default: 10pt

The size of the numbers used to mark the grid.

gridlabelcolor=color Default: black

The color of the grid numbers.

subgriddiv=int Default: 5

The number of grid subdivisions.

subgridwidth=dim Default: .4pt
The width of subgrid lines.

subgridcolor="color Default: gray
The color of subgrid lines.

subgriddots= num Default: 0

Like griddots , but for subdivisions.

Here is a familiar looking grid which illustrates some of the parameters:

bl \psgrid[subgriddiv=1,griddots=10,gridiabels=7pt](-1,-1)(3,1)

Note that the values ofunit andyunit are important parameters for
\psgrid , because they determine the spacing of the divisions. E.qg., if the
value of these igpt, and then you type

\psgrid(0,0)(10in,10in)

Grids 18

you will get a grid with 723 main divisions and 3615 subdivisions!
(Actually, \psgrid allows at most 500 divisions or subdivisions, to limit
the damage done by this kind of mistake.) Probably you want tanget
to .5in or 1in, as in

\psgrid[unit=.5in](0,0)(20,20)

11 Plots

The plotting commands described in this part are definpstipiot.tex/pst-
plot.sty, which you must load first.

The \psdots , \psline , \pspolygon , \pscurve , \psecurve and\psccurve
graphics objects let you plot data in a variety of ways. However, first
you have to generate the data and enter it as coordinate(pgiysThe
plotting macros in this section give you other ways to get and use the
data. (Section 26 tells you how to generate axes.)

To parameter
plotstyle= style Default: line

determines what kind of plot you get. Valid styles ases, line, polygon,
curve, ecurve, ccurve. E.g., if theplotstyle is polygon, then the macro
becomes a variant of thespolygon object.

You can use arrows with the plot styles that are open curves, but there
is no optional argument for specifying the arrows. You have to use the
arrows parameter instead.

Warning: No PostScript error checking is provided for
the data arguments. Read Appendix C before including
PostScript code in the arguments.

There are system-dependent limits on the amount of data
TeX and PostScript can handle. You are much less likely to
exceed the PostScript limits when you uselitieg polygon

or dots plot style, withshowpoints=false , linearc=0pt , and

Nno arrows.

Note that the lists of data generated or used by the plot commands cannot
contain units. The values gfsxunit and\psyunit are used as the unit.

Plots 19

\fileplot *[par]{file }

\plotfile is the simplest of the plotting functions to use. You just
need a file that contains a list of coordinates (without units), such
as generated by Mathematica or other mathematical packages.
The data can be delimited by curly brades parentheses),
commas, and/or white space. Bracketing all the data with square
bracketq] will significantly speed up the rate at which the data is
read, but there are system-dependent limits on how muchgéta T
can read like this in one chunk. (Tlhenustgo at the beginning

of a line.) The file should not contain anything else (not even
\endinput), except for comments marked with

\plotfile only recognizes théine, polygon and dots plot styles,
and it ignores therrows , linearc and showpoints parameters.
The\listplot command, described below, can also plot data from
file, without these restrictions and with fastgeXTprocessing.
However, you are less likely to exceed PostScript's memory or
operand stack limits witkplotfile .

If you find that it takes X a long time to process youplot-
fle command, you may want to use tkRSTtoEPS command
described on page 80. This will also redugX¥$ memory re-
quirements.

\dataplot *[par]{commands }

\dataplot is also for plotting lists of data generated by other pro-
grams, but you first have to retrieve the data with one of the
following commands:

\savedata{ command }[data]
\readdata{ command ¥file }

data or the data irile should conform to the rules described above
for the data infileplot (with \savedata , the data must be delimited
by[], and withreaddata , bracketing the data wittj speeds things
up). You can concatenate and reuse lists, as in

\readdata{\foo}{foo.data}
\readdata{\bar}{bar.data}
\dataplot{\foo\bar}
\dataplot[origin=(0,1)]{\bar}

The \readdata and\dataplot combination is faster thatileplot
if you reuse the datalfileplot uses less of gX's memory than
\readdata and\dataplot if you are also US&PSTtoEPS.

Plots 20

Here is a plot ofntegral(sin(x)). The data was generated by Math-
ematica, with

Table[{x,N[SinIntegral[x]]},{X,0,20}]
and then copied to this document.

\psset{xunit=.2cm,yunit=1.5cm}
\savedata{\mydata}[
{{o, 0}, {1., 0.946083}, {2., 1.60541}, {3., 1.84865}, {4., 1.7582},
{5., 1.54993}, {6., 1.42469}, {7., 1.4546}, {8., 1.57419},
{9., 1.66504}, {10., 1.65835}, {11., 1.57831}, {12., 1.50497},
{13., 1.49936}, {14., 1.55621}, {15., 1.61819}, {16., 1.6313},
{17., 1.59014}, {18., 1.53661}, {19., 1.51863}, {20., 1.54824}}]
\dataplot[plotstyle=curve,showpoints=true,
dotstyle=triangle]{\mydata}
\psline{<->}(0,2)(0,0)(20,0)

\listplot *[par[{list }

\listplot is yet another way of plotting lists of data. This time,
list should be a list of data (coordinate pairs), delimited only by
white spacelist is first expanded bygX and then by PostScript.
This means thalist might be a PostScript program that leaves
on the stack a list of data, but you can also include data that
has been retrieved witlheaddata and\dataplot . However, when
using theline, polygon or dots plotstyles withshowpoints=false ,
linearc=0pt and no arrows)dataplot is much less likely than
\listplot to exceed PostScript's memory or stack limits. In the
preceding example, these restrictions were not satisfied, and so
the example is equivalent to wheistplot is used:

\listplot[plotstyle=curve,showpoints=true,
dotstyle=triangle[{\mydata}

\psplot *[parl{XminH Xmax}{ function }

Plots

\psplot can be used to plot a functidifx), if you know a little
PostScript. function should be the PostScript code for calculat-
ing f(x). Note that you must use as the dependent variable.
PostScript is not designed for scientific computation,\pagiot

is good for graphing simple functions right from withigX. E.qg.,

\psplot[plotpoints=200{0{720}{x sin}

21

plots sink) from 0O to 720 degrees, by calculating sinfoughly
every 3.6 degrees and then connecting the points \pilime .
Here are plots of sinj cos(k=2)?) and sirf(x):

\psset{xunit=1.2pt}

\psplot[linecolor=gray,linewidth=1.5pt,plotstyle=curve]%
{OH{90K{x sin dup mul}

\psplot[plotpoints=100{0H{90K{x sin x 2 div 2 exp cos mul}

\psline{<->}(0,-1)(0,1)

\psline{->}(100,0)

\parametricplot *[parl{tminH{tmax{function }

This is for a parametric plot ok(t); y(t)). function is the PostScript
code for calculating the pax(t) y(t).

For example,

\parametricplot[plotstyle=dots,plotpoints=13]%
{-6H{6H1.2 t exp 1.2 t neg exp}

plots 13 points from the hyperbotg = 1, starting with (1275; 1: 2°)
and ending with (125; 1:2°).

Here is a parametric plot of (si){ sin(2)):

\psset{xunit=1.7cm}
\parametricplot[linewidth=1.2pt,plotstyle=ccurve]%

{O{360}t sin t 2 mul sin}
\psline{<->}(0,-1.2)(0,1.2)
\psline{<->}(-1.2,0)(1.2,0)

The number of points that thesplot and\parametricplot commands
calculate is set by the

plotpoints=int Default: 50

parameter. Usingurve or its variants instead dihe and increasing the
value ofplotpoints are two ways to get a smoother curve. Both ways
increase the imaging time. Which is better depends on the complexity of
the computation. (Note that all PostScript lines are ultimately rendered

Plots 22

as a series (perhaps short) line segments.) Mathematica generally uses
lineto to connect the points in its plots. The default minimum number of
plot points for Mathematica is 25, but unlikaplot and\parametricplot ,
Mathematica increases the sampling frequency on sections of the curve
with greater fluctuation.

Plots 23

More graphics parameters

The graphics parameters described in this part are common to all or
most of the graphics objects.

12 Coordinate systems

The following manipulations of the coordinate system apply only to
pure graphics objects.

A simple way to move the origin of the coordinate systenixtg) is
with the

origin= {coor} Default: Opt,0pt

This is the one time that coordinatesistbe enclosed in curly brackets
{} rather than parenthes@s

A simple way to switch swap the axes is with the
swapaxes= true Default: false
parameter. E.g., you might change your mind on the orientation of a
plot after generating the data.
13 Line styles

The following graphics parameters (in additionlit@width and line-
color) determine how the lines are drawn, whether they be open or
closed curves.

linestyle= style Default: solid
Valid styles arenone, solid, dashed anddotted.

More graphics parameters 24

dash=dim1 dim2 Default: 5pt 3pt

Theblack-white dash pattern for theashed line style. For
example:

-

) \psellipse[linestyle=dashed,dash=3pt 2pt](2,1)(2,1)

~~~~~

dotsep= dim Default: 3pt

The distance between dots in tlieted line style. For example

""""""""" \psline[linestyle=dotted,dotsep=2pt]{|->>}(4,1)
border= dim Default: opt
A positive value draws a border of widttm and color
bordercolor on each side of the curve. This is useful for giving
the impression that one line passes on top of another. The value
is saved in the dimension registgsborder .
bordercolor=color Default: white

Seeborder above.

For example:

\psline(0,0)(1.8,3)

\psline[border=2pt]{*->}(0,3)(1.8,0)

\psframe*[linecolor=gray](2,0)(4,3)

\psline[linecolor=white,linewidth=1.5pt]{<->}(2.2,0)(3.8,3)

\psellipse[linecolor=white,linewidth=1.5pt,
bordercolor=gray,border=2pt](3,1.5)(.7,1.4)

doubleline= true/false Default; false

Whentrue, a double line is drawn, separated by a space that is
doublesep wide and of colomoublecolor . This doesn’t work as
expected with thelashed linestyle , and some arrows look funny
as well.

doublesep= dim Default: 1.25\pslinewidth

Seedoubleline , above.

Line styles 25



doublecolor= color Default: white
Seedoubleline , above.
Here is an example of double lines:

\psline[doubleline=true,linearc=.5,
doublesep=1.5pt}{->}(0,0)(3,1)(4,0)

shadow= true/false Default; false

Whentrue, a shadow is drawn, at a distarstadowsize from
the original curve, in the directiogshadowangle , and of color
shadowcolor .

shadowsize= dim Default: 3pt
Seeshadow , above.

shadowangle= angle Default: -45
Seeshadow , above.

shadowcolor= color Default: darkgray
Seeshadow , above.

Here is an example of thehadow feature, which should look
familiar:

\pspolygon[linearc=2pt,shadow=true,shadowangle=45,
Cl L LS, -8, 5)-5.69)
(--2,.65)(-.2,.5)(1,.5)(1,-.55)
Here is another graphics parameter that is related to lines but that applies

only to the closed graphics objedtsframe , \pscircle , \psellipse and
\pswedge :

dimen= outer/inner/middle Default: outer

It determines whether the dimensions refer to the inside, outside or
middle of the boundary. The difference is noticeable when the linewidth
is large:

4 _ \psset{linewidth=.25cm}

""""" \psframe[dimen=inner](0,0)(2,1)
_______ \psframe[dimen=middle](0,2)(2,3)

_ \psframe[dimen=outer](3,0)(4,3)

Line styles 26



With \pswedge, this only affects the radius; the origin always lies in the
middle the boundary. The right setting of this parameter depends on
how you want to align other objects.

14  Fill styles

The next group of graphics parameters determine how closed regions
are filled. Even open curves can be filled; this does not affect how the
curve is painted.

fillstyle= style Default: none
Valid styles are

none, solid, vlines, vlines*, hlines, hlines*, crosshatch
andcrosshatch*.

vlines, hlines andcrosshatch draw a pattern of lines, according to
the four parameters list below that are prefixed witeth. The*
versions also fill the background, as in tutid style.

fillcolor= color Default: white
The background color in thevlid, vlines*, hlines* andcrosshatch*
styles.

hatchwidth=dim Default: .8pt
Width of lines.

hatchsep= dim Default: 4pt

Width of space between the lines.

hatchcolor= color Default: black
Color of lines. Saved ifpshatchcolor .

hatchangle= rot Default: 45

Rotation of the lines, in degrees. For exampl@aithangle is
set to45, thevlines style draws lines that run NW-SE, and the
hlines style draws lines that ru8w-NE, and thecrosshatch style
draws both.

Here is an example of théines and related fill styles:

Fill styles 27



\pspolygon(fillstyle=vlines](0,0)(0,3)(4,0)

\pspolygon(fillstyle=hlines](0,0)(4,3)(4,0)

\pspolygon(fillstyle=crosshatch* fillcolor=black,
hatchcolor=white,hatchwidth=1.2pt,hatchsep=1.8pt,
hatchangle=0](0,3)(2,1.5)(4,3)

Don't be surprised if the checkered part of this example (thedssily-

gon) looks funny on low-resolution devices. PSTricks adjusts the lines
so that they all have the same width, but the space between them, which
in this case is black, can have varying width.

Each of the pure graphics objects (except those beginningayitias
a starred version that produces a solid object of ctmerolor . (It
automatically setdinewidth to zero,fillcolor to linecolor , fillstyle to
solid, andlinestyle to none.)

15 Arrowheads and such

Lines and other open curves can be terminated with various arrowheads,
t-bars or circles. The

arrows= style Default: -

parameter determines what you get. It can have the following values,
which are pretty intuitive:

SThis is X’s version of WYSIWYG.

Arrowheads and such 28



Value Example Name

- None

<> <—> Arrowheads.

>< >—=< Reverse arrowheads.
<<->> <<—>> Double arrowheads.
>>-<< >>—=<<  Double reverse arrowheads.

|| H——">=- T-bars, flush to endpoints.

[*-* F—— T-bars, centered on endpoints.

[1 F——- Square brackets.

() —— Rounded brackets.

o-o >~ Circles, centered on endpoints.

** «— Disks, centered on endpoints.
oo-oo —— Circles, flush to endpoints.
wx —=  Djgks, flush to endpoints.

c-c —— Extended, rounded ends.
cc-cc —— Flushround ends.
C-C —— Extended, square ends.

You can also mix and match. E.g», *-) and[-> are all valid values of
thearrows parameter.

Well, perhaps the, cc and C arrows are not so obviousc and C
correspond to setting PostScripitigecap to 1 and 2, respectivelyc is

like c, but adjusted so that the line flush to the endpoint. These arrows
styles are noticeable when thewidth is thick:

\psline[linewidth=.5cm](0,0)(0,2)
\psling[linewidth=.5cm]{c-c}(1,0)(1,2)
\psling[linewidth=.5cm]{cc-cc}(2,0)(2,2)
\psline[linewidth=.5cm}{C-C}(3,0)(3,2)

c-C cc-cc C-C
Almost all the open curves let you include theows parameters as
an optional argument, enclosed in curly braces and before any other
arguments (except the optional parameters argument). E.g., instead of
\psline[arrows=<-,linestyle=dotted](3,4)

you can write

\psline[linestyle=dotted]{<-}(3,4)

Arrowheads and such 29



The exceptions are a few streamlined macros that do not support the use
of arrows (these all begin witdy).

The size of these line terminators is controlled by the following parame-

ters. In the description of the parameters, the width always refers to the
dimension perpendicular to the line, and length refers to a dimension in
the direction of the line.

arrowsize= dim num Default: 2pt 3
Width of arrowheads, as shown below.

arrowlength= num Default: 1.4
Length of arrowheads, as shown below.

arrowinset= num Default: .4
Size of inset for arrowheads, as shown below.

|

length

arrowsize = dim num

width

num X linewidth + diml

length = arrowlength X width
l Jinset . _ . :
_ inset = arrowinset X height
F— width—
tbarsize= dim num Default: 2pt5

The width of a t-bar, square bracket or rounded bracketiis
timeslinewidth , plusdim.

bracketlength= num Default: .15
The height of a square bracketigm times its width.

rbracketlength= num Default: .15
The height of a round bracketism times its width.

dotsize= dim num Default: .5pt 2.5
The diameter of a circle or disc ism timeslinewidth , plusdim.

arrowscale= arrowscale=numl1 num?2 Default; 1

Imagine that arrows and such point down. This scales the width
of the arrows byhnum1 and the length (height) byum2. If you

only include one number, the arrows are scaled the same in both
directions. Changingrrowscale can give you special effects not
possible by changing the parameters described above. E.g., you
can change the width of lines used to draw brackets.

Arrowheads and such 30



16 Custom styles

You can define customized versions of any macro that has parameter
changes as an optional first argument usingrtéepsobject command:

\newpsobject{ name Hobject {parl=valuel,...}
asin

\newpsobject{myline}{psline}linecolor=green,linestyle=dotted}
\newpsobject{\mygrid}{psgrid}{subgriddiv=1,griddots=10,
gridlabels=7pt}

The first argument is the name of the new command you want to define.
The second argument is the name of the graphics object. Note that both
of these arguments are given without the backslash. The third argument
is the special parameter values that you want to set.

With the above examples, the commandgine and\mygrid work just
like the graphics objeapsline it is based on, and you can even reset the
parameters that you set when definimgline, as in:

\myline[linecolor=gray,dotsep=2pt](5,6)

Another way to define custom graphics parameter configurations is with
the

\newpsstyle{ name {parl=valuel,...}

command. You can then set tigle graphics parameter tame, rather
than setting the parameters given in the second argumertpikstyle .
For example,

\newpsstyle{mystyle}{linecolor=green,linestyle=dotted}
\psline[style=mystyle](5,6)

Custom styles 31



Custom graphics

17 The basics

PSTricks contains a large palette of graphics objects, but sometimes
you need something special. For example, you might want to shade the
region between two curves. The

\pscustom *[par]{commands }

command lets you “roll you own” graphics object.

Let’'s review how PostScript handles graphics. pathis a line, in

the mathematical sense rather than the visual sense. A path can have
several disconnected segments, and it can be open or closed. PostScript
has various operators for making paths. The end of the path is called the
current point but if there is no path then there is no current point. To turn
the path into something visual, PostScript &idirthe region enclosed by

the path (that is whatlistyle and such are about), asttokethe path

(that is whatinestyle and such are about).

At the beginning ofipscustom , there is no path. There are various
commands that you can use \scustom for drawing paths. Some

of these (the open curves) can also draw arrowscustom fills and
strokes the path at the end, and for special effects, you can fill and stroke
the path along the way usingsfill and\pstroke (see below).

Driver notes: \pscustom uses\pstverb and\pstunit . There are system-
dependent limits on how long the argumentgpiecial can be. You may run
into this limit using\pscustom because all the PostScript code accumulated by
\pscustom is the argument of a singlepecial command.

18 Parameters

You need to keep the separation between drawing, stroking and filling
paths in mind when setting graphics parameters. [ieeidth and
linecolor parameters affect the drawing of arrows, but since the path

Custom graphics 32



commands do not stroke or fill the paths, these parameters, and the
linestyle , fillstyle and related parameters, do not have any other effect
(except that in some caskgwidth is used in some calculations when
drawing the path).\pscustom and\fil make use ofillstyle and re-

lated parameters, angscustom and\stroke make use of plinestyle and
related parameters.

For example, if you include
\psline[linewidth=2pt,linecolor=blue,fillstyle=vlines}{<-}(3,3)(4,0)

in \pscustom , then the changes tinewidth andlinecolor will affect the
size and color of the arrow but not of the line when it is stroked, and the
change tdillstyle will have no effect at all.

The shadow , border , doubleline andshowpoints parameters are dis-
abled in\pscustom , and theorigin andswapaxes parameters only affect
\pscustom itself, but there are commands (described below) that let you
achieve these special effects.

The dashed anddotted line styles need to know something about the
path in order to adjust the dash or dot pattern appropriately. You can
give this information by setting the

linetype= int Default: 0

parameter. If the path contains more than one disconnected segment,
there is no appropriate way to adjust the dash or dot pattern, and you
might as well leave the default value lofetype . Here are the values

for simple paths:

Value Type of path
0 Open curve without arrows.
-1 Open curve with an arrow at the beginning.
-2 Open curve with an arrow at the end.
-3 Open curve with an arrow at both ends.
1 Closed curve with no particular symmetry.
n>1 Closed curve witln symmetric segments.

19 Graphics objects

You can use most of the graphics objectspscustom . These draw
paths and making arrows, but do not fill and stroke the paths.

There are three types of graphics objects:

Graphics objects 33



Special Special graphics objects includiesgrid , \psdots , \gline and
\qdisk . You cannot use special graphics object®#austom .

Closed You are allowed to use closed graphics objectgsaustom ,
but their effect is unpredictabfeUsually you would use the open
curves pludclosepath (see below) to draw closed curves.

Open The open graphics objects are the most useful commands for
drawing paths withpscustom . By piecing together several open
curves, you can draw arbitrary paths. The rest of this section
pertains to the open graphics objects.

By default, the open curves draw a straight line between the current
point, if it exists, and the beginning of the curve, except when the curve
begins with an arrow. For example

\pscustom{
\psarc(0,0){1.5}{5}85}
\psarcn{->}(0,0){3{85}5}}

Also, the following curves make use of the current point, if it exists, as
a first coordinate:

\psline and\pscurve .
The plot commands, with thiae or curve plotstyle .
\psbezier if you only include three coordinates.

For example:

\pscustom[linewidth=1.5pt}{
\psplot[plotstyle=curve[{.67{4H{2 x div}
\psline(4,3)}

5The closed objects never use the current point as an coordinate, but typically they
will close any existing paths, and they might draw a line between the currentpoint and
the closed curved.

Graphics objects 34



We'll see later how to make that one more interesting. Here is another
example

\pscustom{
\psline[linearc=.2]{|-}(0,2)(0,0)(2,2)
\psbezier{->}(3,3)(1,0)(4,3)}

However, you can control how the open curves treat the current point
with the

liftpen= 0/1/2 Default: 0

parameter.

If liftpen=0 , you get the default behavior described above. For example

\pscustom(linewidth=2pt fillstyle=solid,fillcolor=gray]{
\pscurve(0,2)(1,2.5)(2,1.5)(4,3)
\pscurve(4,1)(3,0.5)(2,1)(1,0)(0,.5)}

If liftpen=1 , the curves do not use the current point as the first coordinate
(exceptpsbezier , but you can avoid this by explicitly including the first
coordinate as an argument). For example:

\pscustom[linewidth=2pt fillstyle=solid,fillcolor=gray]{
\pscurve(0,2)(1,2.5)(2,1.5)(4,3)
\pscurve[liftpen=1](4,1)(3,0.5)(2,1)(1,0)(0,.5)}

If liftpen=2 , the curves do not use the current point as the first coordinate,
and they do not draw a line between the current point and the beginning
of the curve. For example

Graphics objects 35



\pscustom[linewidth=2pt fillstyle=solid,fillcolor=gray]{
\pscurve(0,2)(1,2.5)(2,1.5)(4,3)
\pscurve[liftpen=2](4,1)(3,0.5)(2,1)(1,0)(0,.5)}

'4
Later we will use the second example to fill the region between the two
curves, and then draw the curves.

20 Safe tricks

The commands described under this heading, which can only be used
in \pscustom , do not run a risk of PostScript errors (assuming your
document compiles withougX errors).

Let’s start with some path, fill and stroke commands:

\newpath
Clear the path and the current point.

\moveto( coor)
This moves the current point g, y).

\closepath

This closes the path, joining the beginning and end of each piece
(there may be more than one piece if you useveto ).’

\stroke [par]

This strokes the path (non-destructivelypscustom automati-
cally strokes the path, but you might want to stroke it twice, e.qg.,
to add a border. Here is an example that makes a double line and
adds a border (this example is kept so simple that it doesn’t need
\pscustom at all):

\psline(0,3)(4,0)
\pscustom[linecolor=white,linewidth=1.5pt]{%
\psline(0,0)(4,3)
\stroke[linewidth=5\pslinewidth]
\stroke[linewidth=3\pslinewidth,linecolor=black]}

"Note that the path is automatically closed when the region is filled \didsepath
if you also want to close the boundary.

Safe tricks 36



\fill [par]

This fills the region (non-destructivelypscustom automatically
fills the region as well.

\gsave

This saves the current graphics state (i.e., the path, color, line
width, coordinate system, etc\grestore restores the graphics
state.\gsave and\grestore must be used in pairs, properly nested
with respect to X groups. You can have have nestgshave -
\grestore pairs.

\grestore
See above.

Here is an example that fixes an earlier example, ugiage and
\grestore :

\psline{<->}(0,3)(0,0)(4,0)
\pscustom[linewidth=1.5pt}{
\psplot[plotstyle=curve[{.67{4H{2 x div}
\gsave
\psline(4,3)
\fill[fillstyle=solid,fillcolor=gray]
\grestore}

Observe how the line added Iysline(4,3) is never stroked, be-
cause it is nested igsave and\grestore.

Here is another example:

\pscustom[linewidth=1.5pt}{

\pscurve(0,2)(1,2.5)(2,1.5)(4,3)

\gsave
\pscurve[liftpen=1](4,1)(3,0.5)(2,1)(1,0)(0,.5)
Yfill[fillstyle=solid,fillcolor=gray]

\grestore}

\pscurve[linewidth=1.5pt](4,1)(3,0.5)(2,1)(1,0)(0,.5)

Note how | had to repeat the secoigdcurve (I could have
repeated it withinpscustom , with liftpen=2 ), because | wanted

to draw a line between the two curves to enclose the region but |
didn’t want this line to be stroked.

The next set of commands modify the coordinate system.

Safe tricks 37



\translate( coor)
Translate coordinate system pyy). This shifts everything that
comes later byx,y), but doesn't affect what has already been
drawn.

\scale{ num1l numz2}
Scale the coordinate system in both directionslayi1, or hori-
zontally bynum1 and vertically bynum2.

\rotate{ angle }
Rotate the coordinate system éyle.

\swapaxes
Switch the x and y coordinates. This is equivalent to
\rotate{-90}
\scale{-1 1 scale}
\msave

Save the current coordinate system. You can then restore it with
\mrestore . You can have nestadhsave -\mrestore pairs.\msave
and\mrestore do not have to be properly nested with respect to
TeX groups or\gsave and\grestore . However, remember that
\gsave and\grestore also affect the coordinate systenmsave -
\mrestore lets you change the coordinate system while drawing
part of a path, and then restore the old coordinate system without
destroying the path\gsave -\grestore , on the other hand, affect
the path and all other componments of the graphics state.

\mrestore
See above.

And now here are a few shadow tricks:

\openshadow [par]
Strokes a replica of the current path, using the various shadow
parameters.

\closedshadow [par]
Makes a shadow of the region enclosed by the current path as if
it were opague regions.

\movepath( coor)

Moves the path byx,y). Use\gsave -\grestore if you don’t want
to lose the original path.

Safe tricks 38



21 Pretty safe tricks

The next group of commands are sa#s, long as there is a current
point

\lineto( coor)
This is a quick version Opsline(coor).

\rlineto( coor)

This is like\lineto , but (x,y) is interpreted relative to the current
point.

\curveto( x1,y1)(x2,y2)(x3,y3)

This is a quick version Opsbezier(x1,y1)(x2,y2)(x3,y3).

\rcurveto( x1,y1)(x2,y2)(x3,y3)

Thisis like\curveto , but(x1,y1), (x2,y2) and(x3,y3) are interpreted
relative to the current point.

22 For hackers only

For PostScript hackers, there are a few more commands. Be sure to read
Appendix C before using these. Needless to say:

Warning: Misuse of the commands in this section can
cause PostScript errors.

The PostScript environment in effect wigiscustom has one unit equal
to one EX pt.

\code{ code }
Insert the raw PostScript code.

\dim{ dim}
Convert the PSTricks dimension to the numbegtsf, and inserts
it in the PostScript code.

\coor(x1,y1)(x2,y2)...(xn,yn)

Convert one or more PSTricks coordinates to a pair of numbers
(usingpt units), and insert them in the PostScript code.

Pretty safe tricks 39



\rcoor( x1,y1)(x2,y2)...(xn,yn)
Like \coor, but insert the coordinates in reverse order.

\file{ file }

This is like \code, but the raw PostScript is copied verbatim
(except comments delimited loy) from file.

\arrows{ arrows }

This defines the PostScript operatarsowA andArrowB so that

x2 y2 x1 yl ArrowA
x2 y2 x1 yl1 ArrowB

each draws an arrow(head) with the tip(at,y1) and pointing
from (x2,y2). ArrowA leaves the current point at end of the arrow-
head, where a connect line should start, and le2eg?) on the
stack.ArrowB does not change the current point, but leaves

x2 y2 x1' yI’

on the stack, wherg1',y1’) is the point where a connecting line
should join. To give an idea of how this work, the following is
roughly how PSTricks draws a bezier curve with arrows at the
end:

\pscustom{
\arrows{|->}
\code{
80 140 5 5 ArrowA
30 -30 110 75 ArrowB
curveto}}

\setcolor{ color }
Set the color taolor.

For hackers only 40



Picture Tools

23 Pictures

The graphics objects aneput and its variants do not changgX’s
current point (i.e., they create a 0-dimensional box). If you string
several of these together (and any other O-dimensional objects), they
share the same coordinate system, and so you can create a picture. For
this reason, these macros are cajperture objects

If you create a picture this way, you will probably want to give the whole
picture a certain size. You can do this by putting the picture objects in
apspicture environment, as in:

\pspicture *[baseline](x0,y0)(x1,y1)
picture objects \endpspicture

The picture objects are put in a box whose lower left-hand corner is
at (x0,y0) (by default,(0,0)) and whose upper right-hand corner is at
(x1,y1).

By default, the baseline is set at the bottom of the box, but the optional
argumentbaseline] sets the baseline fractidaraseline from the bottom.
Thus,baseline is a number, generally but not necessarily between 0 and
1. If you include this argument but leave it empt},(then the baseline
passes through the origin.

Normally, the picture objects can extend outside the boundaries of the
box. However, if you include thg anything outside the boundaries is
clipped.

Besides picture objects, you can put anything ipsaicture that does
not take up space. E.g., you can put in font declarations angssse,
and you can put in braces for grouping. PSTricks will alert you if you
include something that does take up sphce.

l&=X users can type

8When PSTricks picture objects are included ifpspicture environment, they
gobble up any spaces that follow, and any preceding spaces as well, making it less
likely that extraneous space gets inserted. (PSTricks objects always ignore spaces

Picture Tools 41



\begin{pspicture} ... \end{pspicture}

You can use PSTricks picture objects ifgX picture environment, and

you can usedX picture objects in a PSTricksspicture  environment.
However, thepspicture environment make$l=X’s picture environment
obsolete, and has a few small advantages over the latter. Note that
the arguments of thgspicture environment work differently from the
arguments ofdl=X’s picture environment (i.e., the right way versus the
wrong way).

Driver notes: The clipping optiortusespstverb and\pstverbscale .

24 Placing and rotating whatever

PSTricks contains several commands for positioning and rotating an
HR-mode argument. All of these commands engduty and bear some
similarity to EIX’s \put command, but with additional capabilities. Like
[&TX's \put and unlike the box rotation macros described in Section 29,
these commands do not take up any space. They can be used inside and
outside\pspicture environments.

Most of the PSTrickgut commands are of the form:
\put* arg{rotation}(coor ){stuff}

With the optionalk argumentstuff is first putin a
\psframebox*[boxsep=false[{<stuff>}

thereby blotting out whatever is behisdiff. This is useful for posi-
tioning text on top of something else.

arg refers to other arguments that vary from pnecommand to another,
The optionakotation is the angle by whicBtuff should be rotated; this
arguments works pretty much the same forpall commands and is
described further below. Theoor) argument is the coordinate for
positioningstuff, but what this really means is different for eaalt
command. Thécoor) argument is shown to be obligatory, but you can
actually omit it if you include theotation argument.

that follow. If you also want them to try to neutralize preceding space when used
outside thepspicture environment (e.g., in @X picture environment), then use the
command\KillGlue . The commandDontKillGlue turns this behavior back
off.)

Placing and rotating whatever 42



stuff

The rotation argument should be an angle, as described in Section 4,
but the angle can be preceded by*anThis causes all the rotations
(except the box rotations described in Section 29) within which the
\rput command is be nested to be undone before setting the angle of
rotation. This is mainly useful for getting a piece of text right side up
when it is nested inside rotations. For example,

\rput{34K{%
\psframe(-1,0)(2,1)
\rput[br]{*0}(2,1){\em stuff}}

There are also some letter abbreviations for the command angles. These
indicate which way is up:

Letter Shortfor Equiv.to Letter Shortfor Equiv.to

U Up 0 N North *0
L Left 90 W  West *90
D Down 180 S South *180
R Right 270 E East *270

This section describes just a two of the PSTripkscommands. The
most basic one command is

\rput *[refpoint]{rotation}(x,y }{stuff }

refpoint determines the reference pointsoiff, and this reference point
is translated tgx,y).

By default, the reference point is the center of the box. This can be
changed by including one or two of the following in the optior#loint
argument:

Horizontal Vertical

| Left t Top
r Right b Bottom
B Baseline

Visually, here is where the reference point is set of the various combi-
nations (the dashed line is the baseline):

Placing and rotating whatever 43



Here is a marginal note.

@y

tl t tr

| r
Bl F------ B------- Br

bl b br

There are numerous examples\@ut in this documentation, but for
now here is a simple one:

\rput[b]{90}(-1,0){Here is a marginal note.}

One common use of a macro such\ast is to put labels on things.
PSTricks has a variant aput that is especially designed for labels:

\uput *{labelsep}[refangle ]{rotation}(x,y){stuff }

This placestuff distancdabelsep from (x,y), in the directionefangle.

The default value ofbelsep is the dimension register

\pslabelsep
You can also change this be setting the
labelsep= dim Default: 5pt

parameter (but remember thaput does have an optional argument for
setting parameters).

Here is a simple example:

\qdisk(1,1){1pt}
\uput[45](1,1){(1,1)}

Here is a more interesting example whanaut is used to make a pie
chart?

®PSTricks is distributed with a useful tool for converting data to piecharts:
piechart.sh. This is a UNIXsh script written by Denis Girou.

Placing and rotating whatever 44



\psset{unit=1.2cm}

\pspicture(-2.2,-2.2)(2.2,2.2)
\pswedge([fillstyle=solid,fillcolor=gray{2{0}{ 70}
\pswedge([fillstyle=solid,fillcolor=lightgray]{2}{70}200}
\pswedge([fillstyle=solid,fillcolor=darkgray[{2}{200}{360}
\SpecialCoor
\psset{framesep=1.5pt}
\rput(1.2;35){\psframebox*{\small\$9.0M}}
\uput{2.2}[45](0,0){Oreos}
\rput(1.2;135){\psframebox*{\small\$16.7M}}
\uput{2.2}[135](0,0){Heath}
\rput(1.2;280){\psframebox*{\smal\$23.1M}}
\uput{2.2}[280](0,0){M\&M}

\endpspicture

Heath

M&M

You can use the following abbreviations fefangle, which indicate the
direction the angle point$!!

10ysing the abbreviations when applicable is more efficient.

There is an obsolete commaxkbut that has the same syntax\agut and that
works almost the same way, except teéangle argument has the syntax oput’s
refpoint argument, and it gives the pointstuff that should be aligned witx,y). E.g.,

\qdisk(4,0){2pt} °
\Rput[tl](4,0){$(x.y)$} x:y)

Here is the equivalence betweemut’s refangle abbreviations antRput’s refpoint
abbreviations:

\uput r u I d wur ul dr d
\Rput | b r t bl br tr 1l

Some people preféRput’s convention for specifying the position siff over\uput's.

Placing and rotating whatever 45



Letter Shortfor Equiv.to Letter Short for
r right 0 ur up-right
u up 90 ul up-left
| left 180 dl down-left
d down 270 dr down-right

The first example could thus have been written:

(1,1) \qdisk(1,1){1pt}
| \uput[ur](L,1){(1,1)}

Driver notes: The rotation macros ugetVerb and\pstrotate .

25 Repetition

The macro

Equiv. to
45

135
225
315

\multirput *[refpoint]{angle}(x0,y0)(x1,yl){int }{stuff }

is a variant ofirput that puts dowrnt copies, starting ako,y0) and ad-
vancing by(x1,y1) each time.(x0,y0) and(x1,y1) are always interpreted

as Cartesian coordinates. For example:

Lk * o \multirput(.5,0)(.3,.1){12}{*}

If you want copies of pure graphics, it is more efficient to use

\multips {angle}(x0,y0)(x1,y1){int {graphics }

graphics can be one or more of the pure graphics objects described in Part
I, or \pscustom . Note thatmultips has the same syntax msultirput ,
except that there is n@fpoint argument (since the graphics are zero
dimensional anyway). Also, unlikewltirput , the coordinates can be of
any type. AnOverfull \hbox warning indicates that thgaphics argument

contains extraneous output or space. For example:

Repetition

46



\def\zigzag{\psline(0,0)(.5,1)(1.5,-1)(2,0)}%

/\/\/\/\/\/\/\/\, \psset{unit=.25 linewidth=1.5pt}

multido

\multips(0,0)(2,0){8}\zigzag}

PSTricks is distributed with a much more general loop macro, called
\multido . You must input the filemultido.tex or multido.sty. See the
documentatiomultido.doc for details. Here is a sample of what you can
do:

\begin{pspicture}(-3.4,-3.4)(3.4,3.4)
\newgray{mygray{0} % Initialize ‘mygray’ for benefit
\pssetffillstyle=solid,fillcolor=mygray} % of this line.
\SpecialCoor
\degrees[1.1]
\multido{\n=0.0+.1{11K%
\newgray{mygray}{\n}
\rput{\n}{\pswedge{3K-.05}{.05}}
\uput{3.2}[\n](0,0){\small\n}}
\end{pspicture}

0.3

0.2

0.1

0.5

0.0

0.6

1.0

08 0.9

All of these loop macros can be nested.

26 Axes

The axes command described in this section is defingdtiplot.tex /
pst-plot.sty, which you must input first.pst-plot.tex, in turn, will auto-
matically inputmultido.tex, which is used for putting the labels on the
axes.

Axes a7



The macro for making axes is:

\psaxes *[par J{arrows}(x0,y0)(x1,yl)(x2,y2)

The coordinates must be Cartesian coordinates. They work the same
way as with\psgrid . That is, if we imagine that the axes are enclosed
in a rectangle(x1,y1) and(x2,y2) are opposing corners of the rectangle.
(I.e., the x-axis extends frow1 to x2 and the y-axis extends frog to

y2.) The axes intersect &t0,y0). For example:

\psaxes[linewidth=1.2pt,labels=none,
ticks=none}{<->}(2,1)(0,0)(4,3)

If (x0,y0) is omitted, then the origin ik1,y1). If both(x0,y0) and(x1,y1)
are omitted,(0,0) is used as the default. For example, when the axes
enclose a single orthont, onfy2,y2) is needed:

\psaxes{->}(4,2)

Labels (numbers) are put next to the axes, on the same sideaasl
yl. Thus, if we enclose a different orthont, the numbers end up in the
right place:

\psaxes{->}(4,-2)

Also, if you set thearrows parameter, the first arrow is used for the tips
atx1 andy1, while the second arrow is used for the tipsxatandy?2.

Thus, in the preceding examples, the arrowheads ended up in the right
place too"?

2Including a first arrow in these examples would have had no effect because arrows
are never drawn at the origin.

Axes 48



When the axes don't just enclose an orthont, that is, when the origin

is not at a corner, there is some discretion as to where the numbers
should go. The rules for positioning the numbers and arrows described
above still apply, and so you can position the numbers as you please by
switchingyl andy2, or x1 andx2. For example, compare

\psaxes{<->}(0,0)(-2.5,0)(2.5,2.5)

with what we get wherl andx2 are switched:

\psaxes{<->}(0,0)(2.5,0)(-2.5,2.5)

\psaxes puts the ticks and numbers on the axes at regular intervals, using
the following parameters:

Horitontal | Vertical | Dflt | Description

Ox=num | Oy=num | 0 | Label at origin.
Dx=num | Dy=num | 1 | Label increment

dx=dim oy=dim | Opt | Dist btwn labels.

Whendx is 0, Dx\psxunit is used instead, and similarly fday. Hence,
the default values dipt for dx anddy are not as peculiar as they seem.

You have to be very careful when setting, Dx, Oy andDy to non-
integer valuesmultido.tex increments the labels using rudimentary fixed-
point arithmetic, and it will come up with the wrong answer uniess
andDx, or Oy andDy, have the same number of digits to the right of the
decimal. The only exception is thak or Oy can always be an integer,
even ifDx or Dy is not. (The converse does not work, howevér.)

Note that\psaxes s first coordinate argument determines the physical
position of the origin, but it doesn’t affect the label at the origin. E.g., if

BFor examplepx=1.0 andDx=1.4 is okay, as i9x=1 andDx=1.4, butOx=1.4 and
Dx=1, or Ox=1.4 andDx=1.15, is not okay. If you get this wrong, PSTricks won't
complain, but you won't get the right labels either.

Axes 49



the origin is af(1,1), the origin is still labeled along each axis, unless
you explicitly changedx andOy. For example:

\psaxes[Ox=-2](-2,0)(2,3)

2
The ticks and labels use a few other parameters as well:

labels= all/x/y/none Default: all
To specify whether labels appear on both axes, the x-axis, the
y-axis, or neither.

showorigin=trueffalse Default: true
If true, then labels are placed at the origin, as long as the label
doesn’t end up on one of the axes.fdike, the labels are never
placed at the origin.

ticks= all/x/y/none Default: all
To specify whether ticks appear on both axes, the x-axis, the
y-axis, or neither.

tickstyle= full/top/bottom Default: full

For example, ifickstyle=top , then the ticks are only on the side
of the axes away from the labels. tiékstyle=bottom , the ticks
are on the same side as the labdlsl gives ticks extending on
both sides.

ticksize= dim Default: 3pt

Ticks extenddim above and/or below the axis.

The distance between ticks and labelspisabelsep , which you can
change with théabelsep parameter.

The labels are set in the current font (ome of the examples above were
preceded bysmall so that the labels would be smaller). You can do
fancy things with the labels by redefining the commands:

\psxlabel
\psylabel

Axes 50



1 1 0
-15 -10 G5 O

E.g., if you want change the font of the horizontal labels, but not the
vertical labels, try something like

\def\psxlabel#1{\small #1}

You can choose to have a frame instead of axes, or no axes at all (but
you still get the ticks and labels), with the parameter:

axesstyle= axes/frame/none Default: axes

The usualinestyle , fillstyle and related paremeters apply.

For example:

\psaxes[Dx=.5,dx=1,tickstyle=top,axesstyle=frame](-3,3)

The\psaxes macro is pretty flexible, but PSTricks contains some other
tools for making axes from scratch. E.g., you can yséne and
\psframe to draw axes and frames, respectiveiyyltido to generate
labels (see the documentation fultido.tex), and\multips to make
ticks.

Axes 51



Text Tricks

27 Framed boxes

The macros for framing boxes take their argument, put it imissx, and

put a PostScript frame around it. (They are analogoudXs \fbox).

Thus, they are composite objects rather than pure graphics objects. In
addition to the graphics parameters Yjmframe , these macros use the
following parameters:

framesep= dim Default: 3pt
Distance between each side of a frame and the enclosed box.

boxsep= true/false Default: true

Whentrue, the box that is produced is the size of the frame or
whatever that is drawn around the object. Wrase, the box that

is produced is the size of whatever is inside, and so the frame is
“transparent” to gX. This parameter only applies Yasframebox ,
\pscirclebox , and\psovalbox .

Here are the three box-framing macros:

\psframebox *[par]{stuff }

A simple frame (perhaps with rounded corners) is drawn using
\psframe . The* option is of particular interest. It generates a solid
frame whose color ifilicolor (rather tharlinecolor , as with the
closed graphics objects). Recall that the default valui@aior

is white, and so this has the effect of blotting out whatever is
behind the box. For example,

\pspolygon(fillcolor=gray;fillstyle=crosshatch*](0,0)(3,0)
(3.2)(2,2)
\rput(2,1){\psframebox*[framearc=.3]{Label}}

Text Tricks 52



\psdblframebox *[par]{stuff }

This draws a double frame. It is just a variant\afframebox ,
defined by

\newpsobject{psdblframebox}{psframebox}{doublesep=\pslinewidth}
For example,

\psdblframebox[linewidth=1.5pt}{%
\parbox[c[{6cm}{\raggedright A double frame is drawn
with the gap between lines equal to {\tt doublesep}}}

A double frame is drawn with the
gap between lines equal éoublesep

\psshadowbox *[par]{stuff }
This draws a single frame, with a shadow.

Great Idea!! \psshadowbox{\bf Great Idea!}

You can get the shadow wittpsframebox just be setting the
shadowsize parameter, but withpsframebox the dimensions of
the box won't reflect the shadow (which may be what you want!).

\pscirclebox *[par]{stuff }

This draws a circle. Withoxsep=true , the size of the box is close
to but may be larger than the size of the circle. For example:

You are \pscirclebox{\begin{tabular}{c} You are \\ here \end{tabular}}
here

\cput *[par{angle}(x,y) {stuff }
This combines the functions gfscirclebox and\rput. It is like

\rput{<angle>}(x0,y0){\string\pscirclebox*[<par>}{<stuff>}}

but it is more efficient. Unlike th&put command, there is no
argument for changing the reference point; it is always the center
of the box. Instead, there is an optional argument for changing
graphics parameters. For example

Framed boxes 53



\cput[doubleline=true](1,.5){\large $K_1$}

\psovalbox *[par]{stuff }

This draws an ellipse. If you want an oval with square sides and
rounded corners, then ugaframebox with a positive value for
rectarc oOfr linearc (depending on whethebrnersize is relative or
absolute). Here is an example that usessep=false :

At the introductory At the introductory price of
price of $13.99,) it \psovalbox[boxsep=false,linecolor=darkgray]{\$13.99},

pays to act now! it pays to act now!

You can define variants of these box framing macros usingntve-
sobject command.

If you want to control the final size of the frame, independently of the
material inside, nestuff in something like@X’'s \makebox command.

28 Clipping

The command

\clipbox [dim]{stuff }

putsstuff in an\nbox and then clips around the boundary of the box, at
a distancelim from the box (the default igpt).

The\pspicture environment also lets you clip the picture to the boundary.

The command

\psclip{ graphics } ... \endpsclip

sets the clipping path to the path drawn by the graphics object(s), until
the \endpsclip command is reached\psclip and\endpsclip must be
properly nested with respect tg'grouping. Only pure graphics (those
described in Part Il antpscustom ) are permitted. ArDverfull \nbox
warning indicates that thgaphics argument contains extraneous output

or space. Note that the graphics objects otherwise act as usual, and
the \psclip does not otherwise affect the surrounded text. Here is an
example:

Clipping 54



\parbox{4.5cm}H%

“One of the best new plays \psclip{\psccurvel[linestyle=none](-3,-2)
| have seen all year: cool, (0.3,-1.5)(2.3,-2)(4.3,-1.5)(6.3,-2)(8,-1.5)(8,2)(-3,2)}
poetic, ironic...” proclaimed “One of the best new plays | have seen all year: cool, poetic,
The Guardianupon the Lon- ironic  \ldots” proclaimed {\em The Guardian} upon the London
~ra af th premiere of this extraordinary play about a Czech director and
his actress wife, confronting exile in America.\vspace{-1cm}
\endpsclip}

Ifyou don’twant the outline to be painted, you need to inclirdatyle=none
inthe parameter changes. You can actually include more than one graph-
ics object in the argument, in which case the clipping path is set to the
intersection of the paths.

\psclip can be a useful tool in picture environments. For example, here
it is used to shade the region between two curves:

\psclip{%
\pscustom[linestyle=none{%
\psplot{.5}{4H{2 x div}
\lineto(4,4)}
\pscustom|linestyle=none{%
\psplot{O{3H3 x x mul 3 div sub}
\lineto(0,0)}}
\psframe*[linecolor=gray](0,0)(4,4)
\endpsclip
\psplot[linewidth=1.5pt]{.54K2 x div}
4 \psplot[linewidth=1.5pt]{OH343 x x mul 3 div sub}
\psaxes(4,4)

Driver notes: The clipping macros ugatverbscale and\pstverb . Don’t be
surprised if PSTricks’s clipping does not work or causes problem—it is never
robust.\endpsclip useshnitclip. This can interfere with other clipping operations,
and especially if thegX document is converted to an Encapsulated PostScript
file. The commandAliClipMode causespsclip and\endpsclip to usegsave
andgrestore instead. This bothers some drivers, such as NeXTTeX's TeXView,
especially ifipsclip and\endpsclip do not end up on the same page.

29 Rotation and scaling boxes

There are versions of the standard box rotation macros:

\rotateleft{ stuff }

Rotation and scaling boxes 55



B

andlor

\rotateright{ stuff }
\rotatedown{ stuff }

stuff is put in anhbox and then rotated or scaled, leaving the appropriate
amount of spaces. Here are a few uninteresting examples:

\Large\bf \rotateleft{Left} \rotatedown{Down} \rotateright{Right}

There are also two box scaling macros:

\scalebox{ num1 num2}{stuff }

If you give two numbers in the first argumemnym1 is used to
scale horizontally anoumz2 is used to scale vertically. If you give
just one number, the box is scaled by the same in both directions.
You can't scale by zero, but negative numbers are OK, and have
the effect of flipping the box around the axis. You never know
when you need to do something lgke# (\scalebox{-1 1}this}).

\scaleboxto( x,y ){stuff }

This time, the first argument is a (Cartesian) coordinate, and the
box is scaled to have widthand height (plus deptly). If one of

the dimensions is 0, the box is scaled by the same amount in both
directions. For example:

\scaleboxto(4,2){Big and long}

PSTricks defines LR-box environments for all these box rotation and
scaling commands:

\pslongbox{Rotateleft}{\rotateleft}
\pslongbox{Rotateright}{\rotateright}
\pslongbox{Rotatedown}{\rotatedown}
\pslongbox{Scalebox}{\scalebox}
\pslongbox{Scaleboxto}{\scaleboxto}

Here is an example where Weotatedown for the answers to exercises:

Rotation and scaling boxes 56



Question: How do
Democrats organize a

firing squad?
gl e

ur1eb Asyrisii4 Jamsuy

Question: How do Democrats organize a firing squad?
\begin{Rotatedown}
\parbox{\hsize}{Answer: First they get in a circle, \ldots\hss}%
\end{Rotatedown}

See the documentation fahcybox.sty for tips on rotating adlEX table
or figure environment, and other boxes.

Rotation and scaling boxes 57



VI

With the myfooters page
style, the name of the

Nodes and Node Connections

All the commands described in this part are contained in thepdile
node.tex/pst-node.sty.

The node and node connection macros let you connect information
and place labels, without knowing the exact position of what you are

connecting or of where the lines should connect. These macros are
useful for making graphs and trees, mathematical diagrams, linguistic
syntax diagrams, and connecting ideas of any kind. They are the trickiest
tricks in PSTricks!

Although you might use these macros in pictures, positioning and rotat-
ing them with\rput , you can actually use them anywhere. For example,
I might do something like this in a guide about page styles:

\makeatletter
\gdef\ps@temp{\def\@oddhead{}\def\@evenhead{}
\def\@oddfoot{\small\sf
\ovalnode[boxsep=false]{AK\rightmark}
\nccurve[ncurv=.5,angleB=240,angleA=180,nodesep=6pt]{<-}{AKB}

current section appears \hfil\thepage}

at the bottom of each
page.

\let\@evenfoot\@oddfoot}
\makeatother
\thispagestyle{temp}

With the {\tt myfooters} page style, the name of the current section
appears at the bottom of each \rnode{B}{page}.

You can use nodes in math mode and in alignment environments as well.
Here is an example of a commutative diagram:

@and Node Conn@' 58




$
\begin{array{c@{\hskip 1cm}c}
A & \rnode{a{AN[2cm]
\rnode{b}{B} & \rnode{c}H{C}
\end{array}

9 \psset{nodesep=3pt}
\everypsbox{\scriptstyle}
\ncline{->H{a}{b}\Bput{f}

c \ncline{->}{a}{cNAput{g}
\ncline[linestyle=dotted]{->}{bHcNAput{h}
$

There are three components to the node macros:

Node definitions The node definitions let you assign a name and shape
to an object. See Section 30.

Node connectionsThe node connections connect two nodes, identified
by their names. See Section 31.

Node labels The node label commands let you affix labels to the node
connections. See Section 32.

30 Nodes

The name of a node must contain only letters and numbers, and must
begin with a letter.

Warning: Bad node names can cause PostScript errors.

\rnode [refpoint]{name K stuff }

This assigns theame to the node, which will have a rectangular
shape for the purpose of making connections, with the “center”
at the reference point (i.e., node connections will point to the
reference pointirnode was used in the two examples above.

\Rnode (x,y){name {stuff }

This s like\rnode , but the reference pointis calculated differently.
Itis set to the middle of the box’s baseline, p{ug/). If you omit
the (x,y) argument, command

\RnodeRef

Nodes 59



is substituted. The default definition ®nodeRef is0,.7ex. E.gQ,
the following are equivalent:

\Rnode(0,.6ex){stuff}
{\def\RnodeRef{0,.6ex}\Rnode{stuff}}

\Rnode is useful when aligning nodes by their baaelines, such asin
commutative diagrams. Witimode horizontal node connections
might not be quite horizontal, because of differences in the size
of letters.

\pnode (x,y){name}
This creates a zero dimensional node at the p@iy) (default
(0,0)).

\cnode *[par](x,y){radius {name}

This draws a circle and assigns tiene to it.

\circlenode *[par]{name }{stuff }
This is a variant ofpscirclebox that gives the node the shape of
the circle.

\cnodeput *[par]{angle}(x,y){name Hstuff }
This is a variant ofcput that gives the node the shape of the circle.

\ovalnode *[par]{name K stuff }

This is a variant ofpsovalbox that gives the node the shape of
the ellipse.

The reason that there is fimamenode command is that usingsframe-
box (or \psshadowbox oOfr \psdblframebox ) in the argument ofrnode
gives the desired result.

31 Node connections

All the node connection commands begin with and they all have the
same syntax:

\<nodeconnection>[<par>]{<arrows>}{<nodeA>}<nodeB>}

Node connections 60



A line of some sort is drawn fromodeA to nodeB. Some of the node
connection commands are a little confusing, but with a little experimen-
tation you will figure them out, and you will be amazed at the things
you can do.

The node and point connections can be used wibustom . The
beginning of the node connection is attached to the current point by a
straight line, as withpsarc .24

When we refer to the andB nodes below, we are referring only to the
order in which the names are given as arguments to the node connection
macros.

When a node name cannot be found on the same page as the node
connection command, you get either no node connection or a nonsense
node connection. HowevergX will not report any errors.

The node connections use the following parameters:

nodesep= dim Default: 0
The border around the nodes added for the purpose of determining
where to connect the lines.

offset= dim Default: 0
After the node connection point is calculated, it is shift up for
nodeA and down fomodeB by dim, where “up” and “down” as-
sume that the connecting line points to the right from the node.

arm=dim Default: 10pt
Some node connections start with a segment of ledigtibefore
turning somewhere.

angle=angle Default: 0
Some node connections let you specify the angle that the node
connection should connect to the node.

arcangle= angle Default: 8

This applies only tancarc, and is described below.

ncurv= num Default: .67

This applies only tonccurve and\pccurve , and is described
below.

14See page 71 if you want to use the nodes as coordinates in other PSTricks macros.

Node connections 61



Idea 1

loopsize= dim Default: 1cm
This applies only théncloop and\pcloop , and is described below.

You can set these parameters separately for the two nodes. Just add an
A or B to the parameter name. E.g.

\psset{nodesepA=3pt, offsetA=5pt, offsetB=3pt, arm=1cm}

setsnodesep for the A node, but leaves the value for tBenode un-
changed, setsffset for the A andB nodes to different values, and sets
arm for theA andB nodes to the same value.

Don'’t forget that by using théorder parameter, you can create the
impression that one node connection passes over another.

Here is a description of the individual node connection commands:

\ncline *[par]{arrows}{nodeA }{nodeB }

This draws a straight line between the nodes. Onlyfiset and
nodesep parameters are used.

Idea 2

\rput[bl](0,0){\rnode{A}{Ildea 1}}
\rput[tr](4,3){\rnode{BKldea 2}}
\ncline[nodesep=3ptl{<->{AKB}

\ncLine *[par{arrows}{nodeA }{nodeB }

This is like\ncline , but the labels (withiput, etc) are positioned

as if the line began and ended at the center of the nodes. This is
useful if you have multiple parallel lines and you want the labels
to line up, even though the nodes are of varying size, e.g., in
commutative diagrams.

\nccurve *[parj{arrows}{nodeA }{nodeB }

This draws a bezier curve between the nodes. It usestiesep ,
offset , angle andncurv parameters.

\rput[bl](0,0){\rnode{A}{\psframebox{Node A}}}
\rput[tr](4,3){\ovalnode{B}{Node B}}
\nccurve[angleB=180]{AKB}

Node connections 62



\ncarc *[par[{arrows}{nodeA ¥ nodeB }

This is actually a variant dihccurve . l.e., it also connects the
nodes with a bezier curve, using thedesep , offset , andncurv
parameters. However, the curve connects to nmodéan angle
arcangleA from the line betweea andB, and connects to node
at an anglearcangleB from the line betweeB andA. For small,
equal values oéngleA andangleB (e.g., the default value )
and with the default value ofcurv, the curve approximates an
arc of a circle.\ncarc is a nice way to connect two nodes with
two lines.

\cnodeput(0,0){AHX}
\cnodeput(3,2){BYY}
\psset{nodesep=3pt}
\ncarc{->{AHB}
\ncarc{->{BHA}

\ncbar *[par[{arrows}{nodeA }{ nodeB }

Connect som&vords!

b 1

First, lines are drawn attaching to both nodes at an angjeA

and of lengtharmA andarmB. Then one of the arms is extended
so that when the two are connected, the finished line contains 3
segments meeting at right angles. Generally, the whole line has
three straight segments. The valudiafarc is used for rounding

the corners.

\rnode{A}{Connect} some \rnode{B}{words}!
\ncbhar[nodesep=3pt,angle=-90|{<-**}{AKB}

\ncdiag *[parl{arrows}{nodeA }{nodeB }

First, the arms are drawn usirggle andarm. Then they are
connected with a straight line. Generally, the whole line has three
straight segments. The valuelokarc is used for rounding the
corners.

\rput[tl](0,3){\rnode{AH{\psframebox{Node A}}}
\rput[br](4,0){\ovalnode{B}{Node B}}
\ncdiag[angleA=-90,angleB=90,arm=.5,linearc=.2]{AKB}

Node connections 63



\ncdiagg *[par]{arrows}{nodeA }{nodeB }

This is similar to\ncdiag , but only the arm for node A is drawn.
The end of this arm is then connected directly to node B. The
connection typically has two segments. The valudinefrc is
used for rounding the corners.

H \cnode(0,0){4pt}{a}
\rput[l](3,1){\rnode{b}{H}}
\rput[l](3,-1){\rnode{cKT}}
\ncdiagg[angleA=180,armA=2cm,nodesepA=3pt]{bHa}
T \ncdiagg[angleA=180,armA=2cm,nodesepA=3pt]{cKa}

\ncangle *[par]{arrows}{nodeA }{nodeB }

The node connection points are determinedrdayeA andangleB
(andnodesep andoffset ). Then an arm is drawn for nodeusing
armB. This arm is connected to nodeby a right angle, that also
meets node at angleangleA . Generally, the whole line has three
straight segments, but it can have fewer. The valugedrc is
used for rounding the corners. Simple, right? Here is an example:

\rput[tl](0,3){\rnode{AH{\psframebox{Node A}}}

[
: \rput[br](4,0){\ovalnode{B}{Node B}}
\ncangle[angleA=-90,angleB=90,arm=.4cm,

linestyle=dashed]{A}{B}

\ncangles *[par]{arrows}{nodeA }{nodeB }

This is similar toncangle , but botharmA andarmB are used. The
arms are connected by a right angle that meetsaaha right
angle as well. Generally there are four segments (hence one more
angle thanncangle , and hence thein \ncangles ). The value of
linearc is used for rounding the corners. Compare this example
with the previous one:

\rput[tl](0,3){\rnode{AH{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}
\ncangles[angleA=-90,arm=.4cm,linearc=.15{A}{B}

Node connections 64



A loop

B

\ncloop *[par]{arrows}{nodeA {nodeB }

The first segment isrmA, then it makes a 90 degree turn to the
left, drawing a segment of lengtbopsize . The next segment is
again at a right angle; it connectsaonB . For example:

\rnode{a}{\psframebox{\Huge A loop}}
\ncloop[angleB=180,loopsize=1,arm=.5,linearc=.2J{->Ha}{a}

\nccircle *[par]{arrows}{node }{radius }

This draws a circle from a node to itself. It is the only node
connection command of this sort. The circle starts at aagle
gleA and goes around the node counterclockwise, at a distance
nodesepA from the node.

The node connection commands make interesting drawing tools as well,
as an alternative t@sline for connecting two points. There are variants
of the node connection commands for this purpose. Each begins with
pc (for “point connection”) rather thanc. E.g.,

\pcarc{<->}(3,4)(6,9)

gives the same result as

\pnode(3,4){A}\pnode(6,9){B}\pcarc{<->{AKB}

Only\ncLine and\nccircle do not havepc variants:

\pcline *[par]{arrows}(x1,y1)(x2,y2)

Like \ncline .

\pccurve *[par[{arrows}(x1,yl1)(x2,y2)

Like \nccurve .

\pcarc *[par[{arrows}(x1,y1)(x2,y2)

Like \ncarc .

\pcbar *[par]{arrows}(x1,y1)(x2,y2)

Like \ncbar .

\pcdiag *[par{arrows}(x1,y1)(x2,y2)

Like \ncdiag .

Node connections 65



\pcangle *[par]{arrows}(x1,y1)(x2,y2)
Like \ncangle .

\pcloop *[par]{arrows}(x1,y1)(x2,y2)
Like \ncloop .

32 Attaching labels to node connections

Now we come to the commands for attaching labels to the node con-
nections. The node label command must come right after the node
connection to which the label is to be attached. You can attach more
than one label to a node connection, and a label can include more nodes.

The node label commands must end up on the sagtXep@ge as the
node connection to which the label corresponds.

The coordinate argument in other PSTrigks commands is a single
number in the node label commandsos). This number selects a point

on the node connection, roughly according to the following scheme:
Each node connection has potentially one or more segments, including
the arms and connecting lines. A numiparsbetween 0 and 1 picks

a point on the first segment from nodeto B, (fraction posfrom the
beginning to the end of the segment), a number between 1 and 2 picks a
number on the second segment, and so on. Each node connection has its
own default value of the positioning coordinate, which is used by some
short versions of the label commands.

Here are the details for each node connection:

Connection Segments Range  Default

\ncline 1 O<poxl 0.5
\nccurve 1 O<posl1 0.5
\ncarc 1 O<posxl 0.5
\ncbar 3 O<pos<3 1.5
\ncdiag 3 O<pos3 1.5
\ncdiagg 2 O<pos? 0.5
\ncangle 3 O<pos<3 1.5
\ncloop 5 O<pos4 2.5
\nccircle 1 O<posxl 0.5

There is another difference between the node label commands and other
put commands. In addition to the various ways of specifying the angle

Attaching labels to node connections 66



of rotation for\rput, with the node label commands the angle can be
of the form{:angle}. In this case, the angle is calculated after rotating
the coordinate system so that the node connection at the position of the
label points to the right (from nodesto B). E.g., if the angle ig:U},

then the label runs parallel to the node connection.

Here are the node label commands:

\Iput *[refpoint]{rotation}(pos ){stuff }

The| stands for “label”. Here is an example illustrating the use
of the optional star angingle with \iput, as well as the use of the
offset parameter withpcline :

\pspolygon(0,0)(4,2)(4,0)
\pcline[offset=12pt[{|-|}(0,0)(4,2)
\Iput*{:UH{Length}

(Remember that with theut commands, you can omit the coor-
dinate if you include the angle of rotation. You are likely to use
this feature with the node label commands.)

With \Iput and\rput, you have a lot of control over the position of
the label. E.g.,

\pcline(0,0)(4,2)
\Iput{:UK\rput[r[{N}(0,.4){label}}

puts the label upright on the page, with right side located .4
centimeters “above” the positiosof the node connection (above

if the node connection points to the right). However, tihait
and\bput commands described below handle the most common
cases withoutrput .*°

15There is also an obsolete commanplit for putting labels next to node connec-
tions. The syntax is

\Lput{<labelsep>}[<refpoint>]{<rotation>}(<pos>){<stuff>}
It is a combination ofRput and\lput, equivalent to
\Iput(<pos>){\Rput{<labelsep>}[<refpoint>]{<rotation>}(0,0){<stuff>}}

\Mput is a short version ofLput with no {rotation} or (pos) argument. \Lput and
\Mput remain part of PSTricks only for backwards compatibility.

Attaching labels to node connections 67



\aput *[labelsep]{angle}(pos ){stuff }

stuff is positioned distanceslabelsep abovethe node connec-
tion, given the convention that node connections point to the right.
\aput is @ node-connection variant wbut . For example:

(<
o \pspolygon(0,0)(4.2)(4,0)
\pcling[linestyle=none](0,0)(4,2)
\aput{:U}{Hypotenuse}

\bput *[labelsep]{angle}(pos ){stuff }

This is like\aput, butstuff is positionedoelowthe node connec-
tion.

It is fairly common to want to use the default position and rotation with
these node connections, but you have to include at least one of these
arguments. Therefore, PSTricks contains some variants:

\mput *[refpoint]{stuff }
\Aput *[labelsep]{stuff }
\Bput *[labelsep{stuff }

of \lput, \aput and\bput , respectively, that have no angle or positioning
argument. For example:

®  \cnode*(0,0){3ptHA}
/ \cnode*(4,2){3ptHB}

1

/ \ncline[nodesep=3pt[{AKB}
\mput*{1}

Here is another:

Label \pcline{<->}(0,0)(4,2)
\Aput{Label}

Now we can comparencline with \ncLine , and\rnode with \Rnode.
First, here is a mathematical diagram wiibLine and\Rnode :

Attaching labels to node connections 68



\[
\setlength{\arraycolsep}{lcm}
\def\tX{\tilde{\tilde{X}}}
\begin{arrayHcc}
\Rnode{a}{(X-A,N-A)} & \Rnode{bH(\tX,a)}\[1.5cm]
\Rnode{cH{(X,N)} & \Rnode{d}{\LARGE(\tX,N)}\\[1.5cm]
\end{array}
\psset{nodesep=5pt,arrows=->}
\everypsbox{\scriptstyle}
\ncLine{a}{bN\Aput{a}
\ncLine{a}{c}\Bput{r}
\ncLine[linestyle=dashed]{c}{d}\Bput{b}
\ncLine{b{d})\Bput{s}
\

a

(X-A:N-A) — > (X;a)

Here is the same one, but wiiltline and\rnode instead:

(X—A;N-A) —> (X;a)

Driver notes: The node macros ugstVerb and\pstverbscale .

Attaching labels to node connections



VI

Special Tricks

33 Coils and zigzags

The filepst-coil.tex/pst-coil.sty (and optionally the header fifet-coil.pro)
defines the following graphics objects for coils and zigzags:

\pscoil *[par]{arrows}(x0,y0)(x1,yl)
\psCaoil *[par]{anglel {angle2}
\pszigzag *[par {arrows}(x0,y0)(x1,y1)

These graphics objects use the following parameters:

coilwidth="dim Default: 1cm
coilheight= num Default: 1
coilarm= dim Default: .5cm
coilaspect= angle Default: 45
coilinc= angle Default: 10

All coil and zigzag objects draw a colil or zigzag whose width (diameter)
is coilwidth , and with the distance along the axes for each period (360
degrees) equal to

coilheight X coilwidth .

Both \pscoil and\psCoil draw a “3D” coil, projected onto the xz-axes.
The center of the 3D coil lies on the yz-plane at angle pcoilaspect to
the z-axis. The coil is drawn with PostScriptigto, joining points that

lie at anglecoilinc from each other along the coil. Hence, increasing
coilinc makes the curve smoother but the printing slowgszigzag

does not use thevilaspect andcoilinc parameters.

\pscoil and\pszigzag connect(x0,y0) and (x1,y1), starting and ending
with straight line segments of lengthilarmA andcoilarmB , resp. Set-
ting coilarm is the same as settingilarmA andcoilarmB .

Here is an example afscoil :

Special Tricks 70



\pscaoil[coilarm=.5cm,linewidth=1.5pt,coilwidth=.5cm]{<-|}(4,2)

Here is an example apszigzag :

<—/\/\/\/—> \pszigzag[coilarm=.5,linearc=.1{<->}(4,0)

Note that\pszigzag uses thdinearc parameters, and that the beginning
and ending segments may be longer thaiarm to take up slack.

\psCoil just draws the coil horizontally froringlel to angle2. Use\rput
to rotate and translate the coil, if desiretbsCoil does not use the
coilarm parameter. For example, withilaspect=0 we get a sine curve:

\/\/\/‘\/ \psCoil[coilaspect=0,coilheight=1.33,
coilwidth=.75,linewidth=1.5pt]{0}{1440}
pst-coil.tex also contains coil and zigzag node connections. You must
pst-node also loadpst-node.tex / pst-node.sty to use these. The node connections

are:

\nccoil *[par{arrows}{nodeA }{nodeB }
\nczigzag *[par {arrows}{nodeA }{nodeB }
\pccoil *[par]{arrows}(x1,y1)(x2,y2)
\pczigzag *[par {arrows}(x1,y1)(x2,y2)

The end points are chosen the same asnfgine and\pcline , and oth-
erwise these commands work likacoil and\pszigzag . For example:

\cnode(.5,.5){.5}{A}
\cnodef[fillstyle=solid,fillcolor=lightgray](3.5,2.5){.5}{B}
\nccoil[coilwidth=.3]{<->}{AKB}

34 Special coordinates

The command

Special coordinates 71



\SpecialCoor

enables a special feature that lets you specify coordinates in a variety
of ways, in addition to the usual Cartesian coordindteRrocessing is
slightly slower and less robust, which is why this feature is available
on demand rather than by default, but you probably won't notice the
difference.

Here are the coordinates you can use:

(x,y) The usual Cartesian coordinate. E(3.4).

(r;a) Polar coordinate, with radiusand anglea. The default unit for
is unit. E.g.,(3;110).

(node) The center ofiode. E.g.,(A).

([par]node) The position relative t@ode determined using thangle,
nodesep andoffset parameters. E.g(jangle=45]A).

('ps) Raw PostScript codas should expand to a coordinate pair. The
units xunit andyunit are used. For example, if | want to use a
polar coordinate (3L10) that is scaled along wikunit andyunit ,
| can write

(!3 110 cos mul 3 110 sin mul)

(coorl |coor2) Thex coordinate fromcoorl and they coordinate from
coor2. coorl andcoor2 can be any other coordinates for use with
\SpecialCoor . For example(A|1in;30).

\SpecialCoor also lets you specify angles in several ways:

num A number, as usual, with units given by tliegrees command.

18There is an obsolete commarmdlar that causes coordinates in the fogna) to
be interpreted as polar coordinates. The us®@ér is not recommended because it
does not allow one to mix Cartesian and polar coordinates thaSpayialCoor does,
and because it is not as apparent when examining an input file whethe3,e)ds, a
Cartesian or polar coordinate. The command for undiagr is \Cartesian . It has
an optional argument for setting the default units. l.e.,

\Cartesian(<x>,<y>)
has the effect of
\psset{xunit=<x>,yunit=<y>}

\Cartesian can be used for this purpose without usirglar .

Special coordinates 72



(coor) A coordinate, indicating where the angle points to. Be sure to
include the(), in addition to whatever other delimiters the angle
argument uses. For example, the following are two ways to draw
an arc of .8 inch radius from 0 to 135 degrees:

\SpecialCoor
\psarc(0,0){.8in{0H135}
\psarc(0,0){.8in{0K(-1,1)}

Ips Raw PostScript codeps should expand to a number. The same
units are used as wittum.

The command

\NormalCoor

disables théSpecialCoor features.

35 Overlays

Overlays are mainly of interest for making slides, and the overlay macros
described in this section are mainly of interestgX acro writers who
want to implement overlays in a slide macro package. For example, the
seminar.sty package, X style for notes and slides, uses PSTricks to
implement overlays.

Overlays are made by creating #@mox and then outputting the box
several times, printing different material in the box each time. The box
is created by the commands

\overlaybox stuff \endoverlaybox
l&TX users can instead write:
\begin{overlaybox} <stuff> \end{overlaybox}

The material for overlaygtring should go within the scope of the com-
mand

\psoverlay{ string }

Overlays 73



string can be any string, after expansion. Anything not in the scope of
any\psoverlay command goes on overlayain, and material within the
scope ofipsoverlay{all} goes on all the overlays$psoverlay commands
can be nested and can be used in math mode.

The command

\putoverlaybox{ string }

then prints overlagtring.

Here is an example:

\overlaybox
\psoverlay{all}
\psframebox[framearc=.15,linewidth=1.5pt}{%
\psoverlay{main}
\parbox{3.5cm}{\raggedright
Foam Cups Damage Environment {\psoverlay{one} Less than
Paper Cups,} Study Says.}}
\endoverlaybox
\putoverlaybox{main} \hspace{.5in} \putoverlaybox{one}

Foam Cups Damag

Environment Less
than Paper Cups,

Study Says.

Driver notes: Overlays usestverb and\pstverbscale .

36 The gradient fill style

) The file gradient.tex/gradient.sty, along with the PostScript header file
gradient gradient.pro, defines theyradient fillstyle , for gradiated shading. This

fillstyle uses the following parameters:

gradbegin= color Default: gradbegin
The starting and ending color.

gradend= color Default: gradend
The color at the midpoint.

The gradient fill style 74



gradlines= int Default: 500

The number of lines. More lines means finer gradiation, but
slower printing.

gradmidpoint= num Default: .9

The position of the midpoint, as a fraction of the distance from
top to bottom.num should be between 0 and 1.

gradangle= angle Default: 0
The image is rotated bangle.

gradbegin andgradend should preferably begb colors, but grays and
cmyk colors should also work. The definitions of the colgrsdbegin
andgradend are:

\newrgbcolor{gradbegin{0 .1 .95}
\newrgbcolor{gradend{0 1 1}

Here are two ways to change the gradient colors:
\newrgbcolor{gradbegin{1 .4 0}

and
\psset{gradbegin=blue}

Try this example:

\psframef[fillstyle=gradient,gradangle=45](10,-20)

37 Adding color to tables

The file colortab.tex/colortab.sty contains macros that, when used with
colortab color commands such as those in PSTricks, let you color the cells and

lines in tables. Seenlortab.doc for more information.

Adding color to tables 75



38 Typesetting text along a path

The file textpath.tex/textpath.sty defines the commangstextpath , for
textpath typesetting text along a path. Itis a remarkable trick, but there are some

caveats:

* textpath.tex only works with certain DVI-to-PS drivers. Here is
what is currently known:

— Itworks with Rokicki’sdvips, version 5.487 or later (at least
up to v5.495).
— It does not work with earlier versions of dvips.

— Itdoes not work with TeXview (to preview files with NeXT-
TeX 3.0, convert thelvi file to a PostScript file witlvips -o
and use Preview).

— “Does not work” means that it has no effect, for better or
for worse.

— This may work with other drivers. The requirement is that
the driver only use PostScripgaow operator, unbound and
unloaded, to show characters.

* You must also have installed the PostScript headetkitgath.ps,
and\pstheader must be properly defined ipstricks.con for your
driver.

» Like other PSTricks that involve rotating text, this works best with
PostScript (outline) fonts.

» PostScript rendering wittextpath.tex is slow.

Because of all this, no samples are shown here. However, there is a test
file tp-test.tex and PostScript outpup-test.ps that are distributed with
PSTricks.

Here is the command:

\pstextpath [pos](x,y){graphics object }text}

text is placed along the path, from beginning to end, defined by the
PSTricks graphics object. (This object otherwise behaves normally. Set
linestyle=none if you don’t want it to appear.)

text can only contain characters. No TeX rules, no PSTricks, and no
other\special’s. (These things don’t cause errors; they just don’t work

Typesetting text along a path 76



right.) Math mode is OK, but math operators that are built from several
characters (e.g., large integral signs) may break. Entire boxes (e.g.,
\parbox) are OK too, but this is mainly for amusement.

pos is either

| justify on beginning of path
c center on path
r justify on end of path.

The default id.

(x,y) is an offset. Characters are shifted distan@ong path, and are
shifted up byy. “Up” means with respect to the path, at whatever point
on the path corresponding to the middle of the chara¢tgr) must be
Cartesian coordinates. Both coordinates\psénit as the default. The
default coordinate i$0,\TPoffset), where\TPoffset a command whose
default value is.7ex. This value leads to good spacing of the characters.
Remember thaix units are for the font in effect wheépstextpath occurs,

not inside thaeext argument.

More things you might want to know:

* Like with \rput and the graphics objects, it is up to you to leave
space fokpstextpath.

* Results are unpredictabletékt is wider than length of path.

* \pstextpath leaves the typesetting tgX. It just intercepts thehow
operator to remap the coordinate system.

39 Stroking and filling character paths

charpath

The file charpath.tex/charpath.sty defines the command:

\pscharpath *[par]{text }

It strokes and fills theext character paths using the PSTridkestyle
andfillstyle .

The restrictions on DVI-to-PS drivers listed on page 76\fetextpath
apply to\pscharpath. Furthermore, only outline (PostScript) fonts are
affected.

Stroking and filling character paths 77



Sample input and output filekartest.tex andchartest.ps are distributed
with PSTricks.

With the optionat, the character path is not removed from the PostScript
environment at the end. This is mainly for special hacks. For exam-
ple, you can usépscharpath* in the first argument ofpstextpath, and

thus typeset text along the character path of some other text. See the
sample filedenis1.tex. (However, you cannot combingscharpath and
\pstextpath in any other way. E.g., you cannot typeset character outlines
along a path, and then fill and stroke the outlines Wwitlaharpath.)

The command

\pscharclip *[par]{text} ... \endpscharclip

works just like\pscharpath , but it also sets the clipping path to the
character path. You may want to position this clipping path usmg
inside\pscharclip 's argument. Likapsclip and\endpsclip , \pscharclip
and\endpscharclip should come on the same page and should be prop-
erly nested with respect tgeX groups (unlessiltClipMode is in effect).

The filedenis2.tex contains a sample ¢fscharclip .

40 Importing EPS files

PSTricks does not come with any facility for including Encapsulated
PostScript files, because there are other very good and well-tested
macros for exactly that. If using Rokickisips, then tryepsf.tex/epsf.sty,

by the man himself!

What PSTrickgs good for is embellishing your EPS picture. You can
include an EPS file in in the argument\gfut, as in

\rput(3,3){\epsfbox{myfile.eps}}

and hence you can include an EPS file in {bapicture environment.
Turn on\psgrid , and you can find the coordinates for whatever graphics
or text you want to add. This works even when the picture has a weird
bounding box, because with the argumentg4picture you control the
bounding box from EX’s point of view.

This isn’t always the best way to work with an EPS file, however. If the
PostScript file’s bounding box is the size you want the resulting picture
to be, after your additions, then try

Importing EPS files 78



\hbox{<picture objects> \epsfbox{<file.eps>}

This will put all your picture objects at the lower left corner of the EPS
file. \epsfhox takes care of leaving the right amount of space.

If you need to determine the bounding box of an EPS file, then you
can try of the automatic bounding box calculating programs, such as
bbfig (distributed with Rokicki'sdvips). However, all such programs
are easily fooled; the only sure way to determine the bounding box is
visually. \psgrid is a good tool for this.

41 Exporting EPS files

You must loadpst2eps.tex or pst2eps.sty to use the PSTricks macros
described in this section.

If youwantto exportan EPS file that contains both graphics and text, then
you need to be using a DVI-to-PS driver that suports such a feature. If
you just want to export pure graphics, then you can usetmicksEPS
command. Both of these options are described in this section.

Newer versions of Rokicki'svips support anke option for creating EPS
files from X .dvifiles. E.g.,

dvipsfoo:dvi- E —ofoo:eps

Your document should be a single pageps will find a tight bounding

box that just encloses the printed characters on the page. This works
best with outline (PostScript) fonts, so that the EPS file is scalable and
resolution independent.

There are two inconvenient aspects of this method. You may want a
different bounding box than the one calculateddbips (in particular,
dvips ignores all the PostScript generated by PSTricks when calculating
the bounding box), and you may have to go out of your way to turn off
any headers and footers that would be added by output routines.

PSTricks contains an environment that tries to get around these two
problems:

\TeXtoEPS
stuff
\endTeXtoEPS

Exporting EPS files 79



Thisis all that should appear in your document, but headers and whatever
that would normally be added by output routines are ignodeigs will

again try to find a tight bounding box, but it will tresduff as if there

was a frame around it. Thus, the bounding box will be sure to include
stuff, but might be larger if there is output outside the boundaries of this
box. If the bounding box still isn’t right, then you will have to edit the

%%BoundingBox <lIx Ily urx ury>

specification in the EPS file by hand.

If your goal is to make an EPS file for inclusion in other documents,
thendvips -E is the way to go. However, it can also be useful to generate
an EPS file from PSTricks graphics objects and include it in the same
document’ rather than just including the PSTricks graphics directly,
because gX gets involved with processing the PSTricks graphics only
when the EPS file is initially created or updated. Hence, you can edit
your file and preview the graphics, without having to process all the
PSTricks graphics each time you correct a typo. This speed-up can be
significant with complex graphics such\aslistplot's with a lot of data.

To create an EPS file from PSTricks graphics objects, use

\PSTtoEPS [par]{file { graphics objects }

The file is created immediately, and hence you can include it in the same
document (after th&PSTtoEPS command) and as many times as you
want. Unlike withdvips -E, only pure graphics objects are processed
(e.g.,\rput commands have no effect).

\PSTtoEPS cannot calculate the bounding box of the EPS file. You have
to specify it yourself, by setting the following parameters:

bbllx= dim Default: -1pt
bblly= dim Default: -1pt
bburx= dim Default: 1pt
bbury= dim Default: 1pt

Note that if the EPS file is only to be included in a PSTricks picture with
\rput  you might as well leave the default bounding box.

\PSTricksEPS also uses the following parameters:

1See the preceding section on importing EPS files.

Exporting EPS files 80



headerfile= file Default; s

()This parameter is for specifying PostScript header files that are
to be included in the EPS file. The argument should contain one
or more file names, separated by commas. If you have more than
one file, however, the entire list must be enclosed in brgces

headers= none/all/user Default; none

Whennone, no header files are included. Wheththe header files
used by PSTricks plus the header files specified by¢heerfile
parameter are included. Wheser, only the header files specified

by theheaderfile parameter are included. If the EPS file is to be
included in a X document that uses the same PSTricks macros
and hence loads the relevant PSTricks header files anyway (in
particular, if the EPS file is to be included in the same document),
thenheaders should benone or user.

Exporting EPS files 81



Help

A Boxes

Many of the PSTricks macros have an argument for text that is processed
in restricted horizontal mode (iffX parlance, LR-mode) and then
transformed in some way. This is always the macro’s last argument,
and it is written{stuff} in this User's Guide Examples are the framing,
rotating, scaling, positioning and node macros. | will call these “LR-
box” macros, and use framing as the leading example in the discussion
below.

In restricted horizontal mode, the input, consisting of regular characters
and boxes, is made into one (long or short) line. There is no line-
breaking, nor can there be vertical mode material such as an entire
displayed equation. However, the fact that you can include another box
means that this isn’t really a restriction.

For one thing, alignment environments suchhaign or [EXs tabular

are just boxes, and thus present no problem. Picture environments and
the box macros themselves are also just boxes. Actually, there isn't a
single PSTricks command that cannot be put directly in the argument
of an LR-box macro. However, entire paragraphs or other vertical
mode material such as displayed equations need to be nest&wis a

or [@X \parbox or minipage. [&EX users should sefancybox.sty and

its documentationfancybox.doc, for extensive tips and trick for using
LR-box commands.

The PSTricks LR-box macros have some features that are not found in
most other LR-box macros, such as the stand@KLLR-box com-
mands.

With X LR-box commands, the contents is always processed in
text mode, even when the box occurs in math mode. PSTricks, on
the other hand, preserves math mode, and attempts to preserve the
math style as well. gX has four math styles: text, display, script and
scriptscript. Generally, if the box macro occurs in displayed math (but
not in sub- or superscript math), the contents are processed in display
style, and otherwise the contents are processed in text style (even here
the PSTricks macros can make mistakes, but through no fault of their
own). If you don’t get the right style, explicitly include \gxtstyle,
\displaystyle, \scriptstyle Or \scriptscriptstyle command at the beginning of

Help 82



the box macro’s argument.

In case you want your PSTricks LR-box commands to treat math in the
same as your other LR-box commands, you can switch this feature on
and off with the commands

\psmathboxtrue
\psmathboxfalse

You can have commands (such as, but not restricted to, the math style

commands) automatically inserted at the beginning of each LR-box
using the

\everypsbox{ commands }

command®

If you would like to define an LR-box environmemme from an LR-
box commandmd, use

\pslongbox{ name {cmd }
For example, after
\pslongbox{MyFrame}{\psframebox}
you can write
\MyFrame <stuff>\endMyFrame
instead of
\psframebox{<stuff>}
Also, X users can write
\begin{MyFrame} <stuff>\end{MyFrame}

It is up to you to be sure thatnd is a PSTricks LR-box command; if it
isn’t, nasty errors can arise.

Environments like have nice properties:

18This is a token register.

Boxes 83



» The syntax is clearer wheswff is long.

* Itis easier to build composite LR-box commands. For example,
here is a framed minipage environment f@gX:

\pslongbox{MyFrame}{\psframebox}

\newenvironment{fminipage}%
{\MyFrame\begin{minipage}}%
{\end{minipage}\endMyFrame}

* You include verbatim text and othesatcode tricks in stuff.

The rest of this section elaborates on the inclusion of verbatim text
in LR-box environments and commands, for those who are interested.
fancybox.sty also contains some nice verbatim macros and tricks, some
of which are useful for LR-box commands.

The reason that you cannot normally include verbatim text in an LR-
box commands argument is thatXTreads the whole argument before
processing th&atcode changes, at which point it is too late to change
the category codes. If this is all Greek to ySuthen just try this@pX
example to see the problem:

\psframebox{\verb+\foo{bar}+}

The LR-box environments defined withslongbox do not have this
problem becausetuff is not processed as an argument. Thus, this
works:

\pslongbox{MyFrame}\psframebox}
\MyFrame \verb+\foo{bar}+\endMyFrame

\foo{bar}

The commands

\psverbboxtrue
\psverbboxfalse

switch into and out of, respectively, a special PSTricks mode that lets
you include verbatim text in any LR-box command. For example:

BIncidentally, many foreign language macros, suchrask.tex, use\catcode tricks
which can cause problems in LR-box macros.

Boxes 84



\psverbboxtrue
\psframebox{\verb+\foo{bar}+}

\foo{bar}

However, this is not as robust. You must explicitly group color com-
mands instuff, and LR-box commands that usually ignore spaces that
follow {stuff} might not do so whekpsverbboxtrue is in effect.

B Tips and More Tricks
1 How do I rotate/frame this or that with [AIEX?

Seefancybox.sty and its documentation.

2 How can | suppress the PostScript so that | can use my document with a
non-PostScript dvi driver?

Put the command

\PSTricksOff
at the beginning of your document. You should then be able to print

or preview drafts of your document (minus the PostScript, and perhaps
pretty strange looking) with any dvi driver.

3 How can | improve the rendering of halftones?

This can be an important consideration when you have a halftone in the
background and text on top. You can try putting

\pstverb{106 45 {dup mul exch dup mul add 1.0 exch sub} setscreen}

before the halftone, or in a header (as in headers and footers, not as in
PostScript header files), if you want it to have an effect on every page.

setscreen is a device-dependent operator.

Tips and More Tricks 85



4 What special characters can be active with PSTricks?

C Including PostScript code

To learn about the PostScript language, consult AddPessScript Lan-
guage Tutorial and Cookbodlhe “Blue Book”), or Henry McGilton

and Mary Campione’'$ostScript by Exampl€1992). Both are pub-
lished by Addison-Wesley. You may find that the Appendix of the Blue
Book, plus an understanding of how the stack works, is all you need to
write simple code for computing numbers (e.g., to specify coordinates
or plots using PostScript).

You may want to definegX macros for including PostScript fragments

in various places. All gX macros are expanded before being passed
on to PostScript. It is not always clear what this means. For example,
suppose you write

\SpecialCoor
\def\imydata{23 43}
\psline(!47 \mydata add)
\psline(!47 \mydata\ add)
\psline(!47 \mydata“add)
\psline(!47 \mydata{} add)

You will get a PostScript error in each of thsline commands. To see
what the argument is expanding to, try ugX¥ \edef and\show. E.g.,

\defimydata{23 43}
\edef\temp{47 \mydata add}
\show\temp

\edef\temp{47 \mydata\ add}
\show\temp

\edefitemp{47 \mydataadd}
\show\temp

\edef\temp{47 \mydata{} add}
\show\temp

TeX expands the code, assigns its valuadmp, and then displays the
value of\temp on your console. Hiteturn to procede. You fill find that
the four samples expand, respectively, to:

47 23 43add

47 23 43\ add

47 23 43\penalty \@M \ add
47 23 43{} add

Including PostScript code 86



Allyou really wanted was a space betweerdBandadd. The command
\space will do the trick:

\psline(!47 \mydata\space add)

You can include balance bracgs these will be passed on verbatim to
PostScript. However, to include an unbalanced left or right brace, you
have to use, respectively,

\pslbrace
\psrbrace

Don't bother trying\} or \{.

Whenever you insert PostScript code in a PSTricks argument, the dic-
tionary on the top of the dictionary stacktigDict, which is PSTrick’s
main dictionary. If you want to define you own variables, you have two
options:

Simplest Always include a@ in the variable names, because PSTricks
never use in its variables names. You are at a risk of over-
flowing thetx@Dict dictionary, depending on your PostScript in-
terpreter. You are also more likely to collide with someone else’s
definitions, if there are multiple authors contributing to the docu-
ment.

Safest Create a dictionary namembict for your scratch computations.
Be sure to remove it from the dictionary stack at the end of any
code you insert in an argument. E.g.,

TDict 10 dict def TDict begin <your code> end

D Troubleshooting

1 Why does the document bomb in the printer when the firstitemin a I§I'EX
file is a float?

When the first item in adX file is a float, \special’'s in the preamble
are discarded. In particular, thepecial for including PSTricks’s header
file is lost. The workaround is to but something before the float, or to
include the header file by a command-line option with your dvi-to-ps
driver.

Troubleshooting 87



2 | converted a .dvi file to PostScript, and then mailed it to a colleague. It
prints fine for me but bombs on her printer.

Here is the most likely (but not the only) cause of this problem. The
PostScript files you get when using PSTricks can contain long lines.
This should be acceptable to any proper PostScript interpreter, but the
lines can get chopped when mailing the file. There is no way to fix
this in PSTricks, but you can make a point of wrapping the lines of
your PostScript files when mailing them. E.g., on UNIX you can use
uuencode anduudecode, or you can use the following AWK script to
wrap the lines:

#! /bin/sh

# This script wraps all lines

# Usage (if script is named wrap):
# wrap < infile > outfile

awk ’
BEGIN ({
N =78 # Max line length
}
{ if (length($0)<=N)
print
else {
currlength = 0
for (i = 1; i <=NF; i++) {
if ((currlength = currlength + length($i) + 1) > N) {
printf printf currlength = length($i)
}
else
printf \ %s }
printf }
}

3 The color commands cause extraneous vertical space to be inserted.
For example, this can happen if you sta@@X \parbox or ap{} column

with a color command. The solution usually is to precede the color
command withleavevmode.

4 The color commands interfere with other color macros | use.

Try putting the commandaltcolormode at the beginning of your
document. This may or may not help. Be extra careful that the scope of

Troubleshooting 88



color commands does not extend across pages. This is generally a less
robust color scheme.

5 How do I stop floats from being the same color as surrounding material?

That's easy: Just put an explicit color command at the beginning of the
float, e.g. \black .

6 When | use some color command in box macros or with \setbox, the
colors get all screwed up.

If \mybox is a box register, and you write

\green Ho Hum.

\setbox\mybox=\hbox{Foo bar \blue fee fum}
Hi Ho. \red Diddley-dee

\box\mybox hum dee do

then whenmybox is inserted, the current color is red and B® bar
comes out red (rather than green, which was the color in effect when the
box was set). The command that returns fibhme to the current color
green, when the box is set, is executed after thisx is closed, which
means thaki Ho is green, butum dee do is still blue.

This odd behavior is due to the fact thgtXTdoes not support color
internally, the way it supports font commands. The first thing to do is to
explicitly bracket any color commands inside the box. Second, be sure
that the current color is black when setting the box. Third, make other
explicit color changes where necessary if you still have problems. The
color scheme invoked byitcolormode is slightly better behaved if you
follow the first two rules.

Note that various box macros usetbox and so these anomalies can
arise unexpectedly.

Troubleshooting 89



Index

\AltClipMode, 55, 78

\altcolormode, 88, 89

angle (parameter)6l, 62, 63, 72

angleA (parameter), 63—65

angleB (parameter), 63, 64

\Aput, 68

\aput, 67,68, 68

arcangle (parameter)61

arcangleA (parameter), 63

arcangleB (parameter), 63

arcsep (parameter)13

arcsepA (parameter)12, 12, 13

arcsepB (parameter)12, 13

arm (parameter)6l, 63

armA (parameter), 63-65

armB (parameter), 63—-65

arrowinset (parameter)30, 30

arrowlength (parameter)30, 30

\arrows, 40

arrows (parameter), 9, 11, 19, 2@8,
29, 48

arrowscale (parameter)30, 30

arrowsize (parameter)30

axesstyle (parameter)s1

bblix (parameter)30

bblly (parameter)80

bburx (parameter)80

bbury (parameter)80

\black, 89

\blue, 89

border (parameter)25, 25, 33, 62
bordercolor (parameter)25, 25
boxsep (parameter)52, 53, 54
\Bput, 68

\bput, 67,68, 68

bracketlength (parameter)30

\Cartesian, 72, 72
\circlenode, 60
\clipbox, 54
\closedshadow, 38

90

\closepath, 34,36, 36

\cnode, 60

\cnodeput, 60

\code, 39, 40

coilarm (parameter)70, 70, 71
coilarmA (parameter), 70
coilarmB (parameter), 70
coilaspect (parameter)70, 70, 71
coilheight (parameter)70, 70
coilinc (parameter)70, 70
coilwidth (parameter)70, 70
\coor, 39, 40

cornersize (parameter)10, 10, 54
\cput, 53, 60

curvature (parameter)14
\curveto, 39, 39

dash (parameter)25

dashed (parameter), 33
\dataplot, 20, 20, 21

\degrees, 8, 8, 72

\dim, 39

dimen (parameter)26
\DontKillGlue, 42

dotangle (parameter)16, 16
dotscale (parameter)16
dotsep (parameter)25

dotsize (parameter), 1630
dotstyle (parameter)16, 16
dotted (parameter), 33
doublecolor (parameter), 2526
doubleline (parameter)25, 25, 26, 33
doublesep (parameter)25, 25
Dx (parameter)49, 49

dx (parameter)49, 49

Dy (parameter)49, 49

dy (parameter), 49

\endoverlaybox, 73
\endpscharclip, 78, 78
\endpsclip, 54, 54, 55, 78
\endpspicture, 41



\endTeXtoEPS, 79
\everypsbox, 83

\file, 40

\fileplot, 20, 20

\fill, 33,37

fillcolor (parameter), R7, 28, 52

fillstyle (parameter), 927, 28, 32, 33,
51,74,77

framearc (parameter)10, 10

\framenode, 60

framesep (parameter)52

gradangle (parameter)75
gradbegin (parameter)74, 75
gradend (parameter)74, 75
gradlines (parameter)75
gradmidpoint (parameter)75
\gray, 4

\grestore, 37, 37, 38
gridcolor (parameter)18
griddots (parameter)18, 18
gridlabelcolor (parameter)18
gridlabels (parameter)18
gridwidth (parameter)18
\gsave, 37, 37, 38

hatchangle (parameter)27, 27
hatchcolor (parameter)27
hatchsep (parameter)27
hatchwidth (parameter)27
headerfile (parameter)81, 81
headers (parameter)3l, 81

\KillGlue, 42

labels (parameter)50

labelsep (parameter)44, 50

liftpen (parameter)35, 35, 37

linearc (parameter)10, 10, 19-21, 54,
63, 64,71

linecolor (parameter)8, 8, 9, 24, 28,
32,33,52

linestyle (parameter)24, 25, 28, 32,
33,51, 55,76, 77

INDEX

\lineto, 39, 39

linetype (parameter)33, 33

linewidth (parameter)g, 8, 11, 16, 24,
28-30, 32, 33

\listplot, 20,21, 21

loopsize (parameter)62, 65

\Lput, 67, 67

\lput, 62,67, 67, 68

\movepath, 38
\moveto, 36, 36
\Mput, 67, 67
\mput, 68
\mrestore, 38, 38
\msave, 38, 38
\multido, 47, 51
\multips, 46, 46, 51
\multirput, 46, 46

\ncangle, 64, 64, 66
\ncangles, 64, 64

\ncarc, 61,63, 63, 65, 66
\ncbar, 63, 65, 66

\nccircle, 65, 65, 66

\nccoil, 71

\nccurve, 61,62, 63, 65, 66
\ncdiag, 63, 64—66

\ncdiagg, 64, 66

\ncLine, 62, 65, 68

\ncline, 62, 62, 65, 66, 68, 69, 71
\ncloop, 62,65, 66

ncurv (parameter)6l, 62, 63
\nczigzag, 71

\newcmykcolor, 5

\newgray, 5

\newhsbcolor, 5

\newpath, 36

\newpsobject, 31, 31, 54
\newpsstyle, 31, 31
\newrghbcolor, 5

nodesep (parameter)6l, 62—64, 72
nodesepA (parameter), 65
\NormalCoor, 73

offset (parameter)6l, 62—-64, 67, 72

91



\openshadow, 38 coilheight, 70, 70

origin (parameter)24, 33 coilinc, 70, 70
\ovalnode, 60 coilwidth, 70, 70
\overlaybox, 73 cornersize, 10, 10, 54
Ox (parameter)49, 49, 50 curvature, 14
Oy (parameter)49, 49, 50 dashed, 33
oy (parameter)49, 49 dash, 25
dimen, 26
\parabola, 14, 14 dotangle, 16, 16
parameters: dotscale, 16
Dx, 49, 49 dotsep, 25
Dy, 49, 49 dotsize, 16,30
0Ox, 49, 49, 50 dotstyle, 16, 16
Oy, 49, 49, 50 dotted, 33
angleA, 63—-65 doublecolor, 25,26
angleB, 63, 64 doubleline, 25, 25, 26, 33
angle, 61, 62, 63, 72 doublesep, 25, 25
arcangleA, 63 dx, 49, 49
arcangleB, 63 dy, 49
arcangle, 61 fillcolor, 9,27, 28, 52
arcsepA, 12,12, 13 fillstyle, 9, 27, 28, 32, 33, 51, 74,
arcsepB, 12, 13 77
arcsep, 13 framearc, 10, 10
armA, 63-65 framesep, 52
armB, 63-65 gradangle, 75
arm, 61, 63 gradbegin, 74, 75
arrowinset, 30, 30 gradend, 74, 75
arrowlength, 30, 30 gradlines, 75
arrowscale, 30, 30 gradmidpoint, 75
arrowsize, 30 gridcolor, 18

arrows, 9, 11, 19, 2028, 29, 48 griddots, 18, 18

axesstyle, 51 gridlabelcolor, 18

bbillx, 80 gridlabels, 18
bblly, 80 gridwidth, 18
bburx, 80 hatchangle, 27, 27
bbury, 80 hatchcolor, 27
bordercolor, 25, 25 hatchsep, 27
border, 25, 25, 33, 62 hatchwidth, 27
boxsep, 52, 53, 54 headerfile, 81, 81
bracketlength, 30 headers. 81. 81
co?larmA, 70 labelsep, 44, 50
co!larmB, 70 labels, 50
coilarm, 70, 70, 71 liftpen, 35, 35, 37

coilaspect, 70, 70, 71

INDEX 92



linearc, 10, 10, 19-21, 54, 63, 64,

71

linecolor, 8, 8, 9, 24, 28, 32, 33,

52

linestyle, 24, 25, 28, 32, 33, 51,

55,76, 77
linetype, 33, 33

linewidth, 8, 8, 11, 16, 24, 28-30,

32,33
loopsize, 62, 65
ncurv, 61, 62, 63
nodesepA, 65
nodesep, 61, 62—64, 72
offset, 61, 62—64, 67, 72
origin, 24, 33
oy, 49, 49
plotpoints, 22, 22
plotstyle, 19, 19, 34
pspicture, 41
rbracketlength, 30
rectarc, 54
runit, 7, 8
shadowangle, 26, 26
shadowcolor, 26, 26
shadowsize, 26, 26, 53
shadow, 26, 26, 33
showorigin, 50

showpoints, 9, 12, 14-16, 19-21,

33
style, 31
subgridcolor, 18
subgriddiv, 18
subgriddots, 18
subgridwidth, 18
swapaxes, 24, 33
tbarsize, 16,30
ticksize, 50
tickstyle, 50, 50
ticks, 50
unit, 7, 7, 19, 72
xunit, 7,8, 17, 18, 72
yunit, 7, 7,8, 17,18, 72

\pcarc, 65

\pcbar, 65

\pccoil, 71

\pccurve, 61,65

\pcdiag, 65

\pcline, 65, 67, 71

\pcloop, 62,66

\pczigzag, 71

\plotfile, 20

plotpoints (parameter)22, 22

plotstyle (parameter)19, 19, 34

\pnode, 60

\Polar, 72, 72

\psaddtolength, 7

\psarc, 12, 12, 13, 61

\psarcn, 13, 13

\psaxes, 17,48, 49-51

\psbezier, 13, 13, 34, 35

\psborder, 25

\psccurve, 15, 19

\pscharclip, 78, 78

\pscharpath, 77, 78

\pscircle, 11, 26

\pscircle*, 11

\pscirclebox, 52,53, 53, 60

\psclip, 54, 54, 55, 78

\psCaoil, 70, 70, 71

\pscoil, 70, 70, 71

\pscurve, 15, 15, 19, 34, 37

\pscustom, 13, 32, 32-34, 36, 37, 39,
46, 54, 61

\psdblframebox, 53, 60

\psdots, 15, 19, 34

\psecurve, 15, 19

\psellipse, 12, 26

\psfill, 32

\psframe, 9, 10,11, 11, 26, 51, 52

\psframebox, 52, 52-54, 60

\psgrid, 17, 17-19, 34, 48, 78, 79

\pshatchcolor, 27

\pslabelsep, 44, 50, 68

\pslbrace, 87

\parametricplot, 22, 22, 23 \psline, 7, 10, 10, 11, 19, 22, 31, 34,
\pcangle, 66 51, 65, 86

INDEX 93



\pslinecolor, 8 \rcurveto, 39

\pslinewidth, 8 \readdata, 20, 20, 21

\pslongbox, 83, 84 rectarc (parameter), 54

\psmathboxfalse, 83 \red, 4

\psmathboxtrue, 83 \rlineto, 39

\psovalbox, 52,54, 60 \Rnode, 59, 60, 68

\psoverlay, 73, 74 \rnode, 59, 59, 60, 68, 69

\pspicture, 17,41, 41, 42,54, 78 \RnodeRef, 59, 60

pspicture (parameter), 41 \rotate, 38

\psplot, 21, 21-23 \Rotatedown, 56

\pspolygon, 10,11, 19, 28 \rotatedown, 56

\psrbrace, 87 \rotateleft, 55

\psrunit, 8 \rotateright, 55

\psset, 5,6, 6,11, 41 \Rput, 45, 45, 67

\pssetlength, 7 \rput, 41, 43, 43-46, 53, 58, 67, 71,

\psshadowbox, 53, 60 78, 80

\pstextpath, 76, 76, 77 runit (parameter)7, 8

\pstheader, 76

\PSTricksEPS, 79, 80 \savedata, 20, 20

\PSTricksOff, 85 \scale, 38

\pstroke, 32 \scalebox, 56

\pstrotate, 46 \scaleboxto, 56

\PSTtoEPS, 20,80, 80 \setcolor, 40

\pstunit, 32 shadow (parameter)26, 26, 33

\pstVerb, 5,42, 46, 55, 69, 74 shadowangle (parameter)26, 26

\pstverb, 32 shadowcolor (parameter)26, 26

\pstverbscale, 42, 55, 69, 74 shadowsize (parameter)26, 26, 53

\psunit, 8, 77 showorigin (parameter)50

\psverbboxfalse, 84 showpoints (parameter)9, 12, 14-16,

\psverbboxtrue, 4, 84, 85 19-21, 33

\pswedge, 12, 26 \SpecialCoor, 7, 8,72, 72, 73

\psxlabel, 51 \stroke, 33,36

\psxunit, 8, 19 style (parameter), 31

\psylabel, 51 subgridcolor (parameter)18
subgriddiv (parameter)18

\psyunit, 8, 19 .
\pszigzag, 70, 70, 71 subgriddots (parameter)18
subgridwidth (parameter)18

\putoverlaybox, 74
\swapaxes, 38

\qdisk, 11, 34 swapaxes (parameter)24, 33
\gline, 10, 34

tharsize (parameter), 1630
\radians, 8 \TeXtoEPS, 79
rbracketlength (parameter)30 ticks (parameter)50
\rcoor, 40 ticksize (parameter)50

INDEX 94



tickstyle (parameter)50, 50
\TPoffset, 77
\translate, 38

unit (parameter)7, 7, 19, 72
\uput, 44, 44, 45, 68

xunit (parameter)7, 8, 17, 18, 72

yunit (parameter)7, 7, 8, 17, 18, 72

INDEX

95



SanIND

0T T :Jnejadg SwNU Zwnu TWNU =aInfeaind 4T
(TA TX)(0A* 0x){smourre}[red], ejocered\, T

(eh ex)(2h' 2X)(TA' TX)(0A 0x){smoure}[red], Jaizagsd\ €T

{ ge|bue }{ yo|Bue}{ snipei}(A*x){smorre}[red], uoresdy £

0 Jnejag wip =dasare ¢
1do :ynejag wip =gdssare 7T
1do :Jnejeg wip =ydasore ZT
{ galbue}{ vo|buei{ snipes}(A*x){smorre}[red], oresd\ ZT
(TA'TX)(0A‘Ox)lred], asdyjesd\ ZT

{zabue { To|bue i snipes}(0A‘ox)[red], sbpamsd\ ZT

{ snipe.}(1002 Pisipby  TT

{ snipei}(0A ox)[red], ojuosdy TT

sasdi||@ pue s8I0 ‘SAIyY

(TR TX)(0A" 0x)[red], swelysdy
(uA*ux) - (zA 2X)(TA TX)(0A 0X)[red], uobAjodsdy
( T4002)( 041002 )auljby

(UA*ux) * (TA TX)(0A* 0x){smo.re}[red], aulsdy

aAlefal jjnejag aInjosqe/aAle|al =9ZISIaulod
0 Jnejad winu =oJeawel}
1do Jnejag wip =2Jeaul|

suobAjod pue saul

11
11
0T
0T
0]
0T
0T

asfe} :nejaq asjeyans =sjulodmoys g
Yoelq neyaq 10|02 =Jojod3ul| g
dg” jnejag wip =ypmaull g

sia1owreled solydeub oiseq

suelpe.\

[wnu] sealbap\

woT :neyad wip =nuny
woT Jnejaqg wip =yunA
woT :Jnejaq wip =)unx

{wipH pwo }ybusjoippesdy
{wipK pwo }ybuspessdy

N N~ NS~N~MDNMDMN OO ©

woT :yneyaq wip =yun

sa|bue pue Sa1eUIPI00I ‘suoisuawiq

{+*‘zenrea=zred’ Tanea=Tred hassdy g

s1o1awreled soiydelb Bumeas

{ vwnu gwnu zwnu Twnu}{ 10|09 }iojoaqAwomauy G
{ swnu zwnu Twnu}{ 10j02 }iojoogsSymauy G
{ gwnu zwnu Twnu}{ 10j00 }ojoogbimauy G

{wnu} J0j00 }Resbmauy g

10]0D

aJualaay WaINd SHolLSd



dgidg nejeq ZwIp TWIp=ysep Gz
pios nejaq 9lA1s =a|f1saull {7
s9|A1s aun
asfe} Jnejag anJ) =saxedems {7
1dp1do :jnejag {1000} zuibuo {7

SWwalsAs areuIpioo)d

0§ Jnejag wi =swiodo|d
{ uonouny ety U Hred], jojdomewered

{ uonouny {eux {"Wx }red], 10/dsdy

{1su}{red], 101disi)\

{elyH{ puewwoo Jereppeal\

[erep{ puewwos }erepanes\

{ spuewwos}[ted], 10|derep\

{e1}Lred], 10/daj

aull :jneyaq alfis =ajh1s10/d
0 Jnejadg wnu =sjoppubgns
Relb jneJaq 10j02 =J0]j02pLBgns
dy neag wip =yipimpubans
G Jnejag w1 =AIppubgns

3Noe|q )nejaq 10]02 =lojodjaqe|pLb

44
cc
| X4
1¢
0¢
0¢
0c¢
0c¢
6T

S10|d

8T
8T
8T
8T
8T

1doT Jnejaq

0 nejeq

Xoe|q jjnejaq

dg” nelag

0 Jnejaq
T Jnelaq

a|dwex3

« nejaq

aJualaay WaINd

wip =s|age|pub g
wnu =sjoppub g

10]02

wip

=Jojoopub QT
=yipmpub  gT

(2K 2x)(TATX)(0A'0X) pubsdy ;T

SpUO

a|bue =ajbueiop 9T

Zwnu Twnu =aedsiop 9T

Luobejuad e

uobeiuad . e e .

warenbs e e e e

arenbs e

9lA1s a|dwex3
so|A1s 10Q

v

+o|bueln
a|bueLn
+

(0]

¥

CIINS

9|A1s =9|f1s10p Q9T

(UA'ux) - (2R 2x)(TA TX)[1ed], siopsd\ GT

(uA*ux) - (TA Tx){smoure}red], anindosdy GT

[(uA ux) - (TA TX){smourre}[red], aninoasdy GT

(uA‘ux) -~ (TA TxX){smoure}red], sninosd\ GT

S®HoULSd



T :Jneyaq ZWNU TWNU=3[BOSMOLIR =3[eISMOLe (F SMOLIY
g'zug Jnejaq WwiNu WIp =azZISIop  QE
ST" Jnejaq wnu =ybuspexoelql Qg - need alf1s =smoire gz
GT" Jnejaq wnu =pbuspexoelq Qg YonNs pue Speaymoiy
g1dz Jneyjag wnu wip =azisieql Qg
¥ neaq wnu =jasuimone Qg S nesRq 101 =ojbUeyOey )7
7'T Jnejag wnu =yibusimolre Qg 3oRIg INeIa 10103 =I0/0oueY 47
€1dz Jnead wnu wip =azIsmoue (g 1dy nejeq wip =desyaiey Jz
spus arenbs ‘popuUBIXT . g neyadg wip =yipmyorey /g
*SpuUa punoJ ysn|4 99-09 auum -ne4aq 10100 =10j001IH L
"SpUa PapunoJ ‘papusxy 90 suou jnejyad alkis =alfisiiy /2
‘sjulodpua 0} ysnjj ‘sysia PR salA1s (|14
‘syjulodpua 0} ysny} ‘sajoid 00-00
‘Swiodpua Lo paisiuzo '$isia - J1a1no neyaq 3|PpILW/IBUUI/IBIN0 =UBWIP Q7
‘sjulodpus uo paldIudI ‘S8JdIID 0-0
Reibxrep nejaq 10j02 =JojoOMOpeYS QF7
'sidoeIqpapunoy -, ()
‘s19¥0R1q 8Jenbs [ St~ Jnejadg 9|bue =o|buemopeys 9g
‘syulodpua Uo pPalajuad ‘sieq-| el 1de yneysd wip =8zismopeys 9g
-sjui0dpua 01 ysny ‘sieq-1, N asfel :Jnejag as[ej/oni} =mopeys 9z
‘'speaymole asianal ajgnog >>-<< |nym nefad 10|00 =10]023|qNOp  9Z
"Speaymolle ajgnoq <<->> uipimaulisd\Gz'T neyag wip =dess|gnop Gz
‘Speaymolie asiansy >-< as[e] ]jneja as[ej/eni =aulg|gnop Gz
‘'Speaymouly <> alym :nejaq 10|02 =10j0213pI0q  GZ
9UON __ - 1do :nejaq wip =iapioq GZ
aweN ojdwex3 anjeA 1de qneyaq wip =dasiop Gz

1l SRIVEICTEN Diellyle) SO Sd



Nl

(TA*1X)(0A* 0x)[ouljoseq], aimoidsdy T4

sain)id

{ 10j00 Lioj0d188\ QO

{ smoure }smourey ot

{am o\ ot
(uk*ux) (A 2X)(TA Tx )Jooon (Qf
(uk*ux) (A 2X)(TA'TX )1000\ BE
{wip lwipy g

{epod }apod\ g

AJuo siayoey 104

(eA*exX)(2A* 2x)(TA TX )olonIndn g€
(eA*exX)(2A* 2X)(TA TX )o1oAIND\  BE
(1002 )oraul g€

(1002 )orul\ GE

SYou ajes Anaid

(1009 )yredanow\ gg
[1ed] mopeyspsesop\ gg
[red] mopeysuado\, gg
alojsalwy Q¢

anesw\ g¢

soxedems\ g¢

{slBue }arelon gg¢

0 nejeq

0 Jnejaq

aJualaay WaINd

{zwnu Twnu }sjeds\ gg¢
(1002 )are|suel gg
aloisalfy /¢

anesh\ J¢

[redlim /€

[red] axons\ 9g
yredasop\ 9¢
(1002 )olenowy Qg

yredmau\ 9g

SOl ajes

Z/T/0 =uadyll Gg¢

s108lgo saiydelo

wi =adAisul €€

slayoweled

{ spuewwoo}[red], woisnasdy g

salseq ayL

{**** Tonen=Tred {aweu }ojfissdmau\ Tg

¢ Tanfea=Tsed § 109lqoH sweu hoslgosdmauy TE

s9|A1s woisn)

S®HoULSd



ani :jnejaq
1de neyag

saxe :)nejeq

e :nejaq
N} :ynegaq

{ yms Jumoparejon
{ yms hyBusyelon
{ yms hyelerelon

saxo(q Buljeas pue uoneloy

dipsdpuay *** { soydesb }dijosdy G

{ yms}uwip] xoqdipo\ G
Buiddiio

{ yrus}ired], xoqrerosd\ G

{ yms} (A'x){aj6ue}lred]yInda\ €g

{ yms}{red], xogspuosdy £

{ yms}red], xogmopeyssdy, ¢£g

{ yras}{red], xogaweyigpsd\ £G

{ yms}red], xogsweysd\ zg

asfey/oni) =desxoq Zg

wip =dasawel zgG

Sax0q pawel

auou/awel)/saxe =ajA1ssoxe
[2gejAsdy

[age|xsdy

wip =azisxon

wonog/doyiny =ajf1sxyon

9G
qq
Q9

1S
0S8
0S
0S8
09

e :nejad auou/A/x/Ile =s¥a1l Qg

ani nejag asfeyani =uibuomoys QG

e Jjnejad mCOC\>\X\__.m =s|eqgel Q9

S|age| umig 1sig |do | wip=~Ao WIp=Xxp
luswaadul jagqe | T wnu=AQg | wnu=xg
‘uilblio e age] | 0 | wnu=AQ | wnu=xQO

uondudsaq (A |[eIMSA |[€IUOIIOH

sio1awered |aqe| saxy

(2h' 2 (TA TX)(0A* 0x){smoure} | red], soxesd\ gt

Saxy

{ sowydesS{ u}(1A* 1x)(0A* 0x){albue} sdnnwy 9t
{ ymsHuHtA Tx)(0A 0x){a16uel1uiodsal], ndininwy gy

uonnaday

ds nejaq wip =dasjaqe| i
dasjage|sdy
{ yms}(A*x){uonelol}[ s|buejail{dasiagel}, ndn\ {1t

{ yms}(A*x){uonelo}uiodsail, Inds gy

lanareym Bunelol pue buloe|d

alnjoidsdpuay Tt

aJualaay WaINd SHolLSd



(TA TX) (0L 0x){smoure} red], 0osdy { gepou}{ vepou}{smoure}fred], oreouy €9

m@.QNm_N puE S109) { gapou}{ vepou}{smouire}fred], aninoouy z9

{ gepou}{ vepouH{smoure}red], surjouy z9

{ gopou X vopou}{smoure}lred], aulpuy 29
{ yms}{dasjaqgelly indg\ g9

woTt :Jnejag wip =azisdoo| 79

{ yms}{desjagey]. ndw\ 89
L9 Jnejag wnu =AINdU- T9

{ yms}Huodjai], Indwy g9
8 Jjnejadg 9|Bue =a|buedre T9

{ yms}(sod){a|bue}{dasjacel],Inday g9
0 JneJjag 9|bue =9|bue TQ

{ yms}(sod){aibue}{dasioqellinde, g9
dot nejag wip=wJre T9

{ ynis}(sod){uoneros}fzuiodjail,ind)y 29
0 Jjnejad wip =18syo 19
SUOI198UU0d 3pou 0] S|age| bulyoeny 0 Jnejad wip =dasapou T9

SUOI19=auUuU0d 9PON
(2h 2 (TA* TX){smoure}[red], doojody 99

(2A 2)(TA TX){smourre}[red], sjbueady gg
{ ymsH swreu}red], spoujeroy (9

(2A 2 (TA TX){smoure}[red], Bepod\, Gg
{ ymisH sweu}(A*x){s|bue}lred], 1ndspoud\ (9

(2A 2 (1A TX){smourre}[red], seqod\, Gg

(2h 2 (TA TX){smoure}[red], oread\ g9

{ ymsHsweu}red], spousppioy Q9

{swreu}{ snipes}(A*x)[red], apoudy Q9

(2A 2 (TA TX){smouire}[red], anindady Gg
{awreu}(A‘x) spoudy Q9

(2A 2 (1A TX){smoure}[red], sulpdy g9
jodapoud\ @9

{ pis{aweu}(A*x)apoud\ 69
{ yms} aweu}juiodjal] apoul g5

{ snipes{ apou{smo.re}fred], ajpinoouy g9
{ gepou}{ vepouHsmoure}[red], doopuy G9
{ gopou}{ vepouHsmoure}red], ss|buesu\ 19

{ gepou}{ vepou}{smoure}[red], sjbuesu\ {9 SOpPON
{ gepou}{ yepouHsmoure}red], 6Bepou\ 9
{ gepou K vepou}{smoure}[red], Beipouy €9 { yms}(A‘x )oixogsless\, 9q
{ gopou}{ vopouH{smoure}fred], reqouy €9 { ymsHzwnu Twnu }xogseds\ 9G

aJualaay WaINd SHolLSd



{xa1}{ 100lgo soydei6}(A'x)[sod] yredixaisdy g/

yred e Buoje 1xa) BumasadA

0 Jnejadg o|bue =s|buepesb G,
6" Jnejag wnu =julodpiwpesd G/
00s Jnejad wr =saulpesb g,
puspelb :jnejaq 1ojo2 =puspelb )
uibagpelb 3neyaq 1ojoo =uibaqpelb 4,

{ Bums }xogAepanoind\ 4/
A
{{buis Mepsrosdy g/ sa|Bue pue sajeulpIood [e1oads
xogAelianopua\ ynis xogkelsno\ £/

sAellanO Joo3epads\ g/

S91euIpIo0d [e1oads
100D [eWION\ MUN

1d10S1S0g Mey 1bs £ sdj (2A 2 (TA TX){smo.re}[red], Bezbizod\, T,
"(10198A) 81RUIPI00D (T'17) ( 1009) (2 2)(TA Tx)}{smoure}[sed], [1000d\ T,
‘9|buy Sy wnu { gepou}{ vepou}{smoure}| red], Bezbizouy, T,

uonduosaq a|dwex3 a|buy { gepou{ vapou}{smoue}[red], 1020w\ T,
‘uoneuIquo) (oguITv) ( 21009] T1000) 0T Jnejad 9|bue =duli0d QL
1dloSISod mey | (dxa g €€ Gi) (sdj) S nejaq a|bue =)0adse|l0d (.
*apou 0] dAe|I9Yy | (vlsy=albue]) | (spoulsed]) wog jnejadg wip =wJeiod g/
9pou JO Jsusd (v) (epou) T nejed wnu =yblayiioo 0/
"8]eulIpJo00d Jejod (oTT'€) (etl) woT Jnejaqg wip =ypimjiod QL
"91euIpJo0d ueISalR) (¥'e) (A*x) (TA TX)(0A 0X){smoure}[ red], Bezbizsd\ (;
uondudsaq | ojdwex3 aleuIploo)d { zo|Bue}{ To|bue}|red], 10osd\ (/.

A SRIVEICTEN Diellyle) SO Sd



HOSYOULSd\ G8

SOl alo pue sdi|

asreyxoqauansdy {8
annxoqqlansd\ {8
{pwo}{aweu }xogbuoisdy, ¢£g
{ spuewwos }xogsdAians\ €8
as[epxoqurewsdy £g
anixoqulewsdy, €8

soxog
auou :jnejaq Jasn/|je/ouou =siapeay T8
s Jneeg 3|y =a|lapeay T8
dt negeq wip =Ainqq Q8
dt nejaq wip =xingqq 08
1dT- nejaq wip =Ajjgq 08
dt- neyaq wip =X|199 08

{ swalqgo soydel6 K ajy}[red]Sd3011Sd\ 08
Sd3oi1xalpus\ 6/
Sd3oi1xal\ 6/

sally Sd3 buniodx3

aoelqisd\, /g dipreyosdpusy - {xe1}[red], dijpreyosdy gy
aoeuqisd\ /g {1xe1}[1ed], yredreyosdy 2,
ap09 1d119S1S0d Buipnjoul syred Jajoereyd Buliy pue bupjons

HIA SRIVEICTEN Diellyle) SO Sd



