
Texinfo
The GNU Documentation Format

for Texinfo version 6.7, 23 September 2019

Robert J. Chassell
Richard M. Stallman



This manual is for GNU Texinfo (version 6.7, 23 September 2019), a documentation system that
can produce both online information and a printed manual from a single source using semantic
markup.

Copyright c© 1988, 1990, 1991, 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2001, 2001, 2003, 2004,
2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Free
Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Published by the Free Software Foundation
51 Franklin St, Fifth Floor
Boston, MA 02110-1301
USA
ISBN 1-882114-67-1

Cover art by Etienne Suvasa.



i

Short Contents

Texinfo Copying Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Overview of Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Writing a Texinfo File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Beginning and Ending a Texinfo File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Chapter Structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6 Cross-references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7 Marking Text, Words and Phrases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Quotations and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9 Lists and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10 Special Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
11 Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

12 Special Insertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

13 Forcing and Preventing Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
14 Definition Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

15 Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
16 Conditionally Visible Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

17 Defining New Texinfo Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

18 Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

19 Formatting and Printing Hardcopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

20 texi2any: The Generic Translator for Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
21 Creating and Installing Info Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
22 Generating HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A @-Command Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
B Tips and Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

C Sample Texinfo Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
D Using Texinfo Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

E Page Headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
F Catching Mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

G Info Format Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
H GNU Free Documentation License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Command and Variable Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
General Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264



ii

Table of Contents

Texinfo Copying Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Overview of Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Reporting Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Output Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Info Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Printed Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Adding Output Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Writing a Texinfo File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 General Syntactic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 What a Texinfo File Must Have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 A Short Sample Texinfo File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Beginning and Ending a Texinfo File . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Sample Texinfo File Beginning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Texinfo File Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 The First Line of a Texinfo File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Start of Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 @setfilename: Set the Output File Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 @settitle: Set the Document Title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.5 End of Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Document Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 @copying: Declare Copying Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 @insertcopying: Include Permissions Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Title and Copyright Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 @titlepage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 @titlefont, @center, and @sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.3 @title, @subtitle, and @author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.4 Copyright Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.5 Heading Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Generating a Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 The ‘Top’ Node and Master Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6.1 Top Node Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6.2 Parts of a Master Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Global Document Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7.1 @documentdescription: Summary Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7.2 @setchapternewpage: Blank Pages Before Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7.3 The @headings Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.4 @paragraphindent: Controlling Paragraph Indentation . . . . . . . . . . . . . . . . . . . . . . . 25
3.7.5 @firstparagraphindent: Indenting After Headings . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7.6 @exampleindent: Environment Indenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Ending a Texinfo File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



iii

4 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 Texinfo Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Choosing Node Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Writing an @node Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 @node Line Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 The First Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 The @top Sectioning Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Node and Menu Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8 makeinfo Pointer Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.9 Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.9.1 Writing a Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.9.2 A Menu Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9.3 Menu Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9.4 The Parts of a Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9.5 Less Cluttered Menu Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9.6 Referring to Other Info Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Chapter Structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1 Tree Structure of Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Structuring Command Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 @chapter: Chapter Structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 @unnumbered, @appendix: Chapters with Other Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 @majorheading, @chapheading: Chapter-level Headings . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6 @section: Sections Below Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 @unnumberedsec, @appendixsec, @heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.8 @subsection: Subsections Below Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.9 The @subsection-like Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.10 @subsection and Other Subsub Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.11 @part: Groups of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.12 Raise/lower Sections: @raisesections and @lowersections . . . . . . . . . . . . . . . . . . . . . 42

6 Cross-references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1 What References Are For . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Different Cross-reference Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Parts of a Cross-reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 @xref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4.1 @xref with One Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.2 @xref with Two Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.3 @xref with Three Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.4 @xref with Four and Five Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.5 Referring to a Manual as a Whole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 @ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.7 @pxref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.8 @anchor: Defining Arbitrary Cross-reference Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.9 @inforef: Cross-references to Info-only Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.10 @url, @uref{url[, text][, replacement]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.10.1 @url Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.10.2 URL Line Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.10.3 @url PDF Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.10.4 PDF Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.11 @cite{reference} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



iv

7 Marking Text, Words and Phrases . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.1 Indicating Definitions, Commands, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Highlighting Commands are Useful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.1.2 @code{sample-code} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1.3 @kbd{keyboard-characters} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.1.4 @key{key-name} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.1.5 @samp{text} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.1.6 @verb{chartextchar} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1.7 @var{metasyntactic-variable} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1.8 @env{environment-variable} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1.9 @file{file-name} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1.10 @command{command-name} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1.11 @option{option-name} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1.12 @dfn{term} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1.13 @abbr{abbreviation[, meaning ]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1.14 @acronym{acronym[, meaning ]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1.15 @indicateurl{uniform-resource-locator} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.1.16 @email{email-address[, displayed-text]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2 Emphasizing Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.1 @emph{text} and @strong{text} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.2 @sc{text}: The Small Caps Font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.3 Fonts for Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Quotations and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1 Block Enclosing Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 @quotation: Block Quotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.3 @indentedblock: Indented text blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.4 @example: Example Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.5 @verbatim: Literal Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.6 @lisp: Marking a Lisp Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.7 @display: Examples Using the Text Font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.8 @format: Examples Using the Full Line Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.9 @exdent: Undoing a Line’s Indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.10 @flushleft and @flushright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.11 @raggedright: Ragged Right Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.12 @noindent: Omitting Indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.13 @indent: Forcing Indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.14 @cartouche: Rounded Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.15 @small... Block Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9 Lists and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.1 Introducing Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2 @itemize: Making an Itemized List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.3 @enumerate: Making a Numbered or Lettered List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.4 Making a Two-column Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.4.1 Using the @table Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.4.2 @ftable and @vtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.4.3 @itemx: Second and Subsequent Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.5 @multitable: Multi-column Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.5.1 Multitable Column Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.5.2 Multitable Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



v

10 Special Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.1 Floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10.1.1 @float [type][,label]: Floating Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.1.2 @caption & @shortcaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.1.3 @listoffloats: Tables of Contents for Floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10.2 Inserting Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.2.1 Image Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.2.2 Image Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

10.3 Footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3.1 Footnote Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3.2 Footnote Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

11 Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
11.1 Predefined Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
11.2 Defining the Entries of an Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
11.3 Advanced Indexing Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
11.4 Making Index Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
11.5 Printing Indices and Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
11.6 Combining Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

11.6.1 @syncodeindex: Combining Indices Using @code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11.6.2 @synindex: Combining Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

11.7 Defining New Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

12 Special Insertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
12.1 Special Characters: Inserting @ {} , \ # & . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

12.1.1 Inserting ‘@’ with @@ and @atchar{} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
12.1.2 Inserting ‘{ ‘}’ with @{ @} and @l rbracechar{} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
12.1.3 Inserting ‘,’ with @comma{} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
12.1.4 Inserting ‘\’ with @backslashchar{} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
12.1.5 Inserting ‘#’ with @hashchar{} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
12.1.6 Inserting ‘&’ with @& and @ampchar{} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

12.2 Inserting Quote Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
12.3 Inserting Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

12.3.1 Multiple Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.3.2 Not Ending a Sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.3.3 Ending a Sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
12.3.4 @frenchspacing val: Control Sentence Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
12.3.5 @dmn{dimension}: Format a Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

12.4 Inserting Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
12.5 Inserting Quotation Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
12.6 @sub and @sup: Inserting Subscripts and Superscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
12.7 @math: Inserting Mathematical Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
12.8 Glyphs for Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

12.8.1 @TeX{} (TEX) and @LaTeX{} (LATEX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
12.8.2 @copyright{} ( c©) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
12.8.3 @registeredsymbol{} ( R©) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
12.8.4 @dots (. . . ) and @enddots (. . . ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
12.8.5 @bullet (•) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
12.8.6 @euro (e): Euro Currency Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
12.8.7 @pounds (£): Pounds Sterling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
12.8.8 @textdegree (◦): Degrees Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12.8.9 @minus (−): Inserting a Minus Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12.8.10 @geq (≥) and @leq (≤): Inserting Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



vi

12.9 Glyphs for Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12.9.1 Glyphs Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12.9.2 @result{} (⇒): Result of an Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.9.3 @expansion{} (7→): Indicating an Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.9.4 @print{} ( a ): Indicating Generated Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.9.5 @error{} ( error ): Indicating an Error Message . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
12.9.6 @equiv{} (≡): Indicating Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
12.9.7 @point{} (?): Indicating Point in a Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
12.9.8 Click Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

12.10 Inserting Unicode: @U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

13 Forcing and Preventing Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.1 Break Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.2 @* and @/: Generate and Allow Line Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.3 @- and @hyphenation: Helping TEX Hyphenate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.4 @allowcodebreaks: Control Line Breaks in @code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.5 @w{text}: Prevent Line Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.6 @tie{}: Inserting an Unbreakable Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13.7 @sp n: Insert Blank Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13.8 @page: Start a New Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13.9 @group: Prevent Page Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13.10 @need mils: Prevent Page Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

14 Definition Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
14.1 The Template for a Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
14.2 Definition Command Continuation Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
14.3 Optional and Repeated Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
14.4 @deffnx, et al.: Two or More ‘First’ Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
14.5 The Definition Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

14.5.1 Functions and Similar Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
14.5.2 Variables and Similar Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
14.5.3 Functions in Typed Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
14.5.4 Variables in Typed Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
14.5.5 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
14.5.6 Object-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

14.5.6.1 Object-Oriented Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
14.5.6.2 Object-Oriented Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

14.6 Conventions for Writing Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
14.7 A Sample Function Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

15 Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
15.1 @documentlanguage ll[_cc]: Set the Document Language . . . . . . . . . . . . . . . . . . . . . 120
15.2 @documentencoding enc: Set Input Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

16 Conditionally Visible Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
16.1 Conditional Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
16.2 Conditional Not Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
16.3 Raw Formatter Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
16.4 Inline Conditionals: @inline, @inlineifelse, @inlineraw . . . . . . . . . . . . . . . . . . . . . 125
16.5 Flags: @set, @clear, conditionals, and @value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

16.5.1 @set and @value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
16.5.2 @ifset and @ifclear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



vii

16.5.3 @inlineifset and @inlineifclear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
16.5.4 @value Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

16.6 Testing for Texinfo Commands: @ifcommanddefined, @ifcommandnotdefined . . . 129
16.7 Conditional Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

17 Defining New Texinfo Commands . . . . . . . . . . . . . . . . . . . . . . . . . 131
17.1 Defining Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
17.2 Invoking Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
17.3 Macro Details and Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
17.4 ‘@alias new=existing’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
17.5 @definfoenclose: Customized Highlighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
17.6 External Macro Processors: Line Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

17.6.1 ‘#line’ Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
17.6.2 ‘#line’ and TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
17.6.3 ‘#line’ Syntax Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

18 Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
18.1 How to Use Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
18.2 texinfo-multiple-files-update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
18.3 Include Files Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
18.4 Sample File with @include . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
18.5 @verbatiminclude file: Include a File Verbatim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
18.6 Evolution of Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

19 Formatting and Printing Hardcopy . . . . . . . . . . . . . . . . . . . . . . . 143
19.1 Use TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
19.2 Format with texi2dvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
19.3 Format with tex/texindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

19.3.1 Formatting Partial Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
19.3.2 Details of texindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

19.4 Print with lpr from Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
19.5 Printing From an Emacs Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
19.6 Formatting and Printing in Texinfo Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
19.7 Using the Local Variables List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
19.8 TEX Formatting Requirements Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
19.9 Preparing for TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
19.10 Overfull “hboxes” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
19.11 @smallbook: Printing “Small” Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
19.12 Printing on A4 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
19.13 @pagesizes [width][, height]: Custom Page Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
19.14 Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
19.15 PDF Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
19.16 Obtaining TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

20 texi2any: The Generic Translator for Texinfo . . . . . . . . . . . . 154
20.1 texi2any: A Texinfo Reference Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
20.2 Invoking texi2any/makeinfo from a Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
20.3 Environment Variables Recognized by texi2any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
20.4 texi2any Printed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
20.5 Pointer Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
20.6 Customization Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

20.6.1 Customization Variables for @-Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



viii

20.6.2 Customization Variables and Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
20.6.3 HTML Customization Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
20.6.4 latex2html Customization Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
20.6.5 Other Customization Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

20.7 Internationalization of Document Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
20.8 Invoking pod2texi: Convert POD to Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
20.9 texi2html: Ancestor of texi2any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

21 Creating and Installing Info Files . . . . . . . . . . . . . . . . . . . . . . . . . 175
21.1 Creating an Info File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

21.1.1 makeinfo Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
21.1.2 Running makeinfo Within Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
21.1.3 The texinfo-format... Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
21.1.4 Batch Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
21.1.5 Tag Files and Split Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

21.2 Installing an Info File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
21.2.1 The Directory File dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
21.2.2 Listing a New Info File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
21.2.3 Info Files in Other Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
21.2.4 Installing Info Directory Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
21.2.5 Invoking install-info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

22 Generating HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
22.1 HTML Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
22.2 HTML Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
22.3 HTML CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
22.4 HTML Cross-references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

22.4.1 HTML Cross-reference Link Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
22.4.2 HTML Cross-reference Node Name Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
22.4.3 HTML Cross-reference Command Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
22.4.4 HTML Cross-reference 8-bit Character Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 190
22.4.5 HTML Cross-reference Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
22.4.6 HTML Cross-reference Configuration: htmlxref.cnf . . . . . . . . . . . . . . . . . . . . . . . 191

Appendix A @-Command Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.1 @-Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.2 @-Command List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.3 @-Command Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
A.4 Obsolete @-Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Appendix B Tips and Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Appendix C Sample Texinfo Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
C.1 Short Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
C.2 GNU Sample Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
C.3 Verbatim Copying License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
C.4 All-permissive Copying License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223



ix

Appendix D Using Texinfo Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
D.1 Texinfo Mode Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
D.2 The Usual GNU Emacs Editing Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
D.3 Inserting Frequently Used Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
D.4 Showing the Sectioning Structure of a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
D.5 Updating Nodes and Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

D.5.1 The Updating Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
D.5.2 Updating Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
D.5.3 Other Updating Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

D.6 Formatting for Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
D.7 Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
D.8 Texinfo Mode Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Appendix E Page Headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
E.1 Headings Introduced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
E.2 Standard Heading Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
E.3 Specifying the Type of Heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
E.4 How to Make Your Own Headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Appendix F Catching Mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
F.1 makeinfo Preferred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
F.2 Catching Errors with Info Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
F.3 Debugging with TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
F.4 Using texinfo-show-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
F.5 Using occur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
F.6 Finding Badly Referenced Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

F.6.1 Using Info-validate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
F.6.2 Creating an Unsplit File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
F.6.3 Tagifying a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
F.6.4 Splitting a File Manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Appendix G Info Format Specification . . . . . . . . . . . . . . . . . . . . . . . 246
G.1 Info Format General Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
G.2 Info Format Text Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

G.2.1 Info Format: Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
G.2.2 Info Format: Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
G.2.3 Info Format: Printindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
G.2.4 Info Format: Cross-reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Appendix H GNU Free Documentation License . . . . . . . . . . . . . 252

Command and Variable Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

General Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264



1

Texinfo Copying Conditions

GNU Texinfo is free software; this means that everyone is free to use it and free to redistribute
it on certain conditions. Texinfo is not in the public domain; it is copyrighted and there are
restrictions on its distribution, but these restrictions are designed to permit everything that a
good cooperating citizen would want to do. What is not allowed is to try to prevent others from
further sharing any version of Texinfo that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the programs
that relate to Texinfo, that you receive source code or else can get it if you want it, that you
can change these programs or use pieces of them in new free programs, and that you know you
can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of the Texinfo related programs, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for the programs that relate to Texinfo. If these programs are modified by someone else
and passed on, we want their recipients to know that what they have is not what we distributed,
so that any problems introduced by others will not reflect on our reputation.

The precise conditions of the licenses for the programs currently being distributed that relate
to Texinfo are found in the General Public Licenses that accompany them. This manual is
covered by the GNU Free Documentation License (see Appendix H [GNU Free Documentation
License], page 252).



2

1 Overview of Texinfo

Texinfo is a documentation system that uses a single source file to produce both online infor-
mation and printed output. This means that instead of writing several different documents, one
for each output format, you need only write one document.

Using Texinfo, you can create a printed document (via the TEX typesetting system) in PDF
or PostScript format, including chapters, sections, cross-references, and indices. From the same
Texinfo source file, you can create an HTML output file suitable for use with a web browser,
you can create an Info file with special features to make browsing documentation easy, and also
create a Docbook file or a transliteration to XML format.

A Texinfo source file is a plain text file containing text interspersed with @-commands (words
preceded by an ‘@’) that tell the Texinfo processors what to do. Texinfo’s markup commands
are almost entirely semantic; that is, they specify the intended meaning of text in the document,
rather than physical formatting instructions. You can edit a Texinfo file with any text editor,
but it is especially convenient to use GNU Emacs since that editor has a special mode, called
Texinfo mode, that provides various Texinfo-related features. (See Appendix D [Texinfo Mode],
page 224.)

Texinfo was devised specifically for the purpose of writing software documentation and man-
uals. If you want to write a good manual for your program, Texinfo has many features which
we hope will make your job easier. However, it provides almost no commands for controlling
the final formatting. Texinfo is not intended to be a general-purpose formatting program, so if
you need to lay out a newspaper, devise a glossy magazine ad, or follow the exact formatting
requirements of a publishing house, Texinfo may not be the simplest tool.

Spell “Texinfo” with a capital “T” and the other letters in lowercase. The first syllable of
“Texinfo” is pronounced like “speck”, not “hex”. This odd pronunciation is derived from the
pronunciation of TEX. Pronounce TEX as if the ‘X’ were the last sound in the name ‘Bach’. In
the word TEX, the ‘X’ is, rather than the English letter “ex”, actually the Greek letter “chi”.

Texinfo is the official documentation format of the GNU project. More information, including
manuals for GNU packages, is available at the GNU documentation web page (http://www.gnu.
org/doc/).

1.1 Reporting Bugs

We welcome bug reports and suggestions for any aspect of the Texinfo system: programs,
documentation, installation, etc. Please email them to bug-texinfo@gnu.org. You can get the
latest version of Texinfo via its home page, http://www.gnu.org/software/texinfo.

For bug reports, please include enough information for the maintainers to reproduce the
problem. Generally speaking, that means:

• The version number of Texinfo and the program(s) or manual(s) involved.

• The contents of any input files necessary to reproduce the bug.

• Precisely how you ran any program(s) involved.

• A description of the problem and samples of any erroneous output.

• Hardware and operating system names and versions.

• Anything else that you think would be helpful.

When in doubt whether something is needed or not, include it. It’s better to include too
much than to leave out something important.

It is critical to send an actual input file that reproduces the problem. What’s not critical is
to “narrow down” the example to the smallest possible input—the actual input with which you

http://www.gnu.org/doc/
http://www.gnu.org/doc/
mailto:bug-texinfo@gnu.org
http://www.gnu.org/software/texinfo


Chapter 1: Overview of Texinfo 3

discovered the bug will suffice. (Of course, if you do do experiments, the smaller the input file,
the better.)

Patches are most welcome; if possible, please make them with ‘diff -c’ (see Comparing and
Merging Files) and include ChangeLog entries (see Section “Change Log” in The GNU Emacs
Manual), and follow the existing coding style.

1.2 Output Formats

Here is a brief overview of the output formats currently supported by Texinfo.

Info (Generated via makeinfo.) Info format is mostly a plain text transliteration of the
Texinfo source. It adds a few control characters to provide navigational information
for cross-references, indices, and so on. The Emacs Info subsystem (see Info), and
the standalone info program (see GNU Info), among others, can read these files.
See Section 1.3 [Info Files], page 4, and Chapter 21 [Creating and Installing Info
Files], page 175.

Plain text (Generated via makeinfo --plaintext.) This is almost the same as Info output
with the navigational control characters are omitted.

HTML (Generated via makeinfo --html.) HTML, standing for Hyper Text Markup Lan-
guage, has become the most commonly used language for writing documents on the
World Wide Web. Web browsers, such as Mozilla, Lynx, and Emacs-W3, can render
this language online. There are many versions of HTML, both different standards
and browser-specific variations. makeinfo tries to use a subset of the language that
can be interpreted by any common browser, intentionally not using many newer
or less widely-supported tags. Although the native output is thus rather plain, it
can be customized at various levels, if desired. For details of the HTML language
and much related information, see http://www.w3.org/MarkUp/. See Chapter 22
[Generating HTML], page 184.

DVI (Generated via texi2dvi.) The DeVIce Independent binary format is output by the
TEX typesetting program (http://tug.org). This is then read by a DVI ‘driver’,
which knows the actual device-specific commands that can be viewed or printed,
notably Dvips for translation to PostScript (see Dvips) and Xdvi for viewing on an X
display (http://sourceforge.net/projects/xdvi/). See Chapter 19 [Hardcopy],
page 143. (Be aware that the Texinfo language is very different from and much
stricter than TEX’s usual languages: plain TEX, LATEX, ConTEXt, etc.)

PostScript (Generated via texi2dvi --ps.) PostScript is a page description language that
became widely used around 1985 and is still used today. http://en.wikipedia.

org/wiki/PostScript gives a basic description and more preferences. By default,
Texinfo uses the dvips program to convert TEX’s DVI output to PostScript. See
Dvips.

PDF (Generated via texi2dvi --pdf or texi2pdf.) This format was developed by
Adobe Systems for portable document interchange, based on their previous Post-
Script language. It can represent the exact appearance of a document, including
fonts and graphics, and supporting arbitrary scaling. It is intended to be platform-
independent and easily viewable, among other design goals; http://en.wikipedia.
org/wiki/Portable_Document_Format and http://tug.org/TUGboat/tb22-3/

tb72beebe-pdf.pdf have some background. By default, Texinfo uses the pdftex

program, an extension of TEX, to output PDF; see http://tug.org/applications/
pdftex. See Section 19.15 [PDF Output], page 152.

Docbook (Generated via makeinfo --docbook.) This is an XML-based format developed
some years ago, primarily for technical documentation. It therefore bears some

http://www.w3.org/MarkUp/
http://tug.org
http://sourceforge.net/projects/xdvi/
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Portable_Document_Format
http://tug.org/TUGboat/tb22-3/tb72beebe-pdf.pdf
http://tug.org/TUGboat/tb22-3/tb72beebe-pdf.pdf
http://tug.org/applications/pdftex
http://tug.org/applications/pdftex


Chapter 1: Overview of Texinfo 4

resemblance, in broad outline, to Texinfo. See http://www.docbook.org. Various
converters from Docbook to Texinfo have also been developed; see the Texinfo web
pages.

XML (Generated via makeinfo --xml.) XML is a generic syntax specification usable for
any sort of content (a reference is at http://www.w3.org/XML). The makeinfo XML
output, unlike all the other output formats, is a transliteration of the Texinfo source
rather than processed output. That is, it translates the Texinfo markup commands
into XML syntax, for further processing by XML tools. The XML contains enough
information to recreate the original content, except for syntactic constructs such as
Texinfo macros and conditionals. The Texinfo source distribution includes a utility
script txixml2texi to do that backward transformation.

The details of the output syntax are defined in an XML DTD as usual, which is
contained in a file texinfo.dtd included in the Texinfo source distribution and
available via the Texinfo web pages. Texinfo XML files, and XML files in general,
cannot be viewed in typical web browsers; they won’t follow the DTD reference and
as a result will simply report a (misleading) syntax error.

1.3 Info Files

As mentioned above, Info format is mostly a plain text transliteration of the Texinfo source, with
the addition of a few control characters to separate nodes and provide navigational information,
so that Info-reading programs can operate on it.

Info files are nearly always created by processing a Texinfo source document. makeinfo, also
known as texi2any, is the principal command that converts a Texinfo file into an Info file; see
Chapter 20 [Generic Translator texi2any], page 154.

Generally, you enter an Info file through a node that by convention is named ‘Top’. This node
normally contains just a brief summary of the file’s purpose, and a large menu through which
the rest of the file is reached. From this node, you can either traverse the file systematically by
going from node to node, or you can go to a specific node listed in the main menu, or you can
search the index menus and then go directly to the node that has the information you want.
Alternatively, with the standalone Info program, you can specify specific menu items on the
command line (see Info).

If you want to read through an Info file in sequence, as if it were a printed manual, you can
hit SPC repeatedly, or you get the whole file with the advanced Info command g *. (See Section
“Advanced Info commands” in Info.)

The dir file in the info directory serves as the departure point for the whole Info system.
From it, you can reach the ‘Top’ nodes of each of the documents in a complete Info system.

If you wish to refer to an Info file via a URI, you can use the (unofficial) syntax exemplified
by the following. This works with Emacs/W3, for example:

info:emacs#Dissociated%20Press

info:///usr/info/emacs#Dissociated%20Press

info://localhost/usr/info/emacs#Dissociated%20Press

The info program itself does not follow URIs of any kind.

1.4 Printed Books

A Texinfo file can be formatted and typeset as a printed book or manual. To do this, you need
TEX, a sophisticated typesetting program written by Donald Knuth of Stanford University.

A Texinfo-based book is similar to any other typeset, printed work: it can have a title page,
copyright page, table of contents, and preface, as well as chapters, numbered or unnumbered
sections and subsections, page headers, cross-references, footnotes, and indices.

http://www.docbook.org
http://www.w3.org/XML


Chapter 1: Overview of Texinfo 5

TEX is a general purpose typesetting program. Texinfo provides a file texinfo.tex that
contains information (definitions or macros) that TEX uses when it typesets a Texinfo file.
(texinfo.tex tells TEX how to convert the Texinfo @-commands to TEX commands, which
TEX can then process to create the typeset document.) texinfo.tex contains the specifications
for printing a document. You can get the latest version of texinfo.tex from the Texinfo home
page, http://www.gnu.org/software/texinfo/.

In the United States, documents are most often printed on 8.5 inch by 11 inch pages (216 mm
by 280 mm); this is the default size. But you can also print for 7 inch by 9.25 inch pages (178 mm
by 235 mm, the @smallbook size; or on A4 or A5 size paper (@afourpaper, @afivepaper). See
Section 19.11 [@smallbook], page 151, and Section 19.12 [A4 Paper], page 151.

TEX is freely distributable. It is written in a superset of Pascal for literate programming
called WEB and can be compiled either in Pascal or (by using a conversion program that comes
with the TEX distribution) in C.

TEX is very powerful and has a great many features. Because a Texinfo file must be able to
present information both on a character-only terminal in Info form and in a typeset book, the
formatting commands that Texinfo supports are necessarily limited.

See Section 19.16 [Obtaining TEX], page 153, for information on acquiring TEX. It is not
part of the Texinfo distribution.

1.5 Adding Output Formats

The output formats in the previous sections handle a wide variety of usage, but of course there
is always room for more.

If you are a programmer and would like to contribute to the GNU project by implementing
additional output formats for Texinfo, that would be excellent. The way to do this that would be
most useful is to write a new back-end for texi2any, our reference implementation of a Texinfo
parser; it creates a tree representation of the Texinfo input that you can use for the conversion.
The documentation in the source file tp/Texinfo/Convert/Converter.pm is a good place to
start. See Chapter 20 [Generic Translator texi2any], page 154.

Another viable approach is use the Texinfo XML output from texi2any as your input. This
XML is an essentially complete representation of the input, but without the Texinfo syntax and
option peculiarities, as described above.

If you still cannot resist the temptation of writing a new program that reads Texinfo source
directly, let us give some more caveats: please do not underestimate the amount of work required.
Texinfo is by no means a simple language to parse correctly, and remains under development,
so you would be committing to an ongoing task. You are advised to check that the tests of the
language that come with texi2any give correct results with your new program.

From time to time, proposals are made to generate traditional Unix man pages from Texinfo
source. However, because man pages have a strict conventional format, creating a good man
page requires a completely different source from that needed for the typical Texinfo applications
of writing a good user tutorial and/or a good reference manual. This makes generating man
pages incompatible with the Texinfo design goal of not having to document the same information
in different ways for different output formats. You might as well write the man page directly.

As an alternative way to support man pages, you may find the program help2man to be
useful. It generates a traditional man page from the ‘--help’ output of a program. In fact,
the man pages for the programs in the Texinfo distribution are generated with this. It is GNU
software written by Brendan O’Dea, available from http://www.gnu.org/software/help2man.

http://www.gnu.org/software/texinfo/
http://www.gnu.org/software/help2man


Chapter 1: Overview of Texinfo 6

1.6 History

Richard M. Stallman invented the Texinfo format, wrote the initial processors, and created
Edition 1.0 of this manual. Robert J. Chassell greatly revised and extended the manual, starting
with Edition 1.1. Brian Fox was responsible for the standalone Texinfo distribution until version
3.8, and originally wrote the standalone makeinfo and info programs. Karl Berry has continued
maintenance since Texinfo 3.8 (manual edition 2.22).

Our thanks go out to all who helped improve this work, particularly the indefatigable Eli
Zaretskii and Andreas Schwab, who have provided patches beyond counting. François Pinard
and David D. Zuhn, tirelessly recorded and reported mistakes and obscurities. Zack Weinberg
did the impossible by implementing the macro syntax in texinfo.tex. Thanks to Melissa
Weisshaus for her frequent reviews of nearly similar editions. Dozens of others have contributed
patches and suggestions, they are gratefully acknowledged in the ChangeLog file. Our mistakes
are our own.

Beginnings

In the 1970’s at CMU, Brian Reid developed a program and format named Scribe to mark up
documents for printing. It used the @ character to introduce commands, as Texinfo does. Much
more consequentially, it strove to describe document contents rather than formatting, an idea
wholeheartedly adopted by Texinfo.

Meanwhile, people at MIT developed another, not too dissimilar format called Bolio. This
then was converted to using TEX as its typesetting language: BoTEX. The earliest BoTEX
version seems to have been 0.02 on October 31, 1984.

BoTEX could only be used as a markup language for documents to be printed, not for online
documents. Richard Stallman (RMS) worked on both Bolio and BoTEX. He also developed a
nifty on-line help format called Info, and then combined BoTEX and Info to create Texinfo, a
mark up language for text that is intended to be read both online and as printed hard copy.

Moving forward, the original translator to create Info was written (primarily by RMS and
Bob Chassell) in Emacs Lisp, namely the texinfo-format-buffer and other functions. In the
early 1990s, Brian Fox reimplemented the conversion program in C, now called makeinfo.

Reimplementing in Perl

In 2012, the C makeinfo was itself replaced by a Perl implementation generically called
texi2any. This version supports the same level of output customization as texi2html, an
independent program originally written by Lionel Cons, later with substantial work by many
others. The many additional features needed to make texi2html a replacement for makeinfo

were implemented by Patrice Dumas. The first never-released version of texi2any was based
on the texi2html code. That implementation, however, was abandoned in favor of the current
program, which parses the Texinfo input into a tree for processing. It still supports nearly all
the features of texi2html.

The new Perl program is much slower than the old C program. We hope the speed gap will
close in the future, but it may not ever be entirely comparable. So why did we switch? In
short, we intend and hope that the present program will be much easier than the previous C
implementation of makeinfo to extend to different output styles, back-end output formats, and
all other customizations. In more detail:

• HTML customization. Many GNU and other free software packages had been happily using
the HTML customization features in texi2html for years. Thus, in effect two independent
implementations of the Texinfo language had developed, and keeping them in sync was not
simple. Adding the HTML customization possible in texi2html to a C program would
have been an enormous effort.



Chapter 1: Overview of Texinfo 7

• Unicode, and multilingual support generally, especially of east Asian languages. Although of
course it’s perfectly plausible to write such support in C, in the particular case of makeinfo,
it would have been tantamount to rewriting the entire program. In Perl, much of that comes
essentially for free.

• Additional back-ends. The makeinfo code had become convoluted to the point where
adding a new back-end was quite complex, requiring complex interactions with existing
back-ends. In contrast, our Perl implementation provides a clean tree-based representation
for all back-ends to work from. People have requested numerous different back-ends (LATEX,
the latest (X)HTML, . . . ), and they will now be much more feasible to implement. Which
leads to the last item:

• Making contributions easier. In general, due to the cleaner structure, the Perl program
should be considerably easier than the C for anyone to read and contribute to, with the
resulting obvious benefits.

See Section 20.1 [Reference Implementation], page 154, for more on the rationale for and role
of texi2any.



8

2 Writing a Texinfo File

This chapter describes Texinfo syntax and what is required in a Texinfo file, and gives a short
sample file.

2.1 General Syntactic Conventions

This section describes the general conventions used in all Texinfo documents.

• All printable ASCII characters except ‘@’, ‘{’ and ‘}’ can appear in a Texinfo file and stand
for themselves. ‘@’ is the escape character which introduces commands, while ‘{’ and ‘}’ are
used to surround arguments to certain commands. To put one of these special characters
into the document, put an ‘@’ character in front of it, like this: ‘@@’, ‘@{’, and ‘@}’.

• In a Texinfo file, the commands you write to describe the contents of the manual are
preceded by an ‘@’ character; they are called @-commands. (The ‘@’ in Texinfo has the
same meaning that ‘\’ has in plain TEX.)

Depending on what they do or what arguments1 they take, you need to write @-commands
on lines of their own, or as part of sentences. As a general rule, a command requires braces
if it mingles among other text; but it does not need braces if it is on a line of its own. For
more details of Texinfo command syntax, see Section A.1 [Command Syntax], page 193.

• Whitespace following an @-command name is optional and (usually) ignored if present. The
exceptions are contexts when whitespace is significant, e.g., an @example environment.

• Texinfo supports the usual quotation marks used in English and in other languages; see
Section 12.5 [Inserting Quotation Marks], page 96.

• Use three hyphens in a row, ‘---’, to produce a long dash—like this (called an em dash),
used for punctuation in sentences. Use two hyphens, ‘--’, to produce a medium dash (called
an en dash), used primarily for numeric ranges, as in “June 25–26”. Use a single hyphen,
‘-’, to produce a standard hyphen used in compound words. For display on the screen, Info
reduces three hyphens to two and two hyphens to one (not transitively!). Of course, any
number of hyphens in the source remain as they are in literal contexts, such as @code and
@example.

• Form feed (CTRL-l) characters in the input are handled as follows:

PDF/DVI In normal text, treated as ending any open paragraph; essentially ignored be-
tween paragraphs.

Info Output as-is between paragraphs (their most common use); in other contexts,
they may be treated as regular spaces (and thus consolidated with surrounding
whitespace).

HTML Written as a numeric entity except contexts where spaces are ignored; for ex-
ample, in ‘@footnote{ ^L foo}’, the form feed is ignored.

XML Keep them everywhere; in attributes, escaped as ‘\f’; also, ‘\’ is escaped as ‘\\’
and newline as ‘\n’.

Docbook Completely removed, as they are not allowed.

As you can see, because of these differing requirements of the output formats, it’s not
possible to use form feeds completely portably.

1 The word argument comes from the way it is used in mathematics and does not refer to a dispute between two
people; it refers to the information presented to the command. According to the Oxford English Dictionary,
the word derives from the Latin for to make clear, prove; thus it came to mean ‘the evidence offered as proof’,
which is to say, ‘the information offered’, which led to its mathematical meaning. In its other thread of
derivation, the word came to mean ‘to assert in a manner against which others may make counter assertions’,
which led to the meaning of ‘argument’ as a dispute.



Chapter 2: Writing a Texinfo File 9

• Caution: Last, do not use tab characters in a Texinfo file! (Except perhaps in verbatim
modes.) TEX uses variable-width fonts, which means that it is impractical at best to define
a tab to work in all circumstances. Consequently, TEX treats tabs like single spaces, and
that is not what they look like in the source. Furthermore, makeinfo does nothing special
with tabs, and thus a tab character in your input file will usually have a different appearance
in the output.

To avoid this problem, Texinfo mode in GNU Emacs inserts multiple spaces when you press
the TAB key. Also, you can run untabify in Emacs to convert tabs in a region to multiple
spaces, or use the unexpand command from the shell.

2.2 Comments

You can write comments in a Texinfo file by using the @comment command, which may be
abbreviated to @c. Such comments are for a person looking at the Texinfo source file. All the
text on a line that follows either @comment or @c is a comment; the rest of the line does not
appear in the visible output. (To be precise, the character after the @c or @comment must be
something other than a dash or alphanumeric, or it will be taken as part of the command.)

Often, you can write the @comment or @c in the middle of a line, and only the text that follows
after the @comment or @c command does not appear; but some commands, such as @settitle,
work on a whole line. You cannot use @comment or @c within a line beginning with such a
command.

In cases of nested command invocations, complicated macro definitions, etc., @c and @comment

may provoke an error when processing with TEX. Therefore, you can also use the DEL character
(ASCII 127 decimal, 0x7f hex, 0177 octal) as a true TEX comment character (catcode 14, in
TEX internals). Everything on the line after the DEL will be ignored.

You can also have long stretches of text ignored by the Texinfo processors with the @ignore

and @end ignore commands. Write each of these commands on a line of its own, starting each
command at the beginning of the line. Text between these two commands does not appear in
the processed output. You can use @ignore and @end ignore for writing comments. (For some
caveats regarding nesting of such commands, see Section 16.7 [Conditional Nesting], page 129.)

2.3 What a Texinfo File Must Have

By convention, the name of a Texinfo file ends with one of the extensions .texi, .texinfo,
.txi, or .tex.

In order to be made into a printed manual and other output formats, a Texinfo file must
begin with lines like this:

\input texinfo

@settitle name-of-manual

The contents of the file follow this beginning, and then you must end the Texinfo source with a
line like this:

@bye

Here’s an explanation:

• The ‘\input texinfo’ line tells TEX to use the texinfo.tex file, which tells TEX how to
translate the Texinfo @-commands into TEX typesetting commands. (Note the use of the
backslash, ‘\’; this is correct for TEX.)

• The @settitle line specifies a title for the page headers (or footers) of the printed manual,
and the default title and document description for the ‘<head>’ in HTML. Strictly speaking,
@settitle is optional—if you don’t mind your document being titled ‘Untitled’.



Chapter 2: Writing a Texinfo File 10

• The @bye line at the end of the file on a line of its own tells the formatters that the file is
ended and to stop formatting. If you leave this out, you’ll be dumped at TEX’s prompt at
the end of the run.

Furthermore, you will usually provide a Texinfo file with a title page, indices, and the like,
all of which are explained in this manual. But the minimum, which can be useful for short
documents, is just the two lines at the beginning and the one line at the end.

2.4 A Short Sample Texinfo File

Here is a short but complete Texinfo file, so you can see how Texinfo source appears in practice.
The first three parts of the file are mostly boilerplate: when writing a manual, you simply change
the names as appropriate.

The complete file, without interspersed comments, is shown in Section C.1 [Short Sample
Texinfo File], page 219.

See Chapter 3 [Beginning and Ending a File], page 13, for more documentation on the
commands listed here.

Header

The header tells TEX which definitions file to use, names the manual, and carries out other such
housekeeping tasks.

\input texinfo

@settitle Sample Manual 1.0

Summary Description and Copyright

This segment describes the document and contains the copyright notice and copying permissions.
This is done with the @copying command.

A real manual includes more text here, according to the license under which it is distributed.
See Section C.2 [GNU Sample Texts], page 220.

@copying

This is a short example of a complete Texinfo file, version 1.0.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

@end copying

Titlepage, Copyright, Contents

The title and copyright segment contains the title and copyright pages for the printed manual.
The segment must be enclosed between @titlepage and @end titlepage commands. The title
and copyright page does not appear in the online output.

We use the @insertcopying command to include the permission text from the previous section,
instead of writing it out again; it is output on the back of the title page. The @contents

command generates a table of contents.

@titlepage

@title Sample Title

@c The following two commands start the copyright page.

@page

@vskip 0pt plus 1filll

@insertcopying

@end titlepage



Chapter 2: Writing a Texinfo File 11

@c Output the table of contents at the beginning.

@contents

‘Top’ Node and Master Menu

The ‘Top’ node starts off the online output; it does not appear in the printed manual. We repeat
the short description from the beginning of the ‘@copying’ text, but there’s no need to repeat
the copyright information, so we don’t use ‘@insertcopying’ here.

The ‘@top’ command itself helps makeinfo determine the relationships between nodes. The
‘Top’ node contains at least a top-level menu listing the chapters, and possibly a Master Menu
listing all the nodes in the entire document.

@ifnottex

@node Top

@top Short Sample

This is a short sample Texinfo file.

@end ifnottex

@menu

* First Chapter:: The first chapter is the

only chapter in this sample.

* Index:: Complete index.

@end menu

The Body of the Document

The body segment contains all the text of the document, but not the indices or table of contents.
This example illustrates a node and a chapter containing an enumerated list.

@node First Chapter

@chapter First Chapter

@cindex chapter, first

This is the first chapter.

@cindex index entry, another

Here is a numbered list.

@enumerate

@item

This is the first item.

@item

This is the second item.

@end enumerate

The End of the Document

This may contain commands for printing indices, and closes with the @bye command, which
marks the end of the document.

@node Index

@unnumbered Index



Chapter 2: Writing a Texinfo File 12

@printindex cp

@bye

Some Results

Here is what the contents of the first chapter of the sample look like:

This is the first chapter.

Here is a numbered list.

1. This is the first item.

2. This is the second item.



13

3 Beginning and Ending a Texinfo File

This chapter expands on the minimal complete Texinfo source file previously given (see
Section 2.4 [Short Sample], page 10).

Certain pieces of information must be provided at the beginning of a Texinfo file, such as the
title of the document and the Top node. A table of contents is also generally produced here.

Straight text outside of any command before the Top node should be avoided. Such text is
treated differently in the different output formats: at the time of writing, it is visible in TEX
and HTML, by default not shown in Info readers, and so on.

3.1 Sample Texinfo File Beginning

The following sample shows what is needed. The elements given here are explained in more
detail in the following sections. Other commands are often included at the beginning of Texinfo
files, but the ones here are the most critical.

See Section C.2 [GNU Sample Texts], page 220, for the full texts to be used in GNU manuals.

\input texinfo

@settitle name-of-manual version

@copying

This manual is for program, version version.

Copyright @copyright{} years copyright-owner.

@quotation

Permission is granted to ...

@end quotation

@end copying

@titlepage

@title name-of-manual-when-printed

@subtitle subtitle-if-any

@subtitle second-subtitle

@author author

@c The following two commands

@c start the copyright page.

@page

@vskip 0pt plus 1filll

@insertcopying

Published by ...

@end titlepage

@c So the toc is printed at the start.

@contents

@ifnottex

@node Top

@top title



Chapter 3: Beginning and Ending a Texinfo File 14

This manual is for program, version version.

@end ifnottex

@menu

* First Chapter:: Getting started ...

* Second Chapter:: ...

...

* Copying:: Your rights and freedoms.

@end menu

@node First Chapter

@chapter First Chapter

@cindex first chapter

@cindex chapter, first

...

3.2 Texinfo File Header

Texinfo files start with at least two lines. These are the \input texinfo line and the @settitle
line.

Also, if you want to format just part of the Texinfo file in Emacs, you must write the
@settitle line between start-of-header and end-of-header lines. These start- and end-of-header
lines are optional, but they do no harm, so you might as well always include them.

Any command that affects document formatting as a whole makes sense to include in the
header. @synindex (see Section 11.6.2 [@synindex], page 88), for instance, is another command
often included in the header.

Thus, the beginning of a Texinfo file looks approximately like this:

\input texinfo

@settitle Sample Manual 1.0

(See Section C.2 [GNU Sample Texts], page 220, for complete sample texts.)

3.2.1 The First Line of a Texinfo File

Every Texinfo file that is to be the top-level input to TEX must begin with a line that looks like
this:

\input texinfo

When the file is processed by TEX, the ‘\input texinfo’ command tells TEX to load the
macros needed for processing a Texinfo file. These are in a file called texinfo.tex, which
should have been installed on your system along with either the TEX or Texinfo software. TEX
uses the backslash, ‘\’, to mark the beginning of a command, exactly as Texinfo uses ‘@’. The
texinfo.tex file causes the switch from ‘\’ to ‘@’; before the switch occurs, TEX requires ‘\’,
which is why it appears at the beginning of the file.

You may optionally follow this line with a comment to tell GNU Emacs to use Texinfo mode
when the file is edited:

\input texinfo @c -*-texinfo-*-

This may be useful when Emacs doesn’t detect the file type from the file extension automatically.

3.2.2 Start of Header

A start-of-header line is a Texinfo comment that looks like this:

@c %**start of header



Chapter 3: Beginning and Ending a Texinfo File 15

Write the start-of-header line on the second line of a Texinfo file. Follow the start-of-header
line with an @settitle line and, optionally, with other commands that globally affect the
document formatting, such as @synindex or @footnotestyle; and then by an end-of-header
line (see Section 3.2.5 [End of Header], page 16).

The start- and end-of-header lines allow you to format only part of a Texinfo file for Info or
printing. See Section 21.1.3 [texinfo-format commands], page 176.

The odd string of characters, ‘%**’, is to ensure that no other comment is accidentally
taken for a start-of-header line. You can change it if you wish by setting the tex-start-of-

header and/or tex-end-of-header Emacs variables. See Section 19.6 [Texinfo Mode Printing],
page 147.

3.2.3 @setfilename: Set the Output File Name

The @setfilename line specifies the name of the output file to be generated. When present, it
should be the first Texinfo command (that is, after ‘\input texinfo’). Write the @setfilename
command at the beginning of a line and follow it on the same line by the Info file name.

@setfilename info-file-name

The name must be different from the name of the Texinfo file. There are two conventions
for choosing the name: you can either remove the extension (such as ‘.texi’) entirely from the
input file name, or (recommended) replace it with the ‘.info’ extension.

When a @setfilename line is present, the Texinfo processors ignore everything written before
the @setfilename line. This is why the very first line of the file (the \input line) does not show
up in the output.

If there is no @setfilename line, makeinfo uses the input file name to determine the output
name: first, any of the extensions .texi, .tex, .txi or .texinfo is removed from the input
file name; then, the output format specific extension is added—.html when generating HTML,
.info when generating Info, etc. The \input line is still ignored in this processing, as well as
leading blank lines.

When producing another output format, makeinfo will replace any final extension with the
output format-specific extension (‘html’ when generating HTML, for example), or add a dot
followed by the extension (‘.html’ for HTML) if the given name has no extension.

@setfilename used to be required by the Texinfo processors, and some other programs may
still expect it to be present; for example, Automake (see Section “Texinfo” in GNU Automake).

Although an explicit ‘.info’ extension is preferable, some operating systems cannot handle
long file names. You can run into a problem even when the file name you specify is itself short
enough. This occurs because the Info formatters split a long Info file into short indirect subfiles,
and name them by appending ‘-1’, ‘-2’, . . . , ‘-10’, ‘-11’, and so on, to the original file name.
(See Section 21.1.5 [Tag and Split Files], page 177.) The subfile name texinfo.info-10, for
example, is too long for old systems with a 14-character limit on filenames; so the Info file
name for this document is texinfo rather than texinfo.info. When makeinfo is running on
operating systems such as MS-DOS which impose severe limits on file names, it may remove
some characters from the original file name to leave enough space for the subfile suffix, thus
producing files named texin-10, gcc.i12, etc.

See also the --output option in Section 20.2 [Invoking texi2any], page 154.

3.2.4 @settitle: Set the Document Title

A Texinfo file should contain a line that looks like this:

@settitle title

Write the @settitle command at the beginning of a line and follow it on the same line by
the title. Do not write anything else on the line. The @settitle command should precede



Chapter 3: Beginning and Ending a Texinfo File 16

everything that generates actual output. The best place for it is right after the @setfilename

command (described in the previous section).

This command tells TEX the title to use in a header or footer for double-sided output, in case
such headings are output. For more on headings for TEX, see Section 3.4.5 [Heading Generation],
page 20.

In the HTML file produced by makeinfo, title serves as the document ‘<title>’. It
also becomes the default document description in the ‘<head>’ part (see Section 3.7.1
[@documentdescription], page 23).

When the title page is used in the output, the title in the @settitle command does not
affect the title as it appears on the title page. Thus, the two do not need not to match exactly.
A practice we recommend is to include the version or edition number of the manual in the
@settitle title; on the title page, the version number generally appears as a @subtitle so it
would be omitted from the @title. See Section 3.4.1 [@titlepage], page 17.

3.2.5 End of Header

Follow the header lines with an end-of-header line, which is a Texinfo comment that looks like
this:

@c %**end of header

See Section 3.2.2 [Start of Header], page 14.

3.3 Document Permissions

The copyright notice and copying permissions for a document need to appear in several places
in the various Texinfo output formats. Therefore, Texinfo provides a command (@copying) to
declare this text once, and another command (@insertcopying) to insert the text at appropriate
points.

This section is about the license of the Texinfo document. If the document is a software
manual, the software is typically under a different license—for GNU and many other free software
packages, software is usually released under the GNU GPL, and manuals are released under the
GNU FDL. It is helpful to state the license of the software of the manual, but giving the
complete text of the software license is not necessarily required.

3.3.1 @copying: Declare Copying Permissions

The @copying command should be given very early in the document; the recommended location
is right after the header material (see Section 3.2 [Texinfo File Header], page 14). It convention-
ally consists of a sentence or two about what the program is, identification of the documentation
itself, the legal copyright line, and the copying permissions. Here is a skeletal example:

@copying

This manual is for program (version version, updated

date), which ...

Copyright @copyright{} years copyright-owner.

@quotation

Permission is granted to ...

@end quotation

@end copying

The @quotation has no legal significance; it’s there to improve readability in some contexts.

The text of @copying is output as a comment at the beginning of Info, HTML, XML, and
Docbook output files. It is not output implicitly in plain text or TEX; it’s up to you to use
@insertcopying to emit the copying information. See the next section for details.



Chapter 3: Beginning and Ending a Texinfo File 17

The @copyright{} command generates a ‘c’ inside a circle when the output format supports
this glyph (print and HTML always do, for instance). When the glyph is not supported in the
output, it generates the three-character sequence ‘(C)’.

The copyright notice itself has the following legally-prescribed form:

Copyright c© years copyright-owner.

The word ‘Copyright’ must always be written in English, even if the document is otherwise
written in another language. This is due to international law.

The list of years should include all years in which a version was completed (even if it was
released in a subsequent year). It is simplest for each year to be written out individually and in
full, separated by commas.

The copyright owner (or owners) is whoever holds legal copyright on the work. In the case
of works assigned to the FSF, the owner is ‘Free Software Foundation, Inc.’.

The copyright ‘line’ may actually be split across multiple lines, both in the source document
and in the output. This often happens for documents with a long history, having many different
years of publication. If you do use several lines, do not indent any of them (or anything else in
the @copying block) in the source file.

See Section “Copyright Notices” in GNU Maintainer Information, for additional information.
See Section C.2 [GNU Sample Texts], page 220, for the full text to be used in GNU manuals.
See Appendix H [GNU Free Documentation License], page 252, for the license itself under which
GNU and other free manuals are distributed.

3.3.2 @insertcopying: Include Permissions Text

The @insertcopying command is simply written on a line by itself, like this:

@insertcopying

This inserts the text previously defined by @copying. To meet legal requirements, it must
be used on the copyright page in the printed manual (see Section 3.4.4 [Copyright], page 20).

The @copying command itself causes the permissions text to appear in an Info file before
the first node. The text is also copied into the beginning of each split Info output file, as is
legally necessary. This location implies a human reading the manual using Info does not see this
text (except when using the advanced Info command g *), but this does not matter for legal
purposes, because the text is present.

Similarly, the @copying text is automatically included at the beginning of each HTML output
file, as an HTML comment. Again, this text is not visible (unless the reader views the HTML
source).

The permissions text defined by @copying also appears automatically at the beginning of
the XML and Docbook output files.

3.4 Title and Copyright Pages

In hard copy output, the manual’s name and author are usually printed on a title page. Copyright
information is usually printed on the back of the title page.

The title and copyright pages appear in printed manuals, but not in most other output
formats. Because of this, it is possible to use several slightly obscure typesetting commands
that are not to be used in the main text. In addition, this part of the beginning of a Texinfo
file contains the text of the copying permissions that appears in the printed manual.

3.4.1 @titlepage

Start the material for the title page and following copyright page with @titlepage on a line by
itself and end it with @end titlepage on a line by itself.



Chapter 3: Beginning and Ending a Texinfo File 18

The @end titlepage command starts a new page and turns on page numbering (see
Section 3.4.5 [Heading Generation], page 20). All the material that you want to appear on
unnumbered pages should be put between the @titlepage and @end titlepage commands.

By using the @page command you can force a page break within the region delineated by
the @titlepage and @end titlepage commands and thereby create more than one unnumbered
page. This is how the copyright page is produced. (The @titlepage command might perhaps
have been better named the @titleandadditionalpages command, but that would have been
rather long!)

When you write a manual about a computer program, you should write the version of the
program to which the manual applies on the title page. If the manual changes more frequently
than the program or is independent of it, you should also include an edition number1 for the
manual. This helps readers keep track of which manual is for which version of the program.
(The ‘Top’ node should also contain this information; see Section 3.6 [The Top Node], page 21.)

Texinfo provides two main methods for creating a title page. One method uses the
@titlefont, @sp, and @center commands to generate a title page in which the words on the
page are centered.

The second method uses the @title, @subtitle, and @author commands to create a title
page with black rules under the title and author lines and the subtitle text set flush to the right
hand side of the page. With this method, you do not specify any of the actual formatting of the
title page. You specify the text you want, and Texinfo does the formatting.

You may use either method, or you may combine them; see the examples in the sections
below.

For sufficiently simple documents, and for the bastard title page in traditional book front-
matter, Texinfo also provides a command @shorttitlepage which takes the rest of the line as
the title. The argument is typeset on a page by itself and followed by a blank page.

3.4.2 @titlefont, @center, and @sp

You can use the @titlefont, @sp, and @center commands to create a title page for a printed
document. (This is the first of the two methods for creating a title page in Texinfo.)

Use the @titlefont command to select a large font suitable for the title itself. You can use
@titlefont more than once if you have an especially long title.

For HTML output, each @titlefont command produces an <h1> heading, but the HTML
document <title> is not affected. For that, you must put a @settitle command before the
@titlefont command (see Section 3.2.4 [@settitle], page 15).

For example:

@titlefont{Texinfo}

Use the @center command at the beginning of a line to center the remaining text on that
line. Thus,

@center @titlefont{Texinfo}

centers the title, which in this example is “Texinfo” printed in the title font.

Use the @sp command to insert vertical space. For example:

@sp 2

This inserts two blank lines on the printed page. (See Section 13.7 [@sp], page 107, for more
information about the @sp command.)

1 We have found that it is helpful to refer to versions of independent manuals as ‘editions’ and versions of
programs as ‘versions’; otherwise, we find we are liable to confuse each other in conversation by referring to
both the documentation and the software with the same words.



Chapter 3: Beginning and Ending a Texinfo File 19

A template for this method looks like this:

@titlepage

@sp 10

@center @titlefont{name-of-manual-when-printed}

@sp 2

@center subtitle-if-any

@sp 2

@center author

...

@end titlepage

The spacing of the example fits an 8.5 by 11 inch manual.

3.4.3 @title, @subtitle, and @author

You can use the @title, @subtitle, and @author commands to create a title page in which the
vertical and horizontal spacing is done for you automatically. This contrasts with the method
described in the previous section, in which the @sp command is needed to adjust vertical spacing.

Write the @title, @subtitle, or @author commands at the beginning of a line followed
by the title, subtitle, or author. The @author command may be used for a quotation in an
@quotation block (see Section 8.2 [@quotation], page 64); except for that, it is an error to use
any of these commands outside of @titlepage.

The @title command produces a line in which the title is set flush to the left-hand side
of the page in a larger than normal font. The title is underlined with a black rule. The title
must be given on a single line in the source file; it will be broken into multiple lines of output
is needed.

For long titles, the @* command may be used to specify the line breaks in long titles if
the automatic breaks do not suit. Such explicit line breaks are generally reflected in all output
formats; if you only want to specify them for the printed output, use a conditional (see Chapter 16
[Conditionals], page 122). For example:

@title This Long Title@inlinefmt{tex,@*} Is Broken in @TeX{}

The @subtitle command sets subtitles in a normal-sized font flush to the right-hand side of
the page.

The @author command sets the names of the author or authors in a middle-sized font flush
to the left-hand side of the page on a line near the bottom of the title page. The names are
followed by a black rule that is thinner than the rule that underlines the title.

There are two ways to use the @author command: you can write the name or names on the
remaining part of the line that starts with an @author command:

@author by Jane Smith and John Doe

or you can write the names one above each other by using multiple @author commands:

@author Jane Smith

@author John Doe

A template for this method looks like this:

@titlepage

@title name-of-manual-when-printed

@subtitle subtitle-if-any

@subtitle second-subtitle

@author author

@page

...

@end titlepage



Chapter 3: Beginning and Ending a Texinfo File 20

3.4.4 Copyright Page

By international treaty, the copyright notice for a book must be either on the title page or on
the back of the title page. When the copyright notice is on the back of the title page, that
page is customarily not numbered. Therefore, in Texinfo, the information on the copyright page
should be within @titlepage and @end titlepage commands.

Use the @page command to cause a page break. To push the copyright notice and the other
text on the copyright page towards the bottom of the page, use the following incantation after
@page:

@vskip 0pt plus 1filll

The @vskip command inserts whitespace in the TEX output; it is ignored in all other output
formats. The ‘0pt plus 1filll’ means to put in zero points of mandatory whitespace, and as
much optional whitespace as needed to push the following text to the bottom of the page. Note
the use of three ‘l’s in the word ‘filll’; this is correct.

To insert the copyright text itself, write @insertcopying next (see Section 3.3 [Document
Permissions], page 16):

@insertcopying

Follow the copying text by the publisher, ISBN numbers, cover art credits, and other such
information.

Here is an example putting all this together:

@titlepage

...

@page

@vskip 0pt plus 1filll

@insertcopying

Published by ...

Cover art by ...

@end titlepage

We have one more special case to consider: for plain text output, you must insert the copyright
information explicitly if you want it to appear. For instance, you could have the following after
the copyright page:

@ifplaintext

@insertcopying

@end ifplaintext

You could include other title-like information for the plain text output in the same place.

3.4.5 Heading Generation

Like all @end commands (see Chapter 8 [Quotations and Examples], page 63), the @end

titlepage command must be written at the beginning of a line by itself, with only one space
between the @end and the titlepage. It not only marks the end of the title and copyright
pages, but also causes TEX to start generating page headings and page numbers.

Texinfo has two standard page heading formats, one for documents printed on one side of
each sheet of paper (single-sided printing), and the other for documents printed on both sides
of each sheet (double-sided printing).

In full generality, you can control the headings in different ways:

• The conventional way is to write a @setchapternewpage command before the title page
commands, if required, and then have the @end titlepage command start generating page
headings in the manner desired.



Chapter 3: Beginning and Ending a Texinfo File 21

Most documents are formatted with the standard single-sided or double-sided head-
ings, (sometimes) using @setchapternewpage odd for double-sided printing and (almost
always) no @setchapternewpage command for single-sided printing (see Section 3.7.2
[@setchapternewpage], page 23).

• Alternatively, you can use the @headings command to prevent page headings from being
generated or to start them for either single or double-sided printing. Write a @headings

command immediately after the @end titlepage command. To turn off headings, write
@headings off. See Section 3.7.3 [@headings], page 24.

• Or, you may specify your own page heading and footing format. See Appendix E [Headings],
page 235.

3.5 Generating a Table of Contents

The @chapter, @section, and other structuring commands (see Chapter 5 [Chapter Structur-
ing], page 37) supply the information to make up a table of contents, but they do not cause
an actual table to appear in the manual. To do this, you must use the @contents and/or
@summarycontents command(s).

@contents

Generates a table of contents in a printed manual, including all chapters, sections,
subsections, etc., as well as appendices and unnumbered chapters. Headings gener-
ated by @majorheading, @chapheading, and the other @...heading commands do
not appear in the table of contents (see Section 5.2 [Structuring Command Types],
page 37).

@shortcontents

@summarycontents

(@summarycontents is a synonym for @shortcontents.)

Generates a short or summary table of contents that lists only the chapters, ap-
pendices, and unnumbered chapters. Sections, subsections and subsubsections are
omitted. Only a long manual needs a short table of contents in addition to the full
table of contents.

Both contents commands should be written on a line by themselves, and placed near the
beginning of the file, after the @end titlepage (see Section 3.4.1 [@titlepage], page 17), before
any sectioning command. The contents commands automatically generate a chapter-like heading
at the top of the first table of contents page, so don’t include any sectioning command such as
@unnumbered before them.

Since an Info file uses menus instead of tables of contents, the Info formatting commands
ignore the contents commands. But the contents are included in plain text output (generated
by makeinfo --plaintext) and in other output formats, such as HTML.

When makeinfo writes a short table of contents while producing HTML output, the links
in the short table of contents point to corresponding entries in the full table of contents rather
than the text of the document. The links in the full table of contents point to the main text of
the document.

3.6 The ‘Top’ Node and Master Menu

The ‘Top’ node is the node in which a reader enters an Info manual. As such, it should begin
with a brief description of the manual (including the version number), and end with a master
menu for the whole manual. Of course you should include any other general information you
feel a reader would find helpful.



Chapter 3: Beginning and Ending a Texinfo File 22

It is conventional and desirable to write a @top sectioning command line containing the
title of the document immediately after the @node Top line (see Section 4.6 [@top Command],
page 31).

The contents of the ‘Top’ node should appear only in the online output; none of it should
appear in printed output, so enclose it between @ifnottex and @end ifnottex commands. (TEX
does not print either an @node line or a menu; they appear only in Info; strictly speaking, you
are not required to enclose these parts between @ifnottex and @end ifnottex, but it is simplest
to do so. See Chapter 16 [Conditionally Visible Text], page 122.)

3.6.1 Top Node Example

Here is an example of a Top node.

@ifnottex

@node Top

@top Sample Title

This is the text of the top node.

@end ifnottex

Additional general information.

@menu

* First Chapter::

* Second Chapter::

...

* Index::

@end menu

3.6.2 Parts of a Master Menu

A master menu is the main menu. It is customary to include a detailed menu listing all the
nodes in the document in this menu.

Like any other menu, a master menu is enclosed in @menu and @end menu and does not appear
in the printed output.

Generally, a master menu is divided into parts.

• The first part contains the major nodes in the Texinfo file: the nodes for the chapters,
chapter-like sections, and the appendices.

• The second part contains nodes for the indices.

• The third and subsequent parts contain a listing of the other, lower-level nodes, often ordered
by chapter. This way, rather than go through an intermediary menu, an inquirer can go
directly to a particular node when searching for specific information. These menu items
are not required; add them if you think they are a convenience. If you do use them, put
@detailmenu before the first one, and @end detailmenu after the last; otherwise, makeinfo
will get confused.

Each section in the menu can be introduced by a descriptive line. So long as the line does
not begin with an asterisk, it will not be treated as a menu entry. (See Section 4.9.1 [Writing a
Menu], page 33, for more information.)

For example, the master menu for this manual looks like the following (but has many more
entries):



Chapter 3: Beginning and Ending a Texinfo File 23

@menu

* Copying Conditions:: Your rights.

* Overview:: Texinfo in brief.

...

* Command and Variable Index::

* General Index::

@detailmenu

--- The Detailed Node Listing ---

Overview of Texinfo

* Reporting Bugs:: ...

...

Beginning a Texinfo File

* Sample Beginning:: ...

...

@end detailmenu

@end menu

3.7 Global Document Commands

Besides the basic commands mentioned in the previous sections, here are additional commands
which affect the document as a whole. They are generally all given before the Top node, if they
are given at all.

3.7.1 @documentdescription: Summary Text

When producing HTML output for a document, makeinfo writes a ‘<meta>’ element in the
‘<head>’ to give some idea of the content of the document. By default, this description is
the title of the document, taken from the @settitle command (see Section 3.2.4 [@settitle],
page 15). To change this, use the @documentdescription environment, as in:

@documentdescription

descriptive text.

@end documentdescription

This will produce the following output in the ‘<head>’ of the HTML:

<meta name=description content="descriptive text.">

@documentdescription must be specified before the first node of the document.

3.7.2 @setchapternewpage: Blank Pages Before Chapters

In an officially bound book, text is usually printed on both sides of the paper, chapters start on
right-hand pages, and right-hand pages have odd numbers. But in short reports, text often is
printed only on one side of the paper. Also in short reports, chapters sometimes do not start on
new pages, but are printed on the same page as the end of the preceding chapter, after a small
amount of vertical whitespace.

You can use the @setchapternewpage command with various arguments to specify how TEX
should start chapters and whether it should format headers for printing on one or both sides of
the paper (single-sided or double-sided printing).

Write the @setchapternewpage command at the beginning of a line followed by its argument.



Chapter 3: Beginning and Ending a Texinfo File 24

For example, you would write the following to cause each chapter to start on a fresh odd-
numbered page:

@setchapternewpage odd

You can specify one of three alternatives with the @setchapternewpage command:

@setchapternewpage off

Cause TEX to typeset a new chapter on the same page as the last chapter, after
skipping some vertical whitespace. Also, cause TEX to format page headers for
single-sided printing.

@setchapternewpage on

Cause TEX to start new chapters on new pages and to format page headers for
single-sided printing. This is the form most often used for short reports or personal
printing. This is the default.

@setchapternewpage odd

Cause TEX to start new chapters on new, odd-numbered pages (right-handed pages)
and to typeset for double-sided printing. This is the form most often used for books
and manuals.

Texinfo does not have a @setchapternewpage even command, because there is no printing
tradition of starting chapters or books on an even-numbered page.

If you don’t like the default headers that @setchapternewpage sets, you can explicit control
them with the @headings command. See Section 3.7.3 [@headings], page 24.

At the beginning of a manual or book, pages are not numbered—for example, the title and
copyright pages of a book are not numbered. By convention, table of contents and frontmatter
pages are numbered with roman numerals and not in sequence with the rest of the document.

The @setchapternewpage has no effect in output formats that do not have pages, such as
Info and HTML.

We recommend not including any @setchapternewpage command in your document source
at all, since such desired pagination is not intrinsic to the document. For a particular hard copy
run, if you don’t want the default output (no blank pages, same headers on all pages) use the
--texinfo option to texi2dvi to specify the output you want.

3.7.3 The @headings Command

The @headings command is rarely used. It specifies what kind of page headings and footings
to print on each page. Usually, this is controlled by the @setchapternewpage command. You
need the @headings command only if the @setchapternewpage command does not do what you
want, or if you want to turn off predefined page headings prior to defining your own. Write a
@headings command immediately after the @end titlepage command.

You can use @headings as follows:

@headings off

Turn off printing of page headings.

@headings single

Turn on page headings appropriate for single-sided printing.

@headings double

Turn on page headings appropriate for double-sided printing.

@headings singleafter

@headings doubleafter

Turn on single or double headings, respectively, after the current page is output.



Chapter 3: Beginning and Ending a Texinfo File 25

@headings on

Turn on page headings: single if ‘@setchapternewpage on’, double otherwise.

For example, suppose you write @setchapternewpage off before the @titlepage command
to tell TEX to start a new chapter on the same page as the end of the last chapter. This command
also causes TEX to typeset page headers for single-sided printing. To cause TEX to typeset for
double sided printing, write @headings double after the @end titlepage command.

You can stop TEX from generating any page headings at all by writing @headings off on a
line of its own immediately after the line containing the @end titlepage command, like this:

@end titlepage

@headings off

The @headings off command overrides the @end titlepage command, which would otherwise
cause TEX to print page headings.

You can also specify your own style of page heading and footing. See Appendix E [Page
Headings], page 235, for more information.

3.7.4 @paragraphindent: Controlling Paragraph Indentation

The Texinfo processors may insert whitespace at the beginning of the first line of each paragraph,
thereby indenting that paragraph. You can use the @paragraphindent command to specify this
indentation. Write a @paragraphindent command at the beginning of a line followed by either
‘asis’ or a number:

@paragraphindent indent

The indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in TEX).

none

0 Omit all indentation.

n Indent by n space characters in Info output, by n ems in TEX.

The default value of indent is 3. @paragraphindent is ignored for HTML output.

It is best to write the @paragraphindent command before the end-of-header line at the
beginning of a Texinfo file, so the region formatting commands indent paragraphs as specified.
See Section 3.2.2 [Start of Header], page 14.

3.7.5 @firstparagraphindent: Indenting After Headings

As you can see in the present manual, the first paragraph in any section is not indented by de-
fault. Typographically, indentation is a paragraph separator, which means that it is unnecessary
when a new section begins. This indentation is controlled with the @firstparagraphindent

command:

@firstparagraphindent word

The first paragraph after a heading is indented according to the value of word:

none Prevents the first paragraph from being indented (default). This option is ignored
by makeinfo if @paragraphindent asis is in effect.

insert Include normal paragraph indentation. This respects the paragraph indentation set
by a @paragraphindent command (see Section 3.7.4 [@paragraphindent], page 25).

@firstparagraphindent is ignored for HTML and Docbook output.

It is best to write the @firstparagraphindent command before the end-of-header line at the
beginning of a Texinfo file, so the region formatting commands indent paragraphs as specified.
See Section 3.2.2 [Start of Header], page 14.



Chapter 3: Beginning and Ending a Texinfo File 26

3.7.6 @exampleindent: Environment Indenting

The Texinfo processors indent each line of @example and similar environments. You can use the
@exampleindent command to specify this indentation. Write an @exampleindent command at
the beginning of a line followed by either ‘asis’ or a number:

@exampleindent indent

The indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in TEX).

0 Omit all indentation.

n Indent environments by n space characters in Info output, by n ems in TEX.

The default value of indent is 5 spaces in Info, and 0.4 in in TEX, which is somewhat less.
(The reduction is to help TEX fit more characters onto physical lines.)

It is best to write the @exampleindent command before the end-of-header line at the begin-
ning of a Texinfo file, so the region formatting commands indent paragraphs as specified. See
Section 3.2.2 [Start of Header], page 14.

3.8 Ending a Texinfo File

The end of a Texinfo file should include commands to create indices (see Section 11.5 [Printing
Indices & Menus], page 86), and the @bye command to mark the last line to be processed. For
example:

@node Index

@unnumbered Index

@printindex cp

@bye

An @bye command terminates Texinfo processing. None of the formatters process anything
following @bye; any such text is completely ignored. The @bye command should be on a line by
itself.

Thus, if you wish, you may follow the @bye line with arbitrary notes. Also, you may follow
the @bye line with a local variables list for Emacs, most typically a ‘compile-command’ (see
Section 19.7 [Using the Local Variables List], page 148).



27

4 Nodes

A node is a region of text that begins at a @node command, and continues until the next @node
command. To specify a node, write a @node command at the beginning of a line, and follow it
with the name of the node. Each node contains the discussion of one topic. Info readers display
one node at a time, and provide commands for the user to move to related nodes. The HTML
output can be similarly navigated.

Nodes are used as the targets of cross-references. Cross-references, such as the one at the end
of this sentence, are made with @xref and related commands; see Chapter 6 [Cross References],
page 43. Cross-references can be sprinkled throughout the text, and provide a way to represent
links that do not fit a hierarchical structure.

Normally, you put a node command immediately before each chapter structuring command—
for example, an @section or @subsection line. (See Chapter 5 [Chapter Structuring], page 37.).
You must do this even if you do not intend to format the file for Info. This is because TEX
uses both @node names and chapter-structuring names in the output for cross-references. The
only time you are likely to use the chapter structuring commands without also using nodes is
if you are writing a document that contains no cross references and will only be printed, not
transformed into Info, HTML, or other formats.

4.1 Texinfo Document Structure

Nodes can contain menus, which contain the names of child nodes within the parent node; for
example, a node corresponding to a chapter would have a menu of the sections in that chapter.
The menus allow the user to move to the child nodes in a natural way in the online output.

In addition, nodes contain node pointers that name other nodes. The ‘Next’ and ‘Previous’
pointers form nodes at the same sectioning level into a chain. As you might imagine, the ‘Next’
pointer links to the next node, and the ‘Previous’ pointer links to the previous node. Thus, for
example, all the nodes that are at the level of sections within a chapter are linked together, and
the order in this chain is the same as the order of the children in the menu of the parent chapter.
Each child node records the parent node name as its ‘Up’ pointer.

The Info and HTML output from makeinfo for each node includes links to the ‘Next’,
‘Previous’, and ‘Up’ nodes. The HTML also uses the accesskey attribute with the values
‘n’, ‘p’, and ‘u’ respectively. This allows people using web browsers to follow the navigation
using (typically) M-letter, e.g., M-n for the ‘Next’ node, from anywhere within the node. Node
pointers and menus provide structure for Info files just as chapters, sections, subsections, and
the like provide structure for printed books. The two structures are theoretically distinct; in
practice, however, the tree structure of printed books is essentially always used for the node
and menu structure also, as this leads to a document which is easiest to follow. See Section 4.1
[Texinfo Document Structure], page 27.

Typically, the sectioning structure and the node structure are completely parallel, with one
node for each chapter, section, etc., and with the nodes following the same hierarchical arrange-
ment as the sectioning. Thus, if a node is at the logical level of a chapter, its child nodes are at
the level of sections; similarly, the child nodes of sections are at the level of subsections.

Although it is technically possible to create Texinfo documents with only one structure or the
other, or for the two structures not to be parallel, or for either the sectioning or node structure
to be abnormally formed, etc., this is not at all recommended. To the best of our knowledge, all
the Texinfo manuals currently in general use do follow the conventional parallel structure.

4.2 Choosing Node Names

The name of a node identifies the node. For all the details of node names, see Section 4.4 [Node
Line Requirements], page 29).



Chapter 4: Nodes 28

Here are some suggestions for node names:

• Try to pick node names that are informative but short.

In the Info file, the file name, node name, and pointer names are all inserted on one line,
which may run into the right edge of the window. (This does not cause a problem with
Info, but is ugly.)

• Try to pick node names that differ from each other near the beginnings of their names. This
way, it is easy to use automatic name completion in Info.

• Conventionally, node names are capitalized in the same way as section and chapter titles. In
this manual, initial and significant words are capitalized; others are not. In other manuals,
just initial words and proper nouns are capitalized. Either way is fine; we recommend just
being consistent.

• In HTML output, any characters in the node name other than plain ASCII letters, numbers
or spaces will be changed in the file name. (See Section 22.4.2 [HTML Xref Node Name
Expansion], page 188.) This can make the URL’s for the pages in your manual less user-
friendly; for example in this manual the ‘@dots’ node is output as __0040dots.html.

Because node names are used in cross-references, it is not desirable to casually change them
once published. Such name changes invalidate references from other manuals, from mail archives,
and so on.

The pointers from a given node enable you to reach other nodes and consist simply of the
names of those nodes. The pointers are usually not specified explicitly, as makeinfo can deter-
mine them (see Section 4.8 [makeinfo Pointer Creation], page 33).

Normally, a node’s ‘Up’ pointer contains the name of the node whose menu mentions that
node. The node’s ‘Next’ pointer contains the name of the node that follows the present node
in that menu and its ‘Previous’ pointer contains the name of the node that precedes it in that
menu. When a node’s ‘Previous’ node is the same as its ‘Up’ node, both pointers name the same
node.

Usually, the first node of a Texinfo file is the ‘Top’ node, and its ‘Up’ pointer points to the
dir file, which contains the main menu for all of Info.

4.3 Writing an @node Line

The easiest way to write an @node line is to write @node at the beginning of a line and then the
name of the node, like this:

@node node-name

After you have inserted an @node line, you should immediately write an @-command for
the chapter or section and insert its name. Next (and this is important!), put in several index
entries. Usually, you will find at least two and often as many as four or five ways of referring to
the node in the index. Use them all. This will make it much easier for people to find the node.

If you wish, you can ignore @node lines altogether in your first draft and then use the
texinfo-insert-node-lines command to create @node lines for you. However, we do not
recommend this practice. It is better to name the node itself at the same time that you write
a segment so you can easily make cross-references. Useful cross-references are an especially
important feature of a good Texinfo manual.

Even when you explicitly specify all pointers, you cannot write the nodes in the Texinfo source
file in an arbitrary order! Because formatters must process the file sequentially, irrespective of
node pointers, you must write the nodes in the order you wish them to appear in the output.
For Info format one can imagine that the order may not matter, but it matters for the other
formats.



Chapter 4: Nodes 29

You may optionally follow the node name argument to @node with up to three optional
arguments on the rest of the same line, separating the arguments with commas. These are
the names of the ‘Next’, ‘Previous’, and ‘Up’ pointers, in that order. We recommend omitting
them if your Texinfo document is hierarchically organized, as virtually all are (see Section 4.8
[makeinfo Pointer Creation], page 33).

Any spaces before or after each name on the @node line are ignored.

The template for a fully-written-out node line with ‘Next’, ‘Previous’, and ‘Up’ pointers looks
like this:

@node node-name, next, previous, up

The node-name argument must be present, but the others are optional. If you wish to
specify some but not others, just insert commas as needed, as in: ‘@node mynode,,,uppernode’.
However, we recommend leaving off all the pointers and letting makeinfo determine them.

If you are using GNU Emacs, you can use the update node commands provided by Texinfo
mode to insert the names of the pointers; or (recommended), you can leave the pointers out of the
Texinfo file and let makeinfo insert node pointers into the Info file it creates. (See Appendix D
[Texinfo Mode], page 224, and Section 4.8 [makeinfo Pointer Creation], page 33.)

Alternatively, you can insert the ‘Next’, ‘Previous’, and ‘Up’ pointers yourself. If you do this,
you may find it helpful to use the Texinfo mode keyboard command C-c C-c n. This command
inserts ‘@node’ and a comment line listing the names of the pointers in their proper order. The
comment line helps you keep track of which arguments are for which pointers. This comment
line is especially useful if you are not familiar with Texinfo.

4.4 @node Line Requirements

Names used with @node have several requirements:

• All the node names in a single Texinfo file must be unique.

This means, for example, that if you end every chapter with a summary, you must name each
summary node differently. You cannot just call them all “Summary”. You may, however,
duplicate the titles of chapters, sections, and the like. Thus you can end each chapter with
a section called “Summary”, so long as the node names for those sections are all different.

• Node names can contain @-commands. The output is generally the natural result of the
command; for example, using @TeX{} in a node name results in the TEX logo being output,
as it would be in normal text. Cross-references should use @TeX{} just as the node name
does.

For Info and HTML output, especially, it is necessary to expand commands to some sequence
of plain characters; for instance, @TeX{} expands to the three letters ‘TeX’ in the Info node
name. However, cross-references to the node should not take the “shortcut” of using ‘TeX’;
stick to the actual node name, commands and all.

Some commands do not make sense in node names; for instance, environments (e.g.,
@quotation), commands that read a whole line as their argument (e.g., @sp), and plenty
of others.

For the complete list of commands that are allowed, and their expansion for HTML identi-
fiers and file names, see Section 22.4.3 [HTML Xref Command Expansion], page 189. The
expansions for Info are generally given with main the description of the command.

Prior to the Texinfo 5 release in 2013, this feature was supported in an ad hoc way (the
--commands-in-node-names option to makeinfo). Now it is part of the language.

• Unfortunately, you cannot reliably use periods, commas, or colons within a node name;
these can confuse the Info reader. Also, a node name may not start with a left parenthesis



Chapter 4: Nodes 30

preceding a right parenthesis, as in (not)allowed, since this syntax is used to specify an
external manual. (Perhaps these limitations will be removed some day.)

makeinfo warns about such problematic usage in node names, menu items, and cross-
references. If you don’t want to see the warnings, you can set the customization variable
INFO_SPECIAL_CHARS_WARNING to ‘0’ (see Section 20.6.5 [Other Customization Variables],
page 168).

Also, if you insist on using these characters in node names (accepting the resulting sub-
standard Info output), in order not to confuse the Texinfo processors you must still escape
those characters, by using either special insertions (see Section 12.1.3 [Inserting a Comma],
page 90) or @asis (see [@asis], page 74). For example:

@node foo@asis{::}bar

As an example of avoiding the special characters, the following is a section title in this
manual:

@section @code{@@unnumbered}, @code{@@appendix}: ...

But the corresponding node name lacks the commas and the subtitle:
@node @unnumbered @appendix

• Case is significant in node names.

• Spaces before and after names on the ‘@node’ line are ignored. Multiple whitespace char-
acters “inside” a name are collapsed to a single space. For example:

@node foo bar

@node foo bar,

@node foo bar ,

@node foo bar,

@node foo bar ,

all define the same node, namely ‘foo bar’. In menu entries, this is the name that should
be used: no leading or trailing spaces, and a single internal space. (For cross-references, the
node name used in the Texinfo sources is automatically normalized in this way.)

• The next/previous/up pointers on @node lines must be the names of nodes. (It’s recom-
mended to leave out these explicit node pointer names, which automatically avoids any
problem here; see Section 4.8 [makeinfo Pointer Creation], page 33.)

4.5 The First Node

The first node of a Texinfo file is the Top node, except in an included file (see Chapter 18
[Include Files], page 140). The Top node should contain a short summary, copying permissions,
and a master menu. See Section 3.6 [The Top Node], page 21, for more information on the Top
node contents and examples.

Here is a description of the node pointers to be used in the Top node:

• The Top node (which must be named ‘top’ or ‘Top’) should have as its ‘Up’ node the name
of a node in another file, where there is a menu that leads to this file. Specify the file name
in parentheses.

Usually, all Info files are available through a single virtual Info tree, constructed from
multiple directories. In this case, use ‘(dir)’ as the parent of the Top node; this specifies
the top-level node in the dir file, which contains the main menu for the Info system as a
whole. (Each directory with Info files is intended to contain a file named dir.)

That’s fine for Info, but for HTML output, one might well want the Up link from the
Top node to go to some specific place. For example, for GNU the natural place would
be http://www.gnu.org/manual/ (a web page collecting links to most GNU manuals),
better specified as just /manual/ if the manual will be installed on www.gnu.org. This can

http://www.gnu.org/manual/


Chapter 4: Nodes 31

be specified with the TOP_NODE_UP_URL customization variable (see Section 20.6.3 [HTML
Customization Variables], page 164), as in

$ makeinfo --html -c TOP_NODE_UP_URL=/manual/ ...

• The ‘Prev’ node of the Top node is usually either omitted or also set to (dir). Either is
fine.

• The ‘Next’ node of the Top node should be the first chapter in your document.

See Section 21.2 [Installing an Info File], page 178, for more information about installing an
Info file in the info directory.

It is usually best to leave the pointers off entirely and let the tools implicitly define them,
with this simple result:

@node Top

4.6 The @top Sectioning Command

The @top command is a special sectioning command that you should only use after a ‘@node
Top’ line at the beginning of a Texinfo file. The @top command tells the makeinfo formatter
which node is to be used as the root of the node tree.

It produces the same sort of output as @unnumbered (see Section 5.4 [@unnumbered
@appendix], page 38).

The @top node is conventionally wrapped in an @ifnottex conditional so that it will not
appear in TEX output (see Chapter 16 [Conditionals], page 122). Thus, in practice, a Top node
usually looks like this:

@ifnottex

@node Top

@top your-manual-title

very-high-level-summary

@end ifnottex

@top is ignored when raising or lowering sections. That is, it is never lowered and nothing
can be raised to it (see Section 5.12 [Raise/lower sections], page 42).

4.7 Node and Menu Illustration

Here is a diagram that illustrates a Texinfo file with three chapters, each of which contains two
sections.

The “root” is at the top of the diagram and the “leaves” are at the bottom. This is how such
a diagram is drawn conventionally; it illustrates an upside-down tree. For this reason, the root
node is called the ‘Top’ node, and ‘Up’ node pointers carry you closer to the root.

Top

|

-------------------------------------

| | |

Chapter 1 Chapter 2 Chapter 3

| | |

-------- -------- --------

| | | | | |

Section Section Section Section Section Section

1.1 1.2 2.1 2.2 3.1 3.2



Chapter 4: Nodes 32

Using explicit pointers (not recommended, but shown for purposes of the example), the
fully-written command to start Chapter 2 would be this:

@node Chapter 2, Chapter 3, Chapter 1, Top

@comment node-name, next, previous, up

This @node line says that the name of this node is “Chapter 2”, the name of the ‘Next’ node
is “Chapter 3”, the name of the ‘Previous’ node is “Chapter 1”, and the name of the ‘Up’
node is “Top”. You can (and should) omit writing out these node names if your document is
hierarchically organized (see Section 4.8 [makeinfo Pointer Creation], page 33), but the pointer
relationships still obtain.

Note: ‘Next’ and ‘Previous’ refer to nodes at the same hierarchical level in the
manual, not necessarily to the next node within the Texinfo file. In the Texinfo
file, the subsequent node may be at a lower level—a section-level node most often
follows a chapter-level node, for example. (The ‘Top’ node contains the exception
to this rule. Since the ‘Top’ node is the only node at that level, ‘Next’ refers to the
first following node, which is almost always a chapter or chapter-level node.)

To go to Sections 2.1 and 2.2 using Info, you need a menu inside Chapter 2. (See Section 4.9
[Menus], page 33.) You would write the menu just before the beginning of Section 2.1, like this:

@menu

* Sect. 2.1:: Description of this section.

* Sect. 2.2:: Description.

@end menu

Using explicit pointers, the node for Sect. 2.1 is written like this:

@node Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2

@comment node-name, next, previous, up

In Info format, the ‘Next’ and ‘Previous’ pointers of a node usually lead to other nodes
at the same level—from chapter to chapter or from section to section (sometimes, as shown,
the ‘Previous’ pointer points up); an ‘Up’ pointer usually leads to a node at the level above
(closer to the ‘Top’ node); and a ‘Menu’ leads to nodes at a level below (closer to ‘leaves’). (A
cross-reference can point to a node at any level; see Chapter 6 [Cross References], page 43.)

A @node command and a chapter structuring command are conventionally used together,
in that order, often followed by indexing commands. (As shown in the example above, you
may follow the @node line with a comment line, e.g., to show which pointer is which if explicit
pointers are used.) The Texinfo processors use this construct to determine the relationships
between nodes and sectioning commands.

Here is the beginning of the chapter in this manual called “Ending a Texinfo File”. This
shows an @node line followed by an @chapter line, and then by indexing lines.

@node Ending a File

@chapter Ending a Texinfo File

@cindex Ending a Texinfo file

@cindex Texinfo file ending

@cindex File ending

An earlier version of the manual used explicit node pointers. Here is the beginning of the
same chapter for that case. This shows an @node line followed by a comment line, a @chapter

line, and then by indexing lines.

@node Ending a File, Structuring, Beginning a File, Top

@comment node-name, next, previous, up

@chapter Ending a Texinfo File

@cindex Ending a Texinfo file

...



Chapter 4: Nodes 33

4.8 makeinfo Pointer Creation

The makeinfo program can automatically determine node pointers for a hierarchically organized
document. This implicit node pointer creation feature in makeinfo relieves you from the need
to update menus and pointers manually or with Texinfo mode commands. (See Section D.5
[Updating Nodes and Menus], page 227.) We highly recommend taking advantage of this.

To do so, write your @node lines with just the name of the node:

@node My Node

You do not need to write out the ‘Next’, ‘Previous’, and ‘Up’ pointers.

Then, you must write a sectioning command, such as @chapter or @section, on the line
immediately following each truncated @node line (except that comment lines may intervene).
This is where it normally goes.

Also, you must write the name of each node (except for the ‘Top’ node) in a menu that is
one or more hierarchical levels above the node’s level.

Finally, you must follow the ‘Top’ @node line with a line beginning with @top to mark the
top-level node in the file. See Section 4.6 [@top Command], page 31.

If you use a detailed menu in your master menu (see Section 3.6.2 [Master Menu Parts],
page 22), mark it with the @detailmenu ... @end detailmenu environment, or makeinfo will
get confused, typically about the last and/or first node in the document.

In most cases, you will want to take advantage of this feature and not redundantly specify
node pointers that the programs can determine. However, Texinfo documents are not required
to be organized hierarchically or in fact to contain sectioning commands at all (for example, if
you never intend the document to be printed), so node pointers may still be specified explicitly,
in full generality.

4.9 Menus

Menus contain pointers to subordinate nodes. In online output, you use menus to go to such
nodes. Menus have no effect in printed manuals and do not appear in them.

4.9.1 Writing a Menu

A menu consists of a @menu command on a line by itself, followed by menu entry lines or menu
comment lines, and then followed by an @end menu command on a line by itself.

A menu looks like this:

@menu

Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing

several files at once.

@end menu

In a menu, every line that begins with an ‘* ’ is a menu entry. (Note the space after the
asterisk.)

A line that does not start with an ‘* ’ may also appear in a menu. Such a line is not a menu
entry but rather a menu comment line that appears in the Info file. In the example above, the
line ‘Larger Units of Text’ is such a menu comment line; the two lines starting with ‘* ’ are
menu entries.

Technically, menus can carry you to any node, regardless of the structure of the document;
even to nodes in a different Info file. However, we do not recommend making use of this, be-
cause it is hard for readers to follow. Also, the makeinfo implicit pointer creation feature (see



Chapter 4: Nodes 34

Section 4.8 [makeinfo Pointer Creation], page 33) and GNU Emacs Texinfo mode updating com-
mands work only to create menus of subordinate nodes in a hierarchically structured document.
It is much better to use cross-references to refer to arbitrary nodes.

makeinfo can automatically generate menus in nodes for Info and HTML output, based on
the chapter structure of the document. To specify that you want it to do this, place the line
‘@validatemenus off’ near the beginning of the document.

In Info, a user selects a node with the m (Info-menu) command. The menu entry name is
what the user types after the m command. In the HTML output from makeinfo, the accesskey

attribute is used with the values ‘1’. . . ‘9’ for the first nine entries. This allows people using web
browsers to follow the first menu entries using (typically) M-digit, e.g., M-1 for the first entry.

4.9.2 A Menu Example

A menu looks like this in Texinfo:

@menu

* menu entry name: Node name. A short description.

* Node name:: This form is preferred.

@end menu

This produces:

* menu:

* menu entry name: Node name. A short description.

* Node name:: This form is preferred.

Here is an example as you might see it in a Texinfo file:

@menu

Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing

several files at once.

@end menu

This produces:

* menu:

Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing

several files at once.

In this example, the menu has two entries. ‘Files’ is both a menu entry name and the name
of the node referred to by that name. ‘Multiples’ is the menu entry name; it refers to the node
named ‘Buffers’. The line ‘Larger Units of Text’ is a comment; it appears in the menu, but
is not an entry.

Since no file name is specified with either ‘Files’ or ‘Buffers’, they must be the names of
nodes in the same Info file (see Section 4.9.6 [Referring to Other Info Files], page 35).

4.9.3 Menu Location

There may be at most one menu in a node. A menu is conventionally located at the end of a node,
without any regular text or additional commands between the @end menu and the beginning of
the next node.



Chapter 4: Nodes 35

This convention is useful, since a reader who uses the menu could easily miss any such text.
Also, any such post-menu text will be considered part of the menu in Info output (which has
no marker for the end of a menu). Thus, a line beginning with ‘* ’ will likely be incorrectly
handled.

It’s usually best if a node with a menu does not contain much text. If you find yourself with
a lot of text before a menu, we generally recommend moving all but a couple of paragraphs into
a new subnode. Otherwise, it is easy for readers to miss the menu.

4.9.4 The Parts of a Menu

A menu entry has three parts, only the second of which is required:

1. The menu entry name (optional).

2. The name of the node (required).

3. A description of the item (optional).

The template for a generic menu entry looks like this (but see the next section for one more
possibility):

* menu-entry-name: node-name. description

Follow the menu entry name with a single colon, and follow the node name with tab, comma,
newline, or the two characters period and space (‘. ’).

The third part of a menu entry is a descriptive phrase or sentence. Menu entry names and
node names are often short; the description explains to the reader what the node is about. A
useful description complements the node name rather than repeats it. The description, which
is optional, can spread over multiple lines; if it does, some authors prefer to indent the second
line while others prefer to align it with the first (and all others). It’s up to you. An empty line,
or the next menu entry, ends a description.

Space characters in a menu are preserved as-is in the Info output; this allows you to format the
menu as you wish. Unfortunately you must type node names without any extra spaces or some
versions of some Info readers will not find the node (see Section 4.4 [Node Line Requirements],
page 29).

makeinfo warns when the text of a menu item (and node names and cross-references) contains
a problematic construct that will interfere with its parsing in Info. If you don’t want to see the
warnings, you can set the customization variable INFO_SPECIAL_CHARS_WARNING to ‘0’ (see
Section 20.6.5 [Other Customization Variables], page 168).

4.9.5 Less Cluttered Menu Entry

When the menu entry name and node name are the same, you can write the name immediately
after the asterisk and space at the beginning of the line and follow the name with two colons.

For example, write

* Name:: description

instead of

* Name: Name. description

We recommend using the node name for the menu entry name whenever possible, since it
reduces visual clutter in the menu.

4.9.6 Referring to Other Info Files

You can create a menu entry that enables a reader in Info to go to a node in another Info file
by writing the file name in parentheses just before the node name. Some examples:



Chapter 4: Nodes 36

@menu

* first-entry-name:(filename)nodename. description

* (filename)second-node:: description

@end menu

For example, to refer directly to the ‘Outlining’ and ‘Rebinding’ nodes in the Emacs Manual,
you could write a menu like this:

@menu

* Outlining: (emacs)Outline Mode. The major mode for

editing outlines.

* (emacs)Rebinding:: How to redefine the

meaning of a key.

@end menu

If you do not list the node name, but only name the file, then Info presumes that you are
referring to the ‘Top’ node. Examples:

* Info: (info). Documentation browsing system.

* (emacs):: The extensible, self-documenting

text editor.

The GNU Emacs Texinfo mode menu updating commands only work with nodes within the
current buffer, so you cannot use them to create menus that refer to other files. You must write
such menus by hand.



37

5 Chapter Structuring

Texinfo’s chapter structuring commands divide a document into a hierarchy of chapters, sections,
subsections, and subsubsections. These commands generate large headings in the text, like the
one above. They also provide information for generating the table of contents (see Section 3.5
[Generating a Table of Contents], page 21).

Normally you put a @node command immediately before each chapter structuring command.
See Chapter 4 [Nodes], page 27.

5.1 Tree Structure of Sections

A Texinfo file is usually structured like a book with chapters, sections, subsections, and the like.
This structure can be visualized as a tree (or rather as an upside-down tree) with the root at
the top and the levels corresponding to chapters, sections, subsection, and subsubsections.

Here is a diagram that shows a Texinfo file with three chapters, each with two sections.

Top

|

-------------------------------------

| | |

Chapter 1 Chapter 2 Chapter 3

| | |

-------- -------- --------

| | | | | |

Section Section Section Section Section Section

1.1 1.2 2.1 2.2 3.1 3.2

In a Texinfo file that has this structure, the beginning of Chapter 2 would be written like
this:

@node Chapter 2

@chapter Chapter 2

For purposes of example, here is how it would be written with explicit node pointers:

@node Chapter 2, Chapter 3, Chapter 1, Top

@chapter Chapter 2

The chapter structuring commands are described in the sections that follow; the @node

command is described in the previous chapter (see Chapter 4 [Nodes], page 27).

5.2 Structuring Command Types

The chapter structuring commands fall into four groups or series, each of which contains struc-
turing commands corresponding to the hierarchical levels of chapters, sections, subsections, and
subsubsections.

The four groups of commands are the @chapter series, the @unnumbered series, the @appendix
series, and the @heading series. Each command produces a title with a different appearance
in the body of the document. Some of the commands list their titles in the tables of contents,
while others do not. Here are the details:

• The @chapter and @appendix series of commands produce numbered or lettered entries
both in the body of a document and in its table of contents.

• The @unnumbered series of commands produce unnumbered entries both in the body of a
document and in its table of contents. The @top command, which has a special use, is a
member of this series (see Section 4.6 [@top Command], page 31). An @unnumbered section
is a normal part of the document structure.



Chapter 5: Chapter Structuring 38

• The @heading series of commands produce simple unnumbered headings that do not appear
in a table of contents, are not associated with nodes, and cannot be cross-referenced. These
heading commands never start a new page.

When a @setchapternewpage command says to do so, the @chapter, @unnumbered, and
@appendix commands start new pages in the printed manual; the @heading commands do not.
See Section 3.7.2 [@setchapternewpage], page 23.

Here is a summary:
No new page

Numbered Unnumbered Lettered/numbered Unnumbered
In contents In contents In contents Not in contents

@top @majorheading

@chapter @unnumbered @appendix @chapheading

@section @unnumberedsec @appendixsec @heading

@subsection @unnumberedsubsec @appendixsubsec @subheading

@subsubsection @unnumberedsubsubsec @appendixsubsubsec @subsubheading

5.3 @chapter: Chapter Structuring

@chapter identifies a chapter in the document–the highest level of the normal document struc-
turing hierarchy. Write the command at the beginning of a line and follow it on the same line
by the title of the chapter. The chapter is numbered automatically, starting from 1.

For example, the present chapter in this manual is entitled “@chapter: Chapter Structuring”;
the @chapter line looks like this:

@chapter @code{@@chapter}: Chapter Structuring

In TEX, the @chapter command produces a chapter heading in the document.

In Info and plain text output, the @chapter command causes the title to appear on a line by
itself, with a line of asterisks inserted underneath. So, the above example produces the following
output:

5 Chapter Structuring

*********************

In HTML, the @chapter command produces an <h2>-level header by default (controlled by
the CHAPTER_HEADER_LEVEL customization variable, see Section 20.6.5 [Other Customization
Variables], page 168).

In the XML and Docbook output, a <chapter> element is produced that includes all the
following sections, up to the next chapter.

5.4 @unnumbered, @appendix: Chapters with Other Labeling

Use the @unnumbered command to start a chapter-level element that appears without chapter
numbers of any kind. Use the @appendix command to start an appendix that is labeled by letter
(‘A’, ‘B’, . . . ) instead of by number; appendices are also at the chapter level of structuring.

Write an @appendix or @unnumbered command at the beginning of a line and follow it on
the same line by the title, just as with @chapter.

Texinfo also provides a command @centerchap, which is analogous to @unnumbered, but
centers its argument in the printed and HTML outputs. This kind of stylistic choice is not
usually offered by Texinfo. It may be suitable for short documents.

With @unnumbered, if the name of the associated node is one of these English words (case-
insensitive):

Acknowledgements Colophon Dedication Preface

then the Docbook output uses corresponding special tags (<preface>, etc.) instead of the default
<chapter>. The argument to @unnumbered itself can be anything, and is output as the following
<title> text as usual.



Chapter 5: Chapter Structuring 39

5.5 @majorheading, @chapheading: Chapter-level Headings

The @majorheading and @chapheading commands produce chapter-like headings in the body
of a document.

However, neither command produces an entry in the table of contents, and neither command
causes TEX to start a new page in a printed manual.

In TEX, a @majorheading command generates a larger vertical whitespace before the heading
than a @chapheading command but is otherwise the same.

In Info and plain text, the @majorheading and @chapheading commands produce the same
output as @chapter: the title is printed on a line by itself with a line of asterisks underneath.
Similarly for HTML. The only difference is the lack of numbering and the lack of any association
with nodes. See Section 5.3 [@chapter], page 38.

5.6 @section: Sections Below Chapters

An @section command identifies a section within a chapter unit, whether created with
@chapter, @unnumbered, or @appendix, following the numbering scheme of the chapter-level
command. Thus, within a @chapter chapter numbered ‘1’, the sections are numbered ‘1.1’,
‘1.2’, etc.; within an @appendix “chapter” labeled ‘A’, the sections are numbered ‘A.1’, ‘A.2’,
etc.; within an @unnumbered chapter, the section gets no number. The output is underlined
with ‘=’ in Info and plain text.

To make a section, write the @section command at the beginning of a line and follow it on
the same line by the section title. For example,

@section This is a section

might produce the following in Info:

5.7 This is a section

=====================

Section titles are listed in the table of contents.

The TEX, HTML, Docbook, and XML output is all analogous to the chapter-level output,
just “one level down”; see Section 5.3 [@chapter], page 38.

5.7 @unnumberedsec, @appendixsec, @heading

The @unnumberedsec, @appendixsec, and @heading commands are, respectively, the unnum-
bered, appendix-like, and heading-like equivalents of the @section command (see the previous
section).

@unnumberedsec and @appendixsec do not need to be used in ordinary circumstances, be-
cause @section may also be used within @unnumbered and @appendix chapters; again, see the
previous section.

@unnumberedsec

The @unnumberedsec command may be used within an unnumbered chapter or
within a regular chapter or appendix to produce an unnumbered section.

@appendixsec

@appendixsection

@appendixsection is a longer spelling of the @appendixsec command; the two are
synonymous.

Conventionally, the @appendixsec or @appendixsection command is used only
within appendices.



Chapter 5: Chapter Structuring 40

@heading You may use the @heading command (almost) anywhere for a section-style heading
that will not appear in the table of contents. The @heading-series commands can
appear inside most environments, for example, though pathological and useless lo-
cations such as inside @titlepage, as an argument to another command, etc., are
not allowed.

5.8 @subsection: Subsections Below Sections

Subsections are to sections as sections are to chapters; see Section 5.6 [@section], page 39. In
Info and plain text, subsection titles are underlined with ‘-’. For example,

@subsection This is a subsection

might produce

1.2.3 This is a subsection

--------------------------

Subsection titles are listed in the table of contents.

The TEX, HTML, Docbook, and XML output is all analogous to the chapter-level output,
just “two levels down”; see Section 5.3 [@chapter], page 38.

5.9 The @subsection-like Commands

The @unnumberedsubsec, @appendixsubsec, and @subheading commands are, respectively, the
unnumbered, appendix-like, and heading-like equivalents of the @subsection command. (See
Section 5.8 [@subsection], page 40.)

@unnumberedsubsec and @appendixsubsec do not need to be used in ordinary circumstances,
because @subsection may also be used within sections of @unnumbered and @appendix chapters
(see Section 5.6 [@section], page 39).

An @subheading command produces a heading like that of a subsection except that it is
not numbered and does not appear in the table of contents. Similarly, an @unnumberedsubsec

command produces an unnumbered heading like that of a subsection and an @appendixsubsec

command produces a subsection-like heading labeled with a letter and numbers; both of these
commands produce headings that appear in the table of contents. In Info and plain text, the
@subsection-like commands generate a title underlined with hyphens.

5.10 @subsection and Other Subsub Commands

The fourth and lowest level sectioning commands in Texinfo are the ‘subsub’ commands. They
are:

@subsubsection

Subsubsections are to subsections as subsections are to sections. (See Section 5.8
[@subsection], page 40.) Subsubsection titles appear in the table of contents.

@unnumberedsubsubsec

Unnumbered subsubsection titles appear in the table of contents, but lack numbers.
Otherwise, unnumbered subsubsections are the same as subsubsections.

@appendixsubsubsec

Conventionally, appendix commands are used only for appendices and are lettered
and numbered appropriately. They also appear in the table of contents.

@subsubheading

The @subsubheading command may be used anywhere that you want a small head-
ing that will not appear in the table of contents.



Chapter 5: Chapter Structuring 41

As with subsections, @unnumberedsubsubsec and @appendixsubsubsec do not need to be
used in ordinary circumstances, because @subsubsection may also be used within subsections
of @unnumbered and @appendix chapters (see Section 5.6 [@section], page 39).

In Info, ‘subsub’ titles are underlined with periods. For example,

@subsubsection This is a subsubsection

might produce

1.2.3.4 This is a subsubsection

...............................

The TEX, HTML, Docbook, and XML output is all analogous to the chapter-level output,
just “three levels down”; see Section 5.3 [@chapter], page 38.

5.11 @part: Groups of Chapters

The final sectioning command is @part, to mark a part of a manual, that is, a group of chapters
or (rarely) appendices. This behaves quite differently from the other sectioning commands, to
fit with the way such “parts” are conventionally used in books.

No @node command is associated with @part. Just write the command on a line by itself,
including the part title, at the place in the document you want to mark off as starting that part.
For example:

@part Part I:@* The beginning

As can be inferred from this example, no automatic numbering or labeling of the @part text
is done. The text is taken as-is.

Because parts are not associated with nodes, no general text can follow the @part line. To
produce the intended output, it must be followed by a chapter-level command (including its
node). Thus, to continue the example:

@part Part I:@* The beginning

@node Introduction

@chapter Introduction

...

In the TEX output, the @part text is included in both the normal and short tables of contents
(see Section 3.5 [Contents], page 21), without a page number (since that is the normal conven-
tion). In addition, a “part page” is output in the body of the document, with just the @part

text. In the example above, the @* causes a line break on the part page (but is replaced with a
space in the tables of contents). This part page is always forced to be on an odd (right-hand)
page, regardless of the chapter pagination (see Section 3.7.2 [@setchapternewpage], page 23).

In the HTML output, the @part text is similarly included in the tables of contents, and a
heading is included in the main document text, as part of the following chapter or appendix
node.

In the XML and Docbook output, the <part> element includes all the following chapters, up
to the next <part>. A <part> containing chapters is also closed at an appendix.

In the Info and plain text output, @part has no effect.

@part is ignored when raising or lowering sections (see next section). That is, it is never
lowered and nothing can be raised to it.



Chapter 5: Chapter Structuring 42

5.12 Raise/lower Sections: @raisesections and @lowersections

The @raisesections and @lowersections commands implicitly raise and lower the hierarchical
level of following chapters, sections and the other sectioning commands (excluding parts).

That is, the @raisesections command changes sections to chapters, subsections to sections,
and so on. Conversely, the @lowersections command changes chapters to sections, sections
to subsections, and so on. Thus, a @lowersections command cancels a @raisesections com-
mand, and vice versa.

You can use @lowersections to include text written as an outer or standalone Texinfo file in
another Texinfo file as an inner, included file (see Chapter 18 [Include Files], page 140). Typical
usage looks like this:

@lowersections

@include somefile.texi

@raisesections

(Without the @raisesections, all the subsequent sections in the main file would also be low-
ered.)

If the included file being lowered has a @top node, you’ll need to conditionalize its inclusion
with a flag (see Section 16.5.1 [@set @value], page 126).

As a practical matter, you generally only want to raise or lower large chunks, usually in
external files as shown above. The final result has to have menus that take the raising and low-
ering into account, so you cannot just arbitrarily sprinkle @raisesections and @lowersections

commands throughout the document.

Repeated use of the commands continues to raise or lower the hierarchical level a step at a
time. An attempt to raise above ‘chapter’ reproduces chapter commands; an attempt to lower
below ‘subsubsection’ reproduces subsubsection commands. Also, lowered subsubsections and
raised chapters will not work with makeinfo’s feature of implicitly determining node pointers,
since the menu structure cannot be represented correctly.

Write each @raisesections and @lowersections command on a line of its own.



43

6 Cross-references

Cross-references are used to refer the reader to other parts of the same or different Texinfo files.

6.1 What References Are For

Often, but not always, a printed document should be designed so that it can be read sequentially.
People tire of flipping back and forth to find information that should be presented to them as
they need it.

However, in any document, some information will be too detailed for the current context,
or incidental to it; use cross-references to provide access to such information. Also, an online
help system or a reference manual is not like a novel; few read such documents in sequence
from beginning to end. Instead, people look up what they need. For this reason, such creations
should contain many cross references to help readers find other information that they may not
have read.

In a printed manual, a cross-reference results in a page reference, unless it is to another
manual altogether, in which case the cross-reference names that manual. In Info, a cross-
reference results in an entry that you can follow using the Info ‘f’ command. (See Section
“Following cross-references” in Info.) In HTML, a cross-reference results in an hyperlink.

The various cross-reference commands use nodes (or anchors, see Section 6.8 [@anchor],
page 49) to define cross-reference locations. TEX needs nodes to define cross-reference locations.
When TEX generates a DVI file, it records each node’s page number and uses the page numbers
in making references. Thus, even if you are writing a manual that will only be printed, and not
used online, you must nonetheless write @node lines in order to name the places to which you
make cross-references.

6.2 Different Cross-reference Commands

There are three different cross-reference commands:

@xref Used to start a sentence in the printed manual and in HTML with ‘See . . . ’ or an
Info cross-reference saying ‘*Note name: node.’.

@ref Used within or, more often, at the end of a sentence; produces just the reference in
the printed manual and in HTML without the preceding ‘See’ (same as @xref for
Info).

@pxref Used within parentheses, at the end of a sentence, or otherwise before punctuation,
to make a reference. Its output starts with a lowercase ‘see’ in the printed manual
and in HTML, and a lowercase ‘*note’ in Info. (‘p’ is for ‘parenthesis’.)

Additionally, there are commands to produce references to documents outside the Texinfo
system. The @cite command is used to make references to books and manuals. @url produces
a URL, for example a reference to a page on the World Wide Web. @inforef is used to make a
reference to an Info file for which there is no printed manual.

6.3 Parts of a Cross-reference

A cross-reference command requires only one argument, which is the name of the node to which
it refers. Here is a simple example:

@xref{Node name}.

In Info output, this produces

*Note Node name::.

In a printed manual, the output is



Chapter 6: Cross-references 44

See Section nnn [Node name], page ppp.

A cross-reference command may contain up to four additional arguments. By using these
arguments, you can provide a cross-reference name, a topic description or section title for the
printed output, the name of a different manual file, and the name of a different printed manual.
To refer to another manual as a whole, the manual file and/or the name of the printed manual
are the only required arguments (see Section 6.5 [Referring to a Manual as a Whole], page 47).

Here is an example of a full five-part cross-reference:

@xref{Node name, Online Label, Printed Label,

info-file-name, A Printed Manual}, for details.

which produces

*Note Online Label: (info-file-name)Node name,

for details.

in Info and

See section “Printed Label” in A Printed Manual, for details.

in a printed book.

The five possible arguments for a cross-reference are:

1. The node or anchor name (required, except for reference to whole manuals). This is the
location to which the cross-reference takes you. In a printed document, the location of the
node provides the page reference only for references within the same document. Use @node

to define the node (see Section 4.3 [Writing a Node], page 28), or @anchor (see Section 6.8
[@anchor], page 49).

Write a node name in a cross-reference in exactly the same way as in the @node line,
including the same capitalization; otherwise, the formatters may not find the reference.

2. A label for online output. It is usually omitted; then the topic description (third argument)
is used if it was specified; if that was omitted as well, the node name is used.

3. A label for printed output. Often, this is the title or topic of the section. This is used as
the name of the reference in the printed manual. If omitted, the node name is used.

4. The name of the manual file in which the reference is located, if it is different from the
current file. This name is used both for Info and HTML.

5. The name of a printed manual from a different Texinfo file.

The template for a full five argument cross-reference looks like this:

@xref{node-name, online-label, printed-label,

info-file-name, printed-manual-title}

Whitespace before and after the commas separating these arguments is ignored. To include a
comma in one of the arguments, use @comma{} (see Section 12.1.3 [Inserting a Comma], page 90).

When processing with TeX, a comma is automatically inserted after the page number for
cross-references to within the same manual, unless the closing brace of the argument is followed
by non-whitespace (such as a comma or period). This gives you the choice of whether to have
a comma there in Info or HTML output. For example,

@xref{Another Section} for more information

produces ‘See Another Section, page ppp, for more information’ in the printed output, and
‘*Note Another Section:: for more information’ in the Info output.

If an unwanted comma is added, follow the argument with a command such as ‘@:’. For
example, ‘@xref{Hurricanes}@: --- for the details’ produces

See Hurricanes, page ppp — for the details

instead of ‘See Hurricanes, page ppp, — for the details’.



Chapter 6: Cross-references 45

Cross-references with one, two, three, four, and five arguments are described separately
following the description of @xref.

makeinfo warns when the text of a cross-reference (and node names and menu items) contains
a problematic construct that will interfere with its parsing in Info. If you don’t want to see the
warnings, you can set the customization variable INFO_SPECIAL_CHARS_WARNING to ‘0’ (see
Section 20.6.5 [Other Customization Variables], page 168).

6.4 @xref

The @xref command generates a cross-reference for the beginning of a sentence.

6.4.1 @xref with One Argument

The simplest form of @xref takes one argument, the name of another node in the same Texinfo
file.

For example,

@xref{Tropical Storms}.

produces

*Note Tropical Storms::.

in Info and

See Section 3.1 [Tropical Storms], page 24.

in a printed manual.

6.4.2 @xref with Two Arguments

With two arguments, the second is used as a label for the online output.

The template is like this:

@xref{node-name, online-label}.

For example,

@xref{Electrical Effects, Lightning}.

produces:

*Note Lightning: Electrical Effects.

in Info and

See Section 5.2 [Electrical Effects], page 57.

in a printed manual, where the node name is printed.

The second argument to cross-references must observe some of the restrictions for node names
(see Section 4.4 [Node Line Requirements], page 29). The most common issue is that colons
cannot be used, since that interferes with the parsing of the Info file.

6.4.3 @xref with Three Arguments

A third argument replaces the node name in the TEX output. The third argument should be
the name of the section in the printed output, or else state the topic discussed by that section.

The template is like this:

@xref{node-name, online-label, printed-label}.

For example,

@xref{Electrical Effects, Lightning, Thunder and Lightning},

for details.

produces

*Note Lightning: Electrical Effects, for details.



Chapter 6: Cross-references 46

in Info and

See Section 5.2 [Thunder and Lightning], page 57, for details.

in a printed manual.

If a third argument is given and the second one is empty, then the third argument serves for
both. (Note how two commas, side by side, mark the empty second argument.)

@xref{Electrical Effects, , Thunder and Lightning},

for details.

produces

*Note Thunder and Lightning: Electrical Effects, for details.

in Info and

See Section 5.2 [Thunder and Lightning], page 57, for details.

in a printed manual.

The third argument to cross-references must observe some of the restrictions for node names
(see Section 4.4 [Node Line Requirements], page 29). The most common issue is that colons
cannot be used, since that interferes with the parsing of the Info file.

As a practical matter, it is often best to write cross-references with just the first argument
if the node name and the section title are the same (or nearly so), and with the first and third
arguments only if the node name and title are different.

Texinfo offers a setting to use the section title instead of node names by default in cross-
references (an explicitly specified third argument still takes precedence):

@xrefautomaticsectiontitle on

Typically this line would be given near the beginning of the document and used for the whole
manual. But you can turn it off if you want (@xrefautomaticsectiontitle off), for example,
if you’re including some other sub-document that doesn’t have suitable section names.

6.4.4 @xref with Four and Five Arguments

In a cross-reference, a fourth argument specifies the name of another Info file, different from the
file in which the reference appears, and a fifth argument specifies its title as a printed manual.

The full template is:

@xref{node-name, online-label, printed-label,

info-file-name, printed-manual-title}.

For example,

@xref{Electrical Effects, Lightning, Thunder and Lightning,

weather, An Introduction to Meteorology}.

produces this output in Info:

*Note Lightning: (weather)Electrical Effects.

As you can see, the name of the Info file is enclosed in parentheses and precedes the name of
the node.

In a printed manual, the reference looks like this:

See section “Thunder and Lightning” in An Introduction to Meteorology.

The title of the printed manual is typeset like @cite; and the reference lacks a page number since
TEX cannot know to which page a reference refers when that reference is to another manual.

Next case: often, you will leave out the second argument when you use the long version of
@xref. In this case, the third argument, the topic description, will be used as the cross-reference
name in Info. For example,

@xref{Electrical Effects, , Thunder and Lightning,



Chapter 6: Cross-references 47

weather, An Introduction to Meteorology}.

produces

*Note Thunder and Lightning: (weather)Electrical Effects.

in Info and

See section “Thunder and Lightning” in An Introduction to Meteorology.

in a printed manual.

Next case: If the node name and the section title are the same in the other manual, you
may also leave out the section title. In this case, the node name is used in both instances. For
example,

@xref{Electrical Effects,,,

weather, An Introduction to Meteorology}.

produces

*Note (weather)Electrical Effects::.

in Info and

See section “Electrical Effects” in An Introduction to Meteorology.

in a printed manual.

A very unusual case: you may want to refer to another manual file that is within a single
printed manual—when multiple Texinfo files are incorporated into the same TEX run but can
create separate Info or HTML output files. In this case, you need to specify only the fourth
argument, and not the fifth.

Finally, it’s also allowed to leave out all the arguments except the fourth and fifth, to refer
to another manual as a whole. See the next section.

6.5 Referring to a Manual as a Whole

Ordinarily, you must always name a node in a cross-reference. However, it’s not unusual to want
to refer to another manual as a whole, rather than a particular section within it. In this case,
giving any section name is an unnecessary distraction.

So, with cross-references to other manuals (see Section 6.4.4 [Four and Five Arguments],
page 46), if the first argument is either ‘Top’ (capitalized just that way) or omitted entirely, and
the third argument is omitted, the printed output includes no node or section name. (The Info
output includes ‘Top’ if it was given.) For example,

@xref{Top,,, make, The GNU Make Manual}.

produces

*Note (make)Top::.

and

See The GNU Make Manual.

Info readers will go to the Top node of the manual whether or not the ‘Top’ node is explicitly
specified.

It’s also possible (and is historical practice) to refer to a whole manual by specifying the
‘Top’ node and an appropriate entry for the third argument to the @xref command. Using this
idiom, to make a cross-reference to The GNU Make Manual, you would write:

@xref{Top,, Overview, make, The GNU Make Manual}.

which produces

*Note Overview: (make)Top.

in Info and



Chapter 6: Cross-references 48

See section “Overview” in The GNU Make Manual.

in a printed manual.

In this example, ‘Top’ is the name of the first node, and ‘Overview’ is the name of the
first section of the manual. There is no widely-used convention for naming the first section in a
printed manual, this is just what the Make manual happens to use. This arbitrariness of the first
name is a principal reason why omitting the third argument in whole-manual cross-references is
preferable.

6.6 @ref

@ref is nearly the same as @xref except that it does not generate a ‘See’ in the printed output,
just the reference itself. This makes it useful as the last part of a sentence.

For example,

For more information, @pxref{This}, and @ref{That}.

produces in Info:

For more information, *note This::, and *note That::.

and in printed output:

For more information, see Section 1.1 [This], page 1, and Section 1.2 [That], page 2.

The @ref command can tempt writers to express themselves in a manner that is suitable for
a printed manual but looks awkward in the Info format. Bear in mind that your audience could
be using both the printed and the Info format. For example:

Sea surges are described in @ref{Hurricanes}.

looks ok in the printed output:

Sea surges are described in Section 6.7 [Hurricanes], page 72.

but is awkward to read in Info, “note” being a verb:

Sea surges are described in *note Hurricanes::.

6.7 @pxref

The parenthetical reference command, @pxref, is nearly the same as @xref, but it is best used
within parentheses. The command differs from @xref in that TEX typesets the reference for the
printed manual with a lowercase ‘see’ rather than an uppercase ‘See’.

With one argument, a parenthetical cross-reference looks like this:

... storms cause flooding (@pxref{Hurricanes}) ...

which produces

... storms cause flooding (*note Hurricanes::) ...

in Info and

. . . storms cause flooding (see Section 6.7 [Hurricanes], page 72) . . .

in a printed manual.

With two arguments, a parenthetical cross-reference has this template:

... (@pxref{node-name, cross-reference-name}) ...

which produces

... (*note cross-reference-name: node-name.) ...

in Info and

. . . (see Section nnn [node-name], page ppp) . . .

in a printed manual.



Chapter 6: Cross-references 49

@pxref can be used with up to five arguments, just like @xref (see Section 6.4 [@xref],
page 45).

In past versions of Texinfo, it was not allowed to write punctuation after a @pxref, so it could
be used only before a right parenthesis. This is no longer the case. The effect of ‘@pxref{node-
name}’ is similar to that of ‘see @ref{node-name}’. However, in many circumstance the latter
is preferrable, as this makes it clear in the Info output that the word “see” should be present.

6.8 @anchor: Defining Arbitrary Cross-reference Targets

An anchor is a position in your document, labelled so that cross-references can refer to it, just
as they can to nodes. You create an anchor with the @anchor command, and give the label as
a normal brace-delimited argument. For example:

This marks the @anchor{x-spot}spot.

...

@xref{x-spot,,the spot}.

produces:

This marks the spot.

...

See [the spot], page 1.

As you can see, the @anchor command itself produces no output. This example defines an
anchor ‘x-spot’ just before the word ‘spot’. You can refer to it later with an @xref or other
cross reference command, as shown (see Chapter 6 [Cross References], page 43).

It is best to put @anchor commands just before the position you wish to refer to; that way,
the reader’s eye is led on to the correct text when they jump to the anchor. You can put
the @anchor command on a line by itself if that helps readability of the source. Whitespace
(including newlines) is ignored after @anchor.

Anchor names and node names may not conflict. Anchors and nodes are given similar
treatment in some ways; for example, the goto-node command takes either an anchor name or
a node name as an argument. (See Section “Go to node” in Info.)

Also like node names, anchor names cannot include some characters (see Section 4.4 [Node
Line Requirements], page 29).

Because of this duality, when you delete or rename a node, it is usually a good idea to define
an @anchor with the old name. That way, any links to the old node, whether from other Texinfo
manuals or general web pages, keep working.

6.9 @inforef: Cross-references to Info-only Material

@inforef is used for making cross-references to Info documents—even from a printed manual.
This might be because you want to refer to conditional @ifinfo text (see Chapter 16 [Con-
ditionals], page 122), or because printed output is not available (perhaps because there is no
Texinfo source), among other possibilities.

The command takes either two or three arguments, in the following order:

1. The node name.

2. The cross-reference name (optional).

3. The Info file name.

The template is:

@inforef{node-name, cross-reference-name, info-file-name}



Chapter 6: Cross-references 50

For example,

@inforef{Advanced, Advanced Info commands, info},

for more information.

produces (in Info):

*Note Advanced Info commands: (info)Advanced,

for more information.

and (in the printed output):

See Info file info, node ‘Advanced’, for more information.

(This particular example is not realistic, since the Info manual is written in Texinfo, so all
formats are available. In fact, we don’t know of any extant Info-only manuals.)

The converse of @inforef is @cite, which is used to refer to printed works for which no Info
form exists. See Section 6.11 [@cite], page 52.

6.10 @url, @uref{url[, text][, replacement]}

@url produces a reference to a uniform resource locator (url). It takes one mandatory argument,
the url, and two optional arguments which control the text that is displayed. In HTML and
PDF output, @url produces a link you can follow. (To merely indicate a url without creating a
link people can follow, use @indicateurl, see Section 7.1.15 [@indicateurl], page 60.)

@uref is a synonym for @url. (Originally, @url had the meaning of @indicateurl and @uref

was required to produce a working link, but in practice @url was almost always misused. So
we’ve changed the meaning.)

The second argument, if specified, is the text to display (the default is the url itself); in Info,
DVI, and PDF output, but not in HTML output, the url is output in addition to this text.

The third argument, if specified, is the text to display, but in this case the url is not output
in any format. This is useful when the text is already sufficiently referential, as in a man page.
Also, if the third argument is given, the second argument is ignored.

6.10.1 @url Examples

First, here is an example of the simplest form of @url, with just one argument. The given url is
both the target and the visible text of the link:

The official GNU ftp site is @url{http://ftp.gnu.org/gnu}.

produces:

The official GNU ftp site is http://ftp.gnu.org/gnu.

Two-argument form of @url

Here is an example of the two-argument form:

The official @url{http://ftp.gnu.org/gnu, GNU ftp site}

holds programs and texts.

which produces:

The official GNU ftp site (http://ftp.gnu.org/gnu)
holds programs and texts.

that is, the Info (and TEX, etc.) output is this:

The official GNU ftp site (http://ftp.gnu.org/gnu)

holds programs and texts.

while the HTML output is this:

The official <a href="http://ftp.gnu.org/gnu">GNU ftp site</a>

holds programs and texts.

http://ftp.gnu.org/gnu
http://ftp.gnu.org/gnu


Chapter 6: Cross-references 51

Three-argument form of @url

Finally, an example of the three-argument form:

The @url{/man.cgi/1/ls,,ls} program ...

which, except for HTML, produces:

The ls program . . .

but with HTML:

The <a href="/man.cgi/1/ls">ls</a> program ...

By the way, some people prefer to display urls in the unambiguous format:

<URL:http://host/path>

You can use this form in the input file if you wish. We feel it’s not necessary to include the
‘<URL:’ and ‘>’ in the output, since to be useful any software that tries to detect urls in text
already has to detect them without the ‘<URL:’.

6.10.2 URL Line Breaking

TEX allows line breaking within urls at only a few characters (which are special in urls): ‘&’, ‘.’,
‘#’, ‘?’, and ‘/’ (but not between two ‘/’ characters). A tiny amount of stretchable space is also
inserted around these characters to help with line breaking.

For HTML output, modern browsers will also do line breaking within displayed urls. If you
need to allow breaks at other characters you can insert @/ as needed (see Section 13.2 [Line
Breaks], page 105).

By default, in TEX any such breaks at special characters will occur after the character. Some
people prefer such breaks to happen before the special character. This can be controlled with
the @urefbreakstyle command (this command has effect only in TEX):

@urefbreakstyle how

where the argument how is one of these words:

‘after’ (the default) Potentially break after the special characters.

‘before’ Potentially break before the special characters.

‘none’ Do not consider breaking at the special characters at all; any potential breaks must
be manually inserted.

6.10.3 @url PDF Output Format

If the ultimate purpose of a PDF is only to be viewed online, perhaps similar to HTML in some
inchoate way, you may not want the urls to be included in the visible text (just as urls are not
visible to readers of web pages). Texinfo provides a PDF-specific option for this, which must be
used inside @tex:

@tex

\global\urefurlonlylinktrue

@end tex

The result is that @url{http://www.gnu.org, GNU} has the visible output of just ‘GNU’,
with a link target of http://www.gnu.org. Ordinarily, the visible output would include both
the label and the url: ‘GNU (http://www.gnu.org)’.

This option only has effect when the PDF output is produced with the pdfTEX program, not
with other ways of getting from Texinfo to PDF (e.g., TEX to DVI to PDF). Consequently, it is
ok to specify this option unconditionally within @tex, as shown above. It is ignored when DVI
is being produced.

/man.cgi/1/ls
http://www.gnu.org
http://www.gnu.org


Chapter 6: Cross-references 52

6.10.4 PDF Colors

By default, urls and cross-reference links are printed in black in PDF output. Very occasionally,
however, you may want to highlight such “live” links with a different color, as is commonly done
on web pages. Texinfo provides a PDF-specific option for specifying these colors, which must
be used inside @tex:

@tex

\global\def\linkcolor{1 0 0} % red

\global\def\urlcolor{0 1 0} % green

@end tex

\urlcolor changes the color of @url output (both the actual url and any textual label),
while \linkcolor changes the color for cross-references to nodes, etc. They are independent.

The three given values must be numbers between 0 and 1, specifying the amount of red,
green, and blue respectively.

These definitions only have an effect when the PDF output is produced with the pdfTEX
program, not with other ways of getting from Texinfo to PDF (e.g., TEX to DVI to PDF).
Consequently, it is ok to specify this option unconditionally within @tex, as shown above. It is
ignored when DVI is being produced.

We do not recommend colorizing just for fun; unless you have a specific reason to use colors,
best to skip it.

6.11 @cite{reference}
Use the @cite command for the name of a book that lacks a companion Info file. The command
produces italics in the printed manual, and quotation marks in the Info file.

If a book is written in Texinfo, it is better to use a cross-reference command since a reader
can easily follow such a reference in Info. See Section 6.4 [@xref], page 45.



53

7 Marking Text, Words and Phrases

In Texinfo, you can mark words and phrases in a variety of ways. The Texinfo formatters use
this information to determine how to highlight the text. You can specify, for example, whether a
word or phrase is a defining occurrence, a metasyntactic variable, or a symbol used in a program.
Also, you can emphasize text, in several different ways.

7.1 Indicating Definitions, Commands, etc.

Texinfo has commands for indicating just what kind of object a piece of text refers to. For
example, email addresses are marked by @email; that way, the result can be a live link to send
email when the output format supports it. If the email address was simply marked as “print in
a typewriter font”, that would not be possible.

7.1.1 Highlighting Commands are Useful

The commands serve a variety of purposes:

@code{sample-code}

Indicate text that is a literal example of a piece of a program. See Section 7.1.2
[@code], page 54.

@kbd{keyboard-characters}

Indicate keyboard input. See Section 7.1.3 [@kbd], page 55.

@key{key-name}

Indicate the conventional name for a key on a keyboard. See Section 7.1.4 [@key],
page 55.

@samp{text}

Indicate text that is a literal example of a sequence of characters. See Section 7.1.5
[@samp], page 56.

@verb{text}

Write a verbatim sequence of characters. See Section 7.1.6 [@verb], page 57.

@var{metasyntactic-variable}

Indicate a metasyntactic variable. See Section 7.1.7 [@var], page 57.

@env{environment-variable}

Indicate an environment variable. See Section 7.1.8 [@env], page 58.

@file{file-name}

Indicate the name of a file. See Section 7.1.9 [@file], page 58.

@command{command-name}

Indicate the name of a command. See Section 7.1.10 [@command], page 58.

@option{option}

Indicate a command-line option. See Section 7.1.11 [@option], page 58.

@dfn{term}

Indicate the introductory or defining use of a term. See Section 7.1.12 [@dfn],
page 58.

@cite{reference}

Indicate the name of a book. See Section 6.11 [@cite], page 52.

@abbr{abbreviation}

Indicate an abbreviation, such as ‘Comput.’.



Chapter 7: Marking Text, Words and Phrases 54

@acronym{acronym}

Indicate an acronym. See Section 7.1.14 [@acronym], page 59.

@indicateurl{uniform-resource-locator}

Indicate an example (that is, nonfunctional) uniform resource locator. See
Section 7.1.15 [@indicateurl], page 60. (Use @url (see Section 6.10 [@url],
page 50) for live urls.)

@email{email-address[, displayed-text]}

Indicate an electronic mail address. See Section 7.1.16 [@email], page 60.

7.1.2 @code{sample-code}
Use the @code command to indicate text that is a piece of a program and which consists of
entire syntactic tokens. Enclose the text in braces.

Thus, you should use @code for an expression in a program, for the name of a variable or
function used in a program, or for a keyword in a programming language.

Use @code for command names in languages that resemble programming languages, such
as Texinfo. For example, @code and @samp are produced by writing ‘@code{@@code}’ and
‘@code{@@samp}’ in the Texinfo source, respectively.

It is incorrect to alter the case of a word inside a @code command when it appears at the
beginning of a sentence. Most computer languages are case sensitive. In C, for example, Printf
is different from the identifier printf, and most likely is a misspelling of it. Even in languages
which are not case sensitive, it is confusing to a human reader to see identifiers spelled in
different ways. Pick one spelling and always use that. If you do not want to start a sentence
with a command name written all in lowercase, you should rearrange the sentence.

In the Info output, @code results in single quotation marks around the text. In other formats,
@code argument is typeset in a typewriter (monospace) font. For example,

The function returns @code{nil}.

produces this:

The function returns nil.

Here are some cases for which it is preferable not to use @code:

• For shell command names, such as ls (use @command).

• For environment variables, such as TEXINPUTS (use @env).

• For shell options, such as ‘-c’, when such options stand alone (use @option).

• An entire shell command often looks better if written using @samp rather than @code. In
this case, the rule is to choose the more pleasing format.

• For a string of characters shorter than a syntactic token. For example, if you are writing
about ‘goto-ch’, which is just a part of the name for the goto-char Emacs Lisp function,
you should use @samp.

• In general, when writing about the characters used in a token; for example, do not use
@code when you are explaining what letters or printable symbols can be used in the names
of functions. (Use @samp.) Also, you should not use @code to mark text that is considered
input to programs unless the input is written in a language that is like a programming
language. For example, you should not use @code for the keystroke commands of GNU
Emacs (use @kbd instead) although you may use @code for the names of the Emacs Lisp
functions that the keystroke commands invoke.

By default, TEX will consider breaking lines at ‘-’ and ‘_’ characters within @code

and related commands. This can be controlled with @allowcodebreaks (see Section 13.4
[@allowcodebreaks], page 106). The HTML output attempts to respect this for ‘-’, but ul-
timately it is up to the browser’s behavior. For Info, it seems better never to make such breaks.



Chapter 7: Marking Text, Words and Phrases 55

For Info, the quotes are omitted in the output of the @code command and related com-
mands (e.g., @kbd, @command), in typewriter-like contexts such as the @example environment
(see Section 8.4 [@example], page 65) and @code itself, etc.

To control which quoting characters are implicitly inserted by Texinfo processors in the
output of ‘@code’, etc., see the OPEN_QUOTE_SYMBOL and CLOSE_QUOTE_SYMBOL customization
variables (see Section 20.6.5 [Other Customization Variables], page 168). This is separate from
how actual quotation characters in the input document are handled (see Section 12.2 [Inserting
Quote Characters], page 92).

7.1.3 @kbd{keyboard-characters}
Use the @kbd command for characters of input to be typed by users. For example, to refer to
the characters M-a, write:

@kbd{M-a}

and to refer to the characters M-x shell, write:

@kbd{M-x shell}

By default, the @kbd command produces a different font (slanted typewriter instead of normal
typewriter), so users can distinguish the characters that they are supposed to type from those
that the computer outputs.

Since the usage of @kbd varies from manual to manual, you can control the font switching
with the @kbdinputstyle command. This command has no effect on Info output. Write this
command at the beginning of a line with a single word as an argument, one of the following:

‘code’ Always use the same font for @kbd as @code.

‘example’ Use the distinguishing font for @kbd only in @example and similar environments.

‘distinct’
(the default) Always use the distinguishing font for @kbd.

You can embed another @-command inside the braces of a @kbd command. Here, for example,
is the way to describe a command that would be described more verbosely as “press the ‘r’ key
and then press the RETURN key”:

@kbd{r @key{RET}}

This produces: r RET. (The present manual uses the default for @kbdinputstyle.)

You also use the @kbd command if you are spelling out the letters you type; for example:

To give the @code{logout} command,

type the characters @kbd{l o g o u t @key{RET}}.

This produces:

To give the logout command, type the characters l o g o u t RET.

(Also, this example shows that you can add spaces for clarity. If you explicitly want to
mention a space character as one of the characters of input, write @key{SPC} for it.)

7.1.4 @key{key-name}
Use the @key command for the conventional name for a key on a keyboard, as in:

@key{RET}

You can use the @key command within the argument of an @kbd command when the sequence
of characters to be typed includes one or more keys that are described by name.

For example, to produce C-x ESC and M-TAB you would type:

@kbd{C-x @key{ESC}}

@kbd{M-@key{TAB}}



Chapter 7: Marking Text, Words and Phrases 56

Here is a list of the recommended names for keys:

SPC Space

RET Return

LFD Linefeed (however, since most keyboards nowadays do not have a Line-
feed key, it might be better to call this character C-j)

TAB Tab

BS Backspace

ESC Escape

DELETE Delete

SHIFT Shift

CTRL Control

META Meta

There are subtleties to handling words like ‘meta’ or ‘ctrl’ that are names of modifier keys.
When mentioning a character in which the modifier key is used, such as Meta-a, use the @kbd

command alone; do not use the @key command; but when you are referring to the modifier key
in isolation, use the @key command. For example, write ‘@kbd{Meta-a}’ to produce Meta-a and
‘@key{META}’ to produce META.

As a convention in GNU manuals, @key should not be used in index entries.

7.1.5 @samp{text}
Use the @samp command to indicate text that is a literal example or ‘sample’ of a sequence
of characters in a file, string, pattern, etc. Enclose the text in braces. The argument appears
within single quotation marks in both the Info file and the printed manual; in addition, it is
printed in a fixed-width font.

To match @samp{foo} at the end of the line,

use the regexp @samp{foo$}.

produces

To match ‘foo’ at the end of the line, use the regexp ‘foo$’.

Any time you are referring to single characters, you should use @samp unless @kbd or @key

is more appropriate. Also, you may use @samp for entire statements in C and for entire shell
commands—in this case, @samp often looks better than @code. Basically, @samp is a catchall for
whatever is not covered by @code, @kbd, @key, @command, etc.

Only include punctuation marks within braces if they are part of the string you are specifying.
Write punctuation marks outside the braces if those punctuation marks are part of the English
text that surrounds the string. In the following sentence, for example, the commas and period
are outside of the braces:

In English, the vowels are @samp{a}, @samp{e},

@samp{i}, @samp{o}, @samp{u}, and sometimes

@samp{y}.

This produces:

In English, the vowels are ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, and sometimes ‘y’.



Chapter 7: Marking Text, Words and Phrases 57

7.1.6 @verb{chartextchar}
Use the @verb command to print a verbatim sequence of characters.

Like LATEX’s \verb command, the verbatim text can be quoted using any unique delimiter
character. Enclose the verbatim text, including the delimiters, in braces. Text is printed in a
fixed-width font:

How many @verb{|@|}-escapes does one need to print this

@verb{.@a @b.@c.} string or @verb{+@’e?‘{}!‘\+} this?

produces

How many @-escapes does one need to print this

@a @b.@c string or @’e?‘{}!‘\ this?

This is in contrast to @samp (see the previous section), @code, and similar commands; in
those cases, the argument is normal Texinfo text, where the three characters @{} are special, as
usual. With @verb, nothing is special except the delimiter character you choose.

The delimiter character itself may appear inside the verbatim text, as shown above. As
another example, ‘@verb{...}’ prints a single (fixed-width) period.

It is not reliable to use @verb inside other Texinfo constructs. In particular, it does not work
to use @verb in anything related to cross-referencing, such as section titles or figure captions.

7.1.7 @var{metasyntactic-variable}
Use the @var command to indicate metasyntactic variables. A metasyntactic variable is some-
thing that stands for another piece of text. For example, you should use a metasyntactic variable
in the documentation of a function to describe the arguments that are passed to that function.

Do not use @var for the names of normal variables in computer programs. These are
specific names, so @code is correct for them (@code). For example, the Emacs Lisp variable
texinfo-tex-command is not a metasyntactic variable; it is properly formatted using @code.

Do not use @var for environment variables either; @env is correct for them (see the next
section).

The effect of @var in the Info file is to change the case of the argument to all uppercase. In
the printed manual and HTML output, the argument is output in slanted type.

For example,

To delete file @var{filename},

type @samp{rm @var{filename}}.

produces

To delete file filename, type ‘rm filename’.

(Note that @var may appear inside @code, @samp, @file, etc.)

Write a metasyntactic variable all in lowercase without spaces, and use hyphens to make it
more readable. Thus, the Texinfo source for the illustration of how to begin a Texinfo manual
looks like this:

\input texinfo

@@settitle @var{name-of-manual}

This produces:

\input texinfo

@settitle name-of-manual

In some documentation styles, metasyntactic variables are shown with angle brackets, for
example:

..., type rm <filename>

However, that is not the style that Texinfo uses.



Chapter 7: Marking Text, Words and Phrases 58

7.1.8 @env{environment-variable}
Use the @env command to indicate environment variables, as used by many operating systems,
including GNU. Do not use it for metasyntactic variables; use @var for those (see the previous
section).

@env is equivalent to @code in its effects. For example:

The @env{PATH} environment variable ...

produces

The PATH environment variable . . .

7.1.9 @file{file-name}
Use the @file command to indicate text that is the name of a file, buffer, or directory, or is the
name of a node in Info. You can also use the command for file name suffixes. Do not use @file

for symbols in a programming language; use @code.

@file is equivalent to code in its effects. For example,

The @file{.el} files are in

the @file{/usr/local/emacs/lisp} directory.

produces

The .el files are in the /usr/local/emacs/lisp directory.

7.1.10 @command{command-name}
Use the @command command to indicate command names, such as ls or cc.

@command is equivalent to @code in its effects. For example:

The command @command{ls} lists directory contents.

produces

The command ls lists directory contents.

You should write the name of a program in the ordinary text font, rather than using @command,
if you regard it as a new English word, such as ‘Emacs’ or ‘Bison’.

When writing an entire shell command invocation, as in ‘ls -l’, you should use either @samp
or @code at your discretion.

7.1.11 @option{option-name}
Use the @option command to indicate a command-line option; for example, -l or --version

or --output=filename.

@option is equivalent to @code in its effects. For example:

The option @option{-l} produces a long listing.

produces

The option -l produces a long listing.

7.1.12 @dfn{term}
Use the @dfn command to identify the introductory or defining use of a technical term. Use
the command only in passages whose purpose is to introduce a term which will be used again
or which the reader ought to know. Mere passing mention of a term for the first time does
not deserve @dfn. The command generates italics in the printed manual, and double quotation
marks in the Info file. For example:

Getting rid of a file is called @dfn{deleting} it.

produces



Chapter 7: Marking Text, Words and Phrases 59

Getting rid of a file is called deleting it.

As a general rule, a sentence containing the defining occurrence of a term should be a def-
inition of the term. The sentence does not need to say explicitly that it is a definition, but it
should contain the information of a definition—it should make the meaning clear.

7.1.13 @abbr{abbreviation[, meaning]}
You can use the @abbr command for general abbreviations. The abbreviation is given as the
single argument in braces, as in ‘@abbr{Comput.}’. As a matter of style, or for particular
abbreviations, you may prefer to omit periods, as in ‘@abbr{Mr} Stallman’.

@abbr accepts an optional second argument, intended to be used for the meaning of the
abbreviation.

If the abbreviation ends with a lowercase letter and a period, and is not at the end of a
sentence, and has no second argument, remember to use the @. command (see Section 12.3.3
[Ending a Sentence], page 94) to get the correct spacing. However, you do not have to use @.

within the abbreviation itself; Texinfo automatically assumes periods within the abbreviation
do not end a sentence.

In TEX and in the Info output, the first argument is printed as-is; if the second argument is
present, it is printed in parentheses after the abbreviation. In HTML the <abbr> tag is used; in
Docbook, the <abbrev> tag is used. For instance:

@abbr{Comput. J., Computer Journal}

produces:

Comput. J. (Computer Journal)

For abbreviations consisting of all capital letters, you may prefer to use the @acronym com-
mand instead. See the next section for more on the usage of these two commands.

7.1.14 @acronym{acronym[, meaning]}
You can use the @acronym command for abbreviations written in all capital letters, such as
‘NASA’. The abbreviation is given as the single argument in braces, as in ‘@acronym{NASA}’.
As a matter of style, or for particular acronyms, you may prefer to use periods, as in
‘@acronym{N.A.S.A.}’.

@acronym accepts an optional second argument, intended to be used for the meaning of the
acronym.

If the acronym is at the end of a sentence, and if there is no second argument, remember
to use the @. or similar command (see Section 12.3.3 [Ending a Sentence], page 94) to get the
correct spacing.

In TEX, the acronym is printed in slightly smaller font. In the Info output, the argument is
printed as-is. In either format, if the second argument is present, it is printed in parentheses
after the acronym. In HTML and Docbook the <acronym> tag is used.

For instance (since GNU is a recursive acronym, we use @acronym recursively):

@acronym{GNU, @acronym{GNU}’s Not Unix}

produces:

GNU (GNU’s Not Unix)

In some circumstances, it is conventional to print family names in all capitals. Don’t use
@acronym for this, since a name is not an acronym. Use @sc instead (see Section 7.2.2 [Smallcaps],
page 61).

@abbr and @acronym are closely related commands: they both signal to the reader that a
shortened form is being used, and possibly give a meaning. When choosing whether to use these
two commands, please bear the following in mind.



Chapter 7: Marking Text, Words and Phrases 60

− In common English usage, acronyms are a subset of abbreviations: they include pronounce-
able words like ‘NATO’, ‘radar’, and ‘snafu’; some sources also include syllable acronyms
like ‘Usenet’, hybrids like ‘SIGGRAPH’, and unpronounceable initialisms like ‘FBI’.

− In Texinfo, an acronym (but not an abbreviation) should consist only of capital letters and
periods, no lowercase.

− In TEX, an acronym (but not an abbreviation) is printed in a slightly smaller font.

− Some browsers place a dotted bottom border under abbreviations but not acronyms.

− It usually turns out to be quite difficult and/or time-consuming to consistently use @acronym
for all sequences of uppercase letters. Furthermore, it looks strange for some acronyms to
be in the normal font size and others to be smaller. Thus, a simpler approach you may wish
to consider is to avoid @acronym and just typeset everything as normal text in all capitals:
‘GNU’, producing the output ‘GNU’.

− In general, it’s not essential to use either of these commands for all abbreviations; use your
judgment. Text is perfectly readable without them.

7.1.15 @indicateurl{uniform-resource-locator}
Use the @indicateurl command to indicate a uniform resource locator on the World Wide
Web. This is purely for markup purposes and does not produce a link you can follow (use the
@url or @uref command for that, see Section 6.10 [@url], page 50). @indicateurl is useful for
urls which do not actually exist. For example:

For example, the url might be @indicateurl{http://example.org/path}.

which produces:

For example, the url might be ‘http://example.org/path’.

The output from @indicateurl is more or less like that of @samp (see Section 7.1.5 [@samp],
page 56).

7.1.16 @email{email-address[, displayed-text]}
Use the @email command to indicate an electronic mail address. It takes one mandatory argu-
ment, the address, and one optional argument, the text to display (the default is the address
itself).

In Info, the address is shown in angle brackets, preceded by the text to display if any. In
TEX, the angle brackets are omitted. In HTML output, @email produces a ‘mailto’ link that
usually brings up a mail composition window. For example:

Send bug reports to @email{bug-texinfo@@gnu.org},

suggestions to the @email{bug-texinfo@@gnu.org, same place}.

produces

Send bug reports to bug-texinfo@gnu.org,
suggestions to the same place.

7.2 Emphasizing Text

Usually, Texinfo changes the font to mark words in the text according to the category the words
belong to; an example is the @code command. Most often, this is the best way to mark words.
However, sometimes you will want to emphasize text without indicating a category. Texinfo
has two commands to do this. Also, Texinfo has several commands that specify the font in
which text will be output. These commands have no effect in Info and only one of them, the @r

command, has any regular use.

mailto:bug-texinfo@gnu.org
mailto:bug-texinfo@gnu.org


Chapter 7: Marking Text, Words and Phrases 61

7.2.1 @emph{text} and @strong{text}
The @emph and @strong commands are for emphasis; @strong is stronger. In printed output,
@emph produces italics and @strong produces bold. In the Info output, @emph surrounds the
text with underscores (‘_’), and @strong puts asterisks around the text.

For example,

@strong{Caution:} @samp{rm * .[^.]*}

removes @emph{all} files in the directory.

produces the following:

Caution: ‘rm * .[^.]*’ removes all files in the directory.

The @strong command is seldom used except to mark what is, in effect, a typographical
element, such as the word ‘Caution’ in the preceding example.

Caution: Do not use @strong with the word ‘Note’ followed by a space; Info will
mistake the combination for a cross-reference. Use a phrase such as Please notice
or Caution instead, or the optional argument to @quotation—‘Note’ is allowable
there.

7.2.2 @sc{text}: The Small Caps Font

Use the ‘@sc’ command to set text in a small caps font (where possible). Write the text you
want to be in small caps between braces in lowercase, like this:

Richard @sc{Stallman} commencé GNU.

This produces:

Richard Stallman commencé GNU.

As shown here, we recommend reserving @sc for special cases where you want typographic
small caps; family names are one such, especially in languages other than English, though there
are no hard-and-fast rules about such things.

TEX typesets any uppercase letters between the braces of an @sc command in full-size capitals;
only lowercase letters are printed in the small caps font. In the Info output, the argument to
@sc is printed in all uppercase. In HTML, the argument is uppercased and the output marked
with the <small> tag to reduce the font size, since HTML cannot easily represent true small
caps.

Overall, we recommend using standard upper- and lowercase letters wherever possible.

7.2.3 Fonts for Printing

Texinfo provides one command to change the size of the main body font in the TEX output for
a document: @fonttextsize. It has no effect in other output. It takes a single argument on
the remainder of the line, which must be either ‘10’ or ‘11’. For example:

@fonttextsize 10

The effect is to reduce the body font to a 10 pt size (the default is 11 pt). Fonts for other
elements, such as sections and chapters, are reduced accordingly. This should only be used in
conjunction with @smallbook (see Section 19.11 [@smallbook], page 151) or similar, since 10 pt
fonts on standard paper (8.5x11 or A4) are too small. One reason to use this command is to
save pages, and hence printing cost, for physical books.

Texinfo does not at present have commands to switch the font family to use, or more general
size-changing commands.

Texinfo also provides a number of font commands that specify font changes in the printed
manual and (where possible) in the HTML output. They have no effect in Info. All the com-
mands apply to a following argument surrounded by braces.

@b selects bold face;



Chapter 7: Marking Text, Words and Phrases 62

@i selects an italic font;

@r selects a roman font, which is the usual font in which text is printed. It may or may
not be seriffed.

@sansserif

selects a sans serif font;

@slanted selects a slanted font;

@t selects the fixed-width, typewriter-style font used by @code;

(The commands with longer names were invented much later than the others, at which time
it did not seem desirable to use very short names for such infrequently needed features.)

The @r command can be useful in example-like environments, to write comments in the
standard roman font instead of the fixed-width font. This looks better in printed output, and
produces a <lineannotation> tag in Docbook output.

For example,

@lisp

(+ 2 2) ; @r{Add two plus two.}

@end lisp

produces

(+ 2 2) ; Add two plus two.

The @t command can occasionally be useful to produce output in a typewriter font where
that is supported (e.g., HTML and PDF), but no distinction is needed in Info or plain text:
@t{foo} produces foo, cf. @code{foo} producing foo.

In general, the other font commands are unlikely to be useful; they exist primarily to make
it possible to document the functionality of specific font effects, such as in TEX and related
packages.



63

8 Quotations and Examples

Quotations and examples are blocks of text consisting of one or more whole paragraphs that
are set off from the bulk of the text and treated differently. They are usually indented in the
output.

In Texinfo, you always begin a quotation or example by writing an @-command at the
beginning of a line by itself, and end it by writing an @end command that is also at the beginning
of a line by itself. For instance, you begin an example by writing @example by itself at the
beginning of a line and end the example by writing @end example on a line by itself, at the
beginning of that line, and with only one space between the @end and the example.

8.1 Block Enclosing Commands

Here is a summary of commands that enclose blocks of text, also known as environments. They’re
explained further in the following sections.

@quotation

Indicate text that is quoted. The text is filled, indented (from both margins), and
printed in a roman font by default.

@indentedblock

Like @quotation, but the text is indented only on the left.

@example Illustrate code, commands, and the like. The text is printed in a fixed-width font,
and indented but not filled.

@lisp Like @example, but specifically for illustrating Lisp code. The text is printed in a
fixed-width font, and indented but not filled.

@verbatim

Mark a piece of text that is to be printed verbatim; no character substitutions are
made and all commands are ignored, until the next @end verbatim. The text is
printed in a fixed-width font, and not indented or filled. Extra spaces and blank
lines are significant, and tabs are expanded.

@display Display illustrative text. The text is indented but not filled, and no font is selected
(so, by default, the font is roman).

@format Like @display (the text is not filled and no font is selected), but the text is not
indented.

@smallquotation

@smallindentedblock

@smallexample

@smalllisp

@smalldisplay

@smallformat

These @small... commands are just like their non-small counterparts, except that
they output text in a smaller font size, where possible.

@flushleft

@flushright

Text is not filled, but is set flush with the left or right margin, respectively.

@raggedright

Text is filled, but only justified on the left, leaving the right margin ragged.



Chapter 8: Quotations and Examples 64

@cartouche

Highlight text, often an example or quotation, by drawing a box with rounded
corners around it.

The @exdent command is used within the above constructs to undo the indentation of a line.

The @noindent command may be used after one of the above constructs (or at the beginning
of any paragraph) to prevent the following text from being indented as a new paragraph.

8.2 @quotation: Block Quotations

The text of a quotation is processed like normal text (regular font, text is filled) except that:

• both the left and right margins are closer to the center of the page, so the whole of the
quotation is indented;

• the first lines of paragraphs are indented no more than other lines; and

• an @author command may be given to specify the author of the quotation.

This is an example of text written between a @quotation command and an @end

quotation command. A @quotation command is most often used to indicate text
that is excerpted from another (real or hypothetical) printed work.

Write a @quotation command as text on a line by itself. This line will disappear from the
output. Mark the end of the quotation with a line beginning with and containing only @end

quotation. The @end quotation line will likewise disappear from the output.

@quotation takes one optional argument, given on the remainder of the line. This text, if
present, is included at the beginning of the quotation in bold or otherwise emphasized, and
followed with a ‘:’. For example:

@quotation Note

This is

a foo.

@end quotation

produces

Note: This is a foo.

If the @quotation argument is one of these English words (case-insensitive):

Caution Important Note Tip Warning

then the Docbook output uses corresponding special tags (<note>, etc.) instead of the default
<blockquote>. HTML output always uses <blockquote>.

If the author of the quotation is specified in the @quotation block with the @author com-
mand, a line with the author name is displayed after the quotation:

@quotation

People sometimes ask me if it is a sin in the Church of Emacs to use

vi. Using a free version of vi is not a sin; it is a penance. So happy

hacking.

@author Richard Stallman

@end quotation

produces

People sometimes ask me if it is a sin in the Church of Emacs to use vi. Using a
free version of vi is not a sin; it is a penance. So happy hacking.

—Richard Stallman

Texinfo also provides a command @smallquotation, which is just like @quotation but uses
a smaller font size where possible. See Section 8.15 [@small...], page 70.



Chapter 8: Quotations and Examples 65

8.3 @indentedblock: Indented text blocks

The @indentedblock environment is similar to @quotation, except that text is only indented
on the left (and there is no optional argument for an author). Thus, the text font remains
unchanged, and text is gathered and filled as usual, but the left margin is increased. For
example:

This is an example of text written between an @indentedblock command and an @end

indentedblock command. The @indentedblock environment can contain any text or
other commands desired.

This is written in the Texinfo source as:

@indentedblock

This is an example ...

@end indentedblock

Texinfo also provides a command @smallindentedblock, which is just like @indentedblock

but uses a smaller font size where possible. See Section 8.15 [@small...], page 70.

8.4 @example: Example Text

The @example environment is used to indicate an example that is not part of the running text,
such as computer input or output. Write an @example command at the beginning of a line
by itself. Mark the end of the example with an @end example command, also written at the
beginning of a line by itself.

An @example environment has the following characteristics:

• Each line in the input file is a line in the output; that is, the source text is not filled as it
normally is.

• Extra spaces and blank lines are significant.

• The output is indented.

• The output uses a fixed-width font.

• Texinfo commands are expanded; if you want the output to be the input verbatim, use the
@verbatim environment instead (see Section 8.5 [@verbatim], page 66).

For example,

@example

cp foo @var{dest1}; \

cp foo @var{dest2}

@end example

produces

cp foo dest1; \

cp foo dest2

The lines containing @example and @end example will disappear from the output. To make
the output look good, you should put a blank line before the @example and another blank
line after the @end example. Blank lines inside the beginning @example and the ending @end

example, on the other hand, do appear in the output.

Caution: Do not use tabs in the lines of an example! (Or anywhere else in Texinfo,
except in verbatim environments.) TEX treats tabs as single spaces, and that is
not what they look like. In Emacs, you can use M-x untabify to convert tabs in a
region to multiple spaces.

Examples are often, logically speaking, “in the middle” of a paragraph, and the text that
continues afterwards should not be indented, as in the example above. The @noindent command



Chapter 8: Quotations and Examples 66

prevents a piece of text from being indented as if it were a new paragraph (see Section 8.12
[@noindent], page 69).

If you want to embed code fragments within sentences, instead of displaying them, use the
@code command or its relatives (see Section 7.1.2 [@code], page 54).

If you wish to write a “comment” on a line of an example in the normal roman font, you can
use the @r command (see Section 7.2.3 [Fonts], page 61).

8.5 @verbatim: Literal Text

Use the @verbatim environment for printing of text that may contain special characters or com-
mands that should not be interpreted, such as computer input or output (@example interprets
its text as regular Texinfo commands). This is especially useful for including automatically
generated files in a Texinfo manual.

In general, the output will be just the same as the input. No character substitutions are
made, e.g., all spaces and blank lines are significant, including tabs. In the printed manual, the
text is typeset in a fixed-width font, and not indented or filled.

Write a @verbatim command at the beginning of a line by itself. This line will disappear
from the output. Mark the end of the verbatim block with an @end verbatim command, also
written at the beginning of a line by itself. The @end verbatim will also disappear from the
output.

For example:

@verbatim

{

TAB@command with strange characters: @’e

expandTABme

}

@end verbatim

This produces:

{

@command with strange characters: @’e

expand me

}

Since the lines containing @verbatim and @end verbatim produce no output, typically you
should put a blank line before the @verbatim and another blank line after the @end verbatim.
Blank lines between the beginning @verbatim and the ending @end verbatim will appear in the
output.

You can get a “small” verbatim by enclosing the @verbatim in an @smallformat environment,
as shown here:

@smallformat

@verbatim

... still verbatim, but in a smaller font ...

@end verbatim

@end smallformat

Finally, a word of warning: it is not reliable to use @verbatim inside other Texinfo constructs.

See also Section 18.5 [@verbatiminclude], page 142.

8.6 @lisp: Marking a Lisp Example

The @lisp command is used for Lisp code. It is synonymous with the @example command.

This is an example of text written between an



Chapter 8: Quotations and Examples 67

@lisp command and an @end lisp command.

Use @lisp instead of @example to preserve information regarding the nature of the example.
This is useful, for example, if you write a function that evaluates only and all the Lisp code in
a Texinfo file. Then you can use the Texinfo file as a Lisp library. Mark the end of @lisp with
@end lisp on a line by itself.

8.7 @display: Examples Using the Text Font

The @display command begins another kind of environment, where the font is left unchanged,
not switched to typewriter as with @example. Each line of input still produces a line of output,
and the output is still indented.

This is an example of text written between a @display command
and an @end display command. The @display command
indents the text, but does not fill it.

Texinfo also provides the environment @smalldisplay, which is like @display but uses a
smaller font size. See Section 8.15 [@small...], page 70.

8.8 @format: Examples Using the Full Line Width

The @format command is similar to @display, except it leaves the text unindented. Like
@display, it does not select the fixed-width font.

This is an example of text written between a @format command
and an @end format command. As you can see
from this example,
the @format command does not fill the text.

Texinfo also provides the environment @smallformat, which is like @format but uses a smaller
font size. See Section 8.15 [@small...], page 70.

8.9 @exdent: Undoing a Line’s Indentation

The @exdent command removes any indentation a line might have. The command is written
at the beginning of a line and applies only to the text that follows the command that is on the
same line. Do not use braces around the text. In a printed manual, the text on an @exdent line
is printed in the roman font.

@exdent is usually used within examples. Thus,

@example

This line follows an @@example command.

@exdent This line is exdented.

This line follows the exdented line.

The @@end example comes on the next line.

@end example

produces

This line follows an @example command.

This line is exdented.
This line follows the exdented line.

The @end example comes on the next line.

In practice, the @exdent command is rarely used. Usually, you un-indent text by ending the
example and returning the page to its normal width.

@exdent has no effect in HTML output.



Chapter 8: Quotations and Examples 68

8.10 @flushleft and @flushright

The @flushleft and @flushright commands line up the ends of lines on the left and right
margins of a page, but do not fill the text. The commands are written on lines of their own,
without braces. The @flushleft and @flushright commands are ended by @end flushleft

and @end flushright commands on lines of their own.

For example,

@flushleft

This text is

written flushleft.

@end flushleft

produces

This text is
written flushleft.

@flushright produces the type of indentation often used in the return address of letters.
For example,

@flushright

Here is an example of text written

flushright. The @code{@flushright} command

right justifies every line but leaves the

left end ragged.

@end flushright

produces

Here is an example of text written
flushright. The @flushright command

right justifies every line but leaves the
left end ragged.

8.11 @raggedright: Ragged Right Text

The @raggedright fills text as usual, but the text is only justified on the left; the right margin
is ragged. The command is written on a line of its own, without braces. The @raggedright

command is ended by @end raggedright on a line of its own. This command has no effect in
Info and HTML output, where text is always set ragged right.

The @raggedright command can be useful with paragraphs containing lists of commands
with long names, when it is known in advance that justifying the text on both margins will make
the paragraph look bad.

An example (from elsewhere in this manual):

@raggedright

Commands for double and single angle quotation marks:

@code{@@guillemetleft@{@}}, @code{@@guillemetright@{@}},

@code{@@guillemotleft@{@}}, @code{@@guillemotright@{@}},

@code{@@guilsinglleft@{@}}, @code{@@guilsinglright@{@}}.

@end raggedright

produces

Commands for double and single angle quotation marks: @guillemetleft{},
@guillemetright{}, @guillemotleft{}, @guillemotright{}, @guilsinglleft{},
@guilsinglright{}.



Chapter 8: Quotations and Examples 69

8.12 @noindent: Omitting Indentation

An example or other inclusion can break a paragraph into segments. Ordinarily, the formatters
indent text that follows an example as a new paragraph. You can prevent this on a case-by-case
basis by writing @noindent at the beginning of a line, preceding the continuation text. You can
also disable indentation for all paragraphs globally with @paragraphindent (see Section 3.7.4
[@paragraphindent], page 25).

Here is an example showing how to eliminate the normal indentation of the text after an
@example, a common situation:

@example

This is an example

@end example

@noindent

This line is not indented. As you can see, the

beginning of the line is fully flush left with the

line that follows after it.

produces:

This is an example

This line is not indented. As you can see, the
beginning of the line is fully flush left with the
line that follows after it.

The standard usage of @noindent is just as above: at the beginning of what would otherwise
be a paragraph, to eliminate the indentation that normally happens there. It can either be
followed by text or be on a line by itself. There is no reason to use it in other contexts, such as
in the middle of a paragraph or inside an environment (see Chapter 8 [Quotations and Examples],
page 63).

You can control the number of blank lines in the Info file output by adjusting the input as
desired: a line containing just @noindent does not generate a blank line, and neither does an
@end line for an environment.

Do not put braces after a @noindent command; they are not used, since @noindent is a
command used outside of paragraphs (see Section A.1 [Command Syntax], page 193).

8.13 @indent: Forcing Indentation

To complement the @noindent command (see the previous section), Texinfo provides the
@indent command to force a paragraph to be indented. For instance, this paragraph (the first
in this section) is indented using an @indent command.

And indeed, the first paragraph of a section is the most likely place to use @indent, to
override the normal behavior of no indentation there (see Section 3.7.4 [@paragraphindent],
page 25). It can either be followed by text or be on a line by itself.

As a special case, when @indent is used in an environment where text is not filled, it produces
a paragraph indentation space in the TEX output. (These environments are where a line of input
produces a line of output, such as @example and @display; for a summary of all environments,
see Section 8.1 [Block Enclosing Commands], page 63.)

Do not put braces after an @indent command; they are not used, since @indent is a command
used outside of paragraphs (see Section A.1 [Command Syntax], page 193).



Chapter 8: Quotations and Examples 70

8.14 @cartouche: Rounded Rectangles

In a printed manual, the @cartouche command draws a box with rounded corners around its
contents. In HTML, a normal rectangle is drawn. @cartouche has no effect in Info output.

You can use this command to further highlight an example or quotation. For instance, you
could write a manual in which one type of example is surrounded by a cartouche for emphasis.

For example,

@cartouche

@example

% pwd

/usr/local/share/emacs

@end example

@end cartouche

surrounds the two-line example with a box with rounded corners, in the printed manual.

The output from the example looks like this (if you’re reading this in Info, you’ll see the
@cartouche had no effect):� �

% pwd

/usr/local/share/emacs
 	
@cartouche also implies @group (see Section 13.9 [@group], page 107).

8.15 @small... Block Commands

In addition to the regular @example and similar commands, Texinfo has “small” example-style
commands. These are @smallquotation, @smallindentedblock, @smalldisplay,
@smallexample, @smallformat, and @smalllisp.

In Info and HTML output, the @small... commands are equivalent to their non-small com-
panion commands.

In TEX, however, the @small... commands typeset text in a smaller font than the non-small
example commands. Thus, for instance, code examples can contain longer lines and still fit on
a page without needing to be rewritten.

A smaller font size is also retained in the Texinfo XML transliteration.

Mark the end of a @small... block with a corresponding @end small.... For example, pair
@smallexample with @end smallexample.

Here is an example of the font used by the @smallexample command (in Info, the output
will be the same as usual):

... to make sure that you have the freedom to

distribute copies of free software (and charge for

this service if you wish), that you receive source

code or can get it if you want it, that you can

change the software or use pieces of it in new free

programs; and that you know you can do these things.

The @small... commands use the same font style as their normal counterparts:
@smallexample and @smalllisp use a fixed-width font, and everything else uses the regular
font. They also have the same behavior in other respects—whether filling is done and whether
margins are narrowed.

As a general rule, a printed document looks better if you use only one of (for instance)
@example or @smallexample consistently within a chapter.



71

9 Lists and Tables

Texinfo has several ways of making lists and tables. Lists can be bulleted or numbered; two-
column tables can highlight the items in the first column; multi-column tables are also supported.

9.1 Introducing Lists

Texinfo automatically indents the text in lists or tables, and numbers an enumerated list. This
last feature is useful if you modify the list, since you do not need to renumber it yourself.

Numbered lists and tables begin with the appropriate @-command at the beginning of a line,
and end with the corresponding @end command on a line by itself. The table and itemized-list
commands also require that you write formatting information on the same line as the beginning
@-command.

Begin an enumerated list, for example, with an @enumerate command and end the list with
an @end enumerate command. Begin an itemized list with an @itemize command, followed on
the same line by a formatting command such as @bullet, and end the list with an @end itemize

command.

Precede each element of a list with an @item or @itemx command.

Here is an itemized list of the different kinds of table and lists:

• Itemized lists with and without bullets.

• Enumerated lists, using numbers or letters.

• Two-column tables with highlighting.

Here is an enumerated list with the same items:

1. Itemized lists with and without bullets.

2. Enumerated lists, using numbers or letters.

3. Two-column tables with highlighting.

And here is a two-column table with the same items and their @-commands:

@itemize Itemized lists with and without bullets.

@enumerate

Enumerated lists, using numbers or letters.

@table

@ftable

@vtable Two-column tables, optionally with indexing.

9.2 @itemize: Making an Itemized List

The @itemize command produces a sequence of “items”, each starting with a bullet or other
mark inside the left margin, and generally indented.

Begin an itemized list by writing @itemize at the beginning of a line. Follow the command,
on the same line, with a character or a Texinfo command that generates a mark. Usually, you
will use @bullet after @itemize, but you can use @minus, or any command or character that
results in a single character in the Info file. (When you write the mark command such as @bullet
after an @itemize command, you may omit the ‘{}’.) If you don’t specify a mark command,
the default is @bullet. If you don’t want any mark at all, but still want logical items, use @w{}

(in this case the braces are required).



Chapter 9: Lists and Tables 72

After the @itemize, write your items, each starting with @item. Text can follow on the same
line as the @item. The text of an item can continue for more than one paragraph.

There should be at least one @item inside the @itemize environment. If none are present,
makeinfo gives a warning. If you just want indented text and not a list of items, use
@indentedblock; see Section 8.3 [@indentedblock], page 65.

Index entries and comments that are given before an @item including the first, are automat-
ically moved (internally) to after the @item, so the output is as expected. Historically this has
been a common practice.

Usually, you should put a blank line between items. This puts a blank line in the Info file.
(TEX inserts the proper vertical space in any case.) Except when the entries are very brief, these
blank lines make the list look better.

Here is an example of the use of @itemize, followed by the output it produces. @bullet

produces an ‘*’ in Info and a round dot in other output formats.

@itemize @bullet

@item

Some text for foo.

@item

Some text

for bar.

@end itemize

This produces:

• Some text for foo.

• Some text for bar.

Itemized lists may be embedded within other itemized lists. Here is a list marked with dashes
embedded in a list marked with bullets:

@itemize @bullet

@item

First item.

@itemize @minus

@item

Inner item.

@item

Second inner item.

@end itemize

@item

Second outer item.

@end itemize

This produces:

• First item.

− Inner item.

− Second inner item.

• Second outer item.



Chapter 9: Lists and Tables 73

9.3 @enumerate: Making a Numbered or Lettered List

@enumerate is like @itemize (see Section 9.2 [@itemize], page 71), except that the labels on
the items are successive integers or letters instead of bullets.

Write the @enumerate command at the beginning of a line. The command does not require
an argument, but accepts either a number or a letter as an option. Without an argument,
@enumerate starts the list with the number ‘1’. With a numeric argument, such as ‘3’, the
command starts the list with that number. With an upper- or lowercase letter, such as ‘a’ or
‘A’, the command starts the list with that letter.

Write the text of the enumerated list in the same way as an itemized list: write a line starting
with @item at the beginning of each item in the enumeration. It is ok to have text following the
@item, and the text for an item can continue for several paragraphs.

You should put a blank line between entries in the list. This generally makes it easier to read
the Info file.

Here is an example of @enumerate without an argument:

@enumerate

@item

Underlying causes.

@item

Proximate causes.

@end enumerate

This produces:

1. Underlying causes.

2. Proximate causes.

Here is an example with an argument of 3:

@enumerate 3

@item

Predisposing causes.

@item

Precipitating causes.

@item

Perpetuating causes.

@end enumerate

This produces:

3. Predisposing causes.

4. Precipitating causes.

5. Perpetuating causes.

Here is a brief summary of the alternatives. The summary is constructed using @enumerate

with an argument of a.

a. @enumerate

Without an argument, produce a numbered list, with the first item numbered 1.



Chapter 9: Lists and Tables 74

b. @enumerate unsigned-integer

With an (unsigned) numeric argument, start a numbered list with that number. You can
use this to continue a list that you interrupted with other text.

c. @enumerate upper-case-letter

With an uppercase letter as argument, start a list in which each item is marked by a letter,
beginning with that uppercase letter.

d. @enumerate lower-case-letter

With a lowercase letter as argument, start a list in which each item is marked by a letter,
beginning with that lowercase letter.

You can also nest enumerated lists, as in an outline.

9.4 Making a Two-column Table

@table is similar to @itemize (see Section 9.2 [@itemize], page 71), but allows you to specify
a name or heading line for each item. The @table command is used to produce two-column
tables, and is especially useful for glossaries, explanatory exhibits, and command-line option
summaries.

9.4.1 Using the @table Command

Use the @table command to produce a two-column table. This command is typically used when
you have a list of items and a brief text with each one, such as a list of definitions.

Write the @table command at the beginning of a line, after a blank line, and follow it on
the same line with an argument that is an ‘indicating’ command, such as @code, @samp, @var,
@option, or @kbd (see Section 7.1 [Indicating], page 53). This command will be applied to the
text in the first column. For example, @table @code will cause the text in the first column to
be output as if it had been the argument to a @code command.

You may use the @asis command as an argument to @table. @asis is a command that
does nothing: if you use this command after @table, the first column entries are output without
added highlighting (“as is”).

The @table command works with other commands besides those explicitly mentioned here.
However, you can only use predefined Texinfo commands that take an argument in braces.
You cannot reliably use a new command defined with @macro, although an @alias (for a suit-
able predefined command) is acceptable. See Chapter 17 [Defining New Texinfo Commands],
page 131.

Begin each table entry with an @item command at the beginning of a line. Write the text for
the first column on the same line as the @item command. Write the text for the second column
on the line following the @item line and on subsequent lines. You may write as many lines of
supporting text as you wish, even several paragraphs. But only the text on the same line as
the @item will be placed in the first column (including any footnotes). You do not need to type
anything for an empty second column.

Normally, you should put a blank line before an @item line (except the first one). This puts a
blank line in the Info file. Except when the entries are very brief, a blank line looks better. End
the table with a line consisting of @end table, followed by a blank line. TEX will always start a
new paragraph after the table, so the blank line is needed for the Info output to be analogous.



Chapter 9: Lists and Tables 75

For example, the following table highlights the text in the first column with the @samp

command:

@table @samp

@item foo

This is the text for

@samp{foo}.

@item bar

Text for @samp{bar}.

@end table

This produces:

‘foo’ This is the text for ‘foo’.

‘bar’ Text for ‘bar’.

If you want to list two or more named items with a single block of text, use the @itemx

command. (See Section 9.4.3 [@itemx], page 75.)

The @table command (see Section 9.4.1 [@table], page 74) is not supported inside @display.
Since @display is line-oriented, it doesn’t make sense to use them together. If you want to
indent a table, try @quotation (see Section 8.2 [@quotation], page 64) or @indentedblock (see
Section 8.3 [@indentedblock], page 65).

9.4.2 @ftable and @vtable

The @ftable and @vtable commands are the same as the @table command except that @ftable
automatically enters each of the items in the first column of the table into the index of functions
and @vtable automatically enters each of the items in the first column of the table into the
index of variables. This simplifies the task of creating indices. Only the items on the same line
as the @item or @itemx commands are indexed, and they are indexed in exactly the form that
they appear on that line. See Chapter 11 [Indices], page 84, for more information about indices.

Begin a two-column table using @ftable or @vtable by writing the @-command at the
beginning of a line, followed on the same line by an argument that is a Texinfo command such
as @code, exactly as you would for a @table command; and end the table with an @end ftable

or @end vtable command on a line by itself.

See the example for @table in the previous section.

9.4.3 @itemx: Second and Subsequent Items

Use the @itemx command inside a table when you have two or more first column entries for the
same item, each of which should appear on a line of its own.

Use @item for the first entry, and @itemx for all subsequent entries; @itemx must always
follow an @item command, with no blank line intervening.

The @itemx command works exactly like @item except that it does not generate extra vertical
space above the first column text. If you have multiple consecutive @itemx commands, do not
insert any blank lines between them.

For example,

@table @code

@item upcase

@itemx downcase

These two functions accept a character or a string as

argument, and return the corresponding uppercase (lowercase)

character or string.

@end table



Chapter 9: Lists and Tables 76

This produces:

upcase

downcase These two functions accept a character or a string as argument, and return the
corresponding uppercase (lowercase) character or string.

(Note also that this example illustrates multi-line supporting text in a two-column table.)

9.5 @multitable: Multi-column Tables

@multitable allows you to construct tables with any number of columns, with each column
having any width you like.

You define the column widths on the @multitable line itself, and write each row of the actual
table following an @item command, with columns separated by a @tab command. Finally, @end
multitable completes the table. Details in the sections below.

9.5.1 Multitable Column Widths

You can define the column widths for a multitable in two ways: as fractions of the line length;
or with a prototype row. Mixing the two methods is not supported. In either case, the widths
are defined entirely on the same line as the @multitable command.

1. To specify column widths as fractions of the line length, write @columnfractions and the
decimal numbers (presumably less than 1; a leading zero is allowed and ignored) after the
@multitable command, as in:

@multitable @columnfractions .33 .33 .33

The fractions need not add up exactly to 1.0, as these do not. This allows you to produce
tables that do not need the full line length.

2. To specify a prototype row, write the longest entry for each column enclosed in braces after
the @multitable command. For example:

@multitable {some text for column one} {for column two}

The first column will then have the width of the typeset ‘some text for column one’, and
the second column the width of ‘for column two’.

The prototype entries need not appear in the table itself.

Although we used simple text in this example, the prototype entries can contain Texinfo
commands; markup commands such as @code are particularly likely to be useful.

9.5.2 Multitable Rows

After the @multitable command defining the column widths (see the previous section), you
begin each row in the body of a multitable with @item, and separate the column entries with
@tab. Line breaks are not special within the table body, and you may break input lines in your
source file as necessary.

You can also use @headitem instead of @item to produce a heading row. The TEX output
for such a row is in bold, and the HTML and Docbook output uses the <thead> tag. In Info,
the heading row is followed by a separator line made of dashes (‘-’ characters).

The command @headitemfont can be used in templates when the entries in a @headitem

row need to be used in a template. It is a synonym for @b, but using @headitemfont avoids any
dependency on that particular font style, in case we provide a way to change it in the future.

Here is a complete example of a multi-column table (the text is from The GNU Emacs
Manual, see Section “Splitting Windows” in The GNU Emacs Manual):

@multitable @columnfractions .15 .45 .4

@headitem Key @tab Command @tab Description



Chapter 9: Lists and Tables 77

@item C-x 2

@tab @code{split-window-vertically}

@tab Split the selected window into two windows,

with one above the other.

@item C-x 3

@tab @code{split-window-horizontally}

@tab Split the selected window into two windows

positioned side by side.

@item C-Mouse-2

@tab

@tab In the mode line or scroll bar of a window,

split that window.

@end multitable

produces:

Key Command Description
C-x 2 split-window-vertically Split the selected window into two

windows, with one above the other.

C-x 3 split-window-horizontally Split the selected window into two
windows positioned side by side.

C-Mouse-2 In the mode line or scroll bar of a
window, split that window.



78

10 Special Displays

The commands in this chapter allow you to write text that is specially displayed (output format
permitting), outside of the normal document flow.

One set of such commands is for creating “floats”, that is, figures, tables, and the like, set
off from the main text, possibly numbered, captioned, and/or referred to from elsewhere in the
document. Images are often included in these displays.

Another group of commands is for creating footnotes in Texinfo.

10.1 Floats

A float is a display which is set off from the main text. It is typically labeled as being a “Figure”,
“Table”, “Example”, or some similar type.

A float is so-named because, in principle, it can be moved to the bottom or top of the current
page, or to a following page, in the printed output. (Floating does not make sense in other
output formats.) In the present version of Texinfo, however, this floating is unfortunately not
yet implemented. Instead, the floating material is simply output at the current location, more
or less as if it were an @group (see Section 13.9 [@group], page 107).

10.1.1 @float [type][,label]: Floating Material

To produce floating material, enclose the material you want to be displayed separate between
@float and @end float commands, on lines by themselves.

Floating material often uses @image to display an already-existing graphic (see Section 10.2
[Images], page 80), or @multitable to display a table (see Section 9.5 [Multi-column Tables],
page 76). However, the contents of the float can be anything. Here’s an example with simple
text:

@float Figure,fig:ex1

This is an example float.

@end float

And the output:

This is an example float.

Figure 10.1

As shown in the example, @float takes two arguments (separated by a comma), type and
label. Both are optional.

type Specifies the sort of float this is; typically a word such as “Figure”, “Table”, etc. If
this is not given, and label is, any cross-referencing will simply use a bare number.

label Specifies a cross-reference label for this float. If given, this float is automatically
given a number, and will appear in any @listoffloats output (see Section 10.1.3
[@listoffloats], page 79). Cross references to label are allowed.

On the other hand, if label is not given, then the float will not be numbered and
consequently will not appear in the @listoffloats output or be cross-referenceable.

Ordinarily, you specify both type and label, to get a labeled and numbered float.

In Texinfo, all floats are numbered in the same way: with the chapter number (or appendix
letter), a period, and the float number, which simply counts 1, 2, 3, . . . , and is reset at each
chapter. Each float type is counted independently.

Floats within an @unnumbered, or outside of any chapter, are simply numbered consecutively
from 1.

These numbering conventions are not, at present, changeable.



Chapter 10: Special Displays 79

10.1.2 @caption & @shortcaption

You may write a @caption anywhere within a @float environment, to define a caption for the
float. It is not allowed in any other context. @caption takes a single argument, enclosed in
braces. Here’s an example:

@float

An example float, with caption.

@caption{Caption for example float.}

@end float

The output is:

An example float, with caption.

Caption for example float.

@caption can appear anywhere within the float; it is not processed until the @end float.
The caption text is usually a sentence or two, but may consist of several paragraphs if necessary.

In the output, the caption always appears below the float; this is not currently changeable.
It is preceded by the float type and/or number, as specified to the @float command (see the
previous section).

The @shortcaption command likewise may be used only within @float, and takes a single
argument in braces. The short caption text is used instead of the caption text in a list of floats
(see the next section). Thus, you can write a long caption for the main document, and a short
title to appear in the list of floats. For example:

@float

... as above ...

@shortcaption{Text for list of floats.}

@end float

The text for @shortcaption may not contain comments (@c), verbatim text (@verb), en-
vironments such as @example, footnotes (@footnote) or other complex constructs. The same
constraints apply to @caption unless there is a @shortcaption.

10.1.3 @listoffloats: Tables of Contents for Floats

You can write a @listoffloats command to generate a list of floats for a given float type
(see Section 10.1.1 [@float], page 78), analogous to the document’s overall table of contents.
Typically, it is written in its own @unnumbered node to provide a heading and structure, rather
like @printindex (see Section 11.5 [Printing Indices & Menus], page 86).

@listoffloats takes one optional argument, the float type. Here’s an example:

@node List of Figures

@unnumbered List of Figures

@listoffloats Figure

And here’s what the output from @listoffloats looks like, given the example figure earlier in
this chapter (the Info output is formatted as a menu):

Figure 10.1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Without any argument, @listoffloats generates a list of floats for which no float type was
specified, i.e., no first argument to the @float command (see Section 10.1.1 [@float], page 78).

Each line in the list of floats contains the float type (if any), the float number, and the
caption, if any—the @shortcaption argument, if it was specified, else the @caption argument.



Chapter 10: Special Displays 80

In Info, the result is a menu where each float can be selected. In HTML, each line is a link to
the float. In printed output, the page number is included.

Unnumbered floats (those without cross-reference labels) are omitted from the list of floats.

10.2 Inserting Images

You can insert an image given in an external file with the @image command. Although images
can be used anywhere, including the middle of a paragraph, we describe them in this chapter
since they are most often part of a displayed figure or example.

10.2.1 Image Syntax

Here is the synopsis of the @image command:

@image{filename[, width[, height[, alttext[, extension]]]]}

The filename argument is mandatory, and must not have an extension, because the different
processors support different formats:

• TEX (DVI output) reads the file filename.eps (Encapsulated PostScript format).

• pdfTEX reads filename.pdf, filename.png, filename.jpg, or filename.jpeg (in that
order). It also tries uppercase versions of the extensions. The PDF format does not support
EPS images, so such must be converted first.

• For Info, makeinfo includes filename.txt verbatim (more or less as if it were in
@verbatim). The Info output may also include a reference to filename.png or
filename.jpg. (See below.)

• For HTML, makeinfo outputs a reference to filename.png, filename.jpg, filename.jpeg
or filename.gif (in that order). If none of those exist, it gives an error, and outputs a
reference to filename.jpg anyway.

• For Docbook, makeinfo outputs references to filename.eps, filename.gif

filename.jpeg, filename.jpg, filename.pdf, filename.png and filename.svg, for
every file found. Also, filename.txt is included verbatim, if present. (The subsequent
Docbook processor is supposed to choose the appropriate one.)

• For Info and HTML output, makeinfo uses the optional fifth argument extension to @image

for the filename extension, if it is specified and the file is found. Any leading period should
be included in extension. For example:

@image{foo,,,,.xpm}

If you want to install image files for use by Info readers too, we recommend putting
them in a subdirectory like ‘foo-figures’ for a package foo. Copying the files into
$(infodir)/foo-figures/ should be done in your Makefile.

The width and height arguments are described in the next section.

For TEX output, if an image is the only thing in a paragraph it will ordinarily be displayed
on a line by itself, respecting the current environment indentation, but without the normal
paragraph indentation. If you want it centered, use @center (see Section 3.4.2 [@titlefont
@center @sp], page 18).

For HTML output, makeinfo sets the alt attribute for inline images to the optional alttext
(fourth) argument to @image, if supplied. If not supplied, makeinfo uses the full file name of
the image being displayed. The alttext is processed as Texinfo text, so special characters such
as ‘"’ and ‘<’ and ‘&’ are escaped in the HTML output; also, you can get an empty alt string
with @- (a command that produces no output; see Section 13.3 [@- @hyphenation], page 106).

For Info output, the alt string is also processed as Texinfo text and output. In this case, ‘\’
is escaped as ‘\\’ and ‘"’ as ‘\"’; no other escapes are done.



Chapter 10: Special Displays 81

In Info output, makeinfo writes a reference to the binary image file (trying filename suffixed
with extension, .extension, .png, or .jpg, in that order) if one exists. It also literally includes
the .txt file if one exists. This way, Info readers which can display images (such as the Emacs
Info browser, running under X) can do so, whereas Info readers which can only use text (such
as the standalone Info reader) can display the textual version.

The implementation of this is to put the following construct into the Info output:

^@^H[image src="binaryfile" text="txtfile"

alt="alttext ... ^@^H]

where ‘^@’ and ‘^H’ stand for the actual null and backspace control characters. If one of the files
is not present, the corresponding argument is omitted.

The reason for mentioning this here is that older Info browsers (this feature was introduced
in Texinfo version 4.6) will display the above literally, which, although not pretty, should not
be harmful.

10.2.2 Image Scaling

The optional width and height arguments to the @image command (see the previous section)
specify the size to which to scale the image. They are only taken into account in TEX. If neither
is specified, the image is presented in its natural size (given in the file); if only one is specified,
the other is scaled proportionately; and if both are specified, both are respected, thus likely
distorting the original image by changing its aspect ratio.

The width and height may be specified using any valid TEX dimension, namely:

pt point (72.27pt = 1in)

pc pica (1pc = 12pt)

bp big point (72bp = 1in)

in inch

cm centimeter (2.54cm = 1in)

mm millimeter (10mm = 1cm)

dd didôt point (1157dd = 1238pt)

cc cicero (1cc = 12dd)

sp scaled point (65536sp = 1pt)

For example, the following will scale a file ridt.eps to one inch vertically, with the width
scaled proportionately:

@image{ridt,,1in}

For @image to work with TEX, the file epsf.tex must be installed somewhere that TEX can
find it. (The standard location is texmf/tex/generic/dvips/epsf.tex, where texmf is a root
of your TEX directory tree.) This file is included in the Texinfo distribution and is also available
from ftp://tug.org/tex/epsf.tex, among other places.

@image can be used within a line as well as for displayed figures. Therefore, if you intend it
to be displayed, be sure to leave a blank line before the command, or the output will run into
the preceding text.

Image scaling is presently implemented only in TEX, not in HTML or any other sort of
output.

ftp://tug.org/tex/epsf.tex


Chapter 10: Special Displays 82

10.3 Footnotes

A footnote is for a reference that documents or elucidates the primary text.1

Footnotes are distracting; use them sparingly at most, and it is best to avoid them completely.
Standard bibliographical references are usually better placed in a bibliography at the end of a
document instead of in footnotes throughout.

10.3.1 Footnote Commands

In Texinfo, footnotes are created with the @footnote command. This command is followed
immediately by a left brace, then by the text of the footnote, and then by a terminating right
brace. Footnotes may be of any length (they will be broken across pages if necessary), but are
usually short. The template is:

ordinary text@footnote{text of footnote}

As shown here, the @footnote command should come right after the text being footnoted,
with no intervening space; otherwise, the footnote marker might end up starting a line.

For example, this clause is followed by a sample footnote2; in the Texinfo source, it looks like
this:

...a sample footnote@footnote{Here is the sample

footnote.}; in the Texinfo source...

As you can see, this source includes two punctuation marks next to each other; in this case,
‘.};’ is the sequence. This is normal (the first ends the footnote and the second belongs to the
sentence being footnoted), so don’t worry that it looks odd. (Another style, perfectly acceptable,
is to put the footnote after punctuation belonging to the sentence, as in ‘;@footnote{...’.)

In a printed manual or book, the reference mark for a footnote is a small, superscripted
number; the text of the footnote appears at the bottom of the page, below a horizontal line.

In Info, the reference mark for a footnote is a pair of parentheses with the footnote number
between them, like this: ‘(1)’. The reference mark is followed by a cross-reference link to
the footnote text if footnotes are put in separate nodes (see Section 10.3.2 [Footnote Styles],
page 82).

In the HTML output, footnote references are generally marked with a small, superscripted
number which is rendered as a hypertext link to the footnote text.

Footnotes cannot be nested, and cannot appear in section headings of any kind or other
“unusual” places.

A final tip: footnotes in the argument of an @item command for an @table must be entirely
on the same line as the @item (as usual). See Section 9.4 [Two-column Tables], page 74.

10.3.2 Footnote Styles

Info has two footnote styles, which determine where the text of the footnote is located:

• In the ‘End’ node style, all the footnotes for a single node are placed at the end of that
node. The footnotes are separated from the rest of the node by a line of dashes with the
word ‘Footnotes’ within it. Each footnote begins with an ‘(n)’ reference mark.

Here is an example of the Info output for a single footnote in the end-of-node style:

--------- Footnotes ---------

(1) Here is a sample footnote.

1 A footnote should complement or expand upon the primary text, but a reader should not need to read a
footnote to understand the primary text. For a thorough discussion of footnotes, see The Chicago Manual of
Style, which is published by the University of Chicago Press.

2 Here is the sample footnote.



Chapter 10: Special Displays 83

• In the ‘Separate’ node style, all the footnotes for a single node are placed in an automatically
constructed node of their own. In this style, a “footnote reference” follows each ‘(n)’
reference mark in the body of the node. The footnote reference is actually a cross-reference
which you use to reach the footnote node.

The name of the node with the footnotes is constructed by appending ‘-Footnotes’ to the
name of the node that contains the footnotes. (Consequently, the footnotes’ node for the
Footnotes node is Footnotes-Footnotes!) The footnotes’ node has an ‘Up’ node pointer
that leads back to its parent node.

Here is how the first footnote in this manual looks after being formatted for Info in the
separate node style:

File: texinfo.info Node: Overview-Footnotes, Up: Overview

(1) The first syllable of "Texinfo" is pronounced like "speck", not

"hex". ...

Unless your document has long and important footnotes (as in, say, Gibbon’s Decline and
Fall . . . ), we recommend the ‘end’ style, as it is simpler for readers to follow.

Use the @footnotestyle command to specify an Info file’s footnote style. Write this com-
mand at the beginning of a line followed by an argument, either ‘end’ for the end node style or
‘separate’ for the separate node style.

For example,

@footnotestyle end

or

@footnotestyle separate

Write a @footnotestyle command before or shortly after the end-of-header line at the
beginning of a Texinfo file. (You should include any @footnotestyle command between the
start-of-header and end-of-header lines, so the region formatting commands will format footnotes
as specified.)

In HTML, when the footnote style is ‘end’, or if the output is not split, footnotes are put at
the end of the output. If set to ‘separate’, and the output is split, they are placed in a separate
file.



84

11 Indices

Using Texinfo, you can generate indices without having to sort and collate entries manually. In
an index, the entries are listed in alphabetical order, together with information on how to find
the discussion of each entry. In a printed manual, this information consists of page numbers. In
an Info file, this information is a menu entry leading to the first node referenced.

Texinfo provides several predefined kinds of indices: an index for functions, an index for
variables, an index for concepts, and so on. You can combine indices or use them for other than
their canonical purpose. Lastly, you can define your own new indices.

11.1 Predefined Indices

Texinfo provides six predefined indices. Here are their nominal meanings, abbreviations, and
the corresponding index entry commands:

‘cp’ (@cindex) Concept index, for general concepts.

‘fn’ (@findex) Function index, for function and function-like names (such as entry points
of libraries).

‘ky’ (@kindex) Keystroke index, for keyboard commands.

‘pg’ (@pindex) Program index, for names of programs.

‘tp’ (@tindex) Data type index, for type names (such as structures defined in header
files).

‘vr’ (@vindex) Variable index, for variable names (such as library global variables).

Not every manual needs all of these, and most manuals use only two or three at most. The
present manual, for example, has two indices: a concept index and an @-command index. (The
latter is actually the function index but is called a command index in the chapter heading.)

You are not required to use the predefined indices strictly for their canonical purposes. For
example, suppose you wish to index some C preprocessor macros. You could put them in the
function index along with actual functions, just by writing @findex commands for them; then,
when you print the “Function Index” as an unnumbered chapter, you could give it the title
‘Function and Macro Index’ and all will be consistent for the reader.

On the other hand, it is best not to stray too far from the meaning of the predefined indices.
Otherwise, in the event that your text is combined with other text from other manuals, the
index entries will not match up. Instead, define your own new index (see Section 11.7 [New
Indices], page 88).

We recommend having a single index in the final document whenever possible, however many
source indices you use, since then readers have only one place to look. Two or more source indices
can be combined into one output index by using the @synindex or @syncodeindex commands
(see Section 11.6 [Combining Indices], page 87).

11.2 Defining the Entries of an Index

The data to make an index come from many individual indexing commands scattered throughout
the Texinfo source file. Each command says to add one entry to a particular index; after
formatting, the index will give the current page number or node name as the reference.

An index entry consists of an indexing command at the beginning of a line followed, on the
rest of the line, by the entry.

For example, this section begins with the following five entries for the concept index:

@cindex Defining indexing entries



Chapter 11: Indices 85

@cindex Index entries, defining

@cindex Entries for an index

@cindex Specifying index entries

@cindex Creating index entries

Each predefined index has its own indexing command—@cindex for the concept index,
@findex for the function index, and so on, as listed in the previous section.

Index entries should precede the visible material that is being indexed. For instance:

@cindex hello

Hello, there!

Among other reasons, that way following indexing links (in whatever context) ends up before
the material, where readers want to be, instead of after.

Try to avoid using a colon in index entries, as this may confuse some Info readers. See
Section 4.9.4 [Menu Parts], page 35, for more information about the structure of a menu entry.

By default, entries for a concept index are printed in a small roman font and entries for the
other indices are printed in a small @code font. You may change the way part of an entry is
printed with the usual Texinfo commands, such as @file for file names (see Chapter 7 [Marking
Text], page 53), and @r for the normal roman font (see Section 7.2.3 [Fonts], page 61).

For the printed output, you may specify an explicit sort key for an index entry using @sortas

following either the index command or the text of the entry. For example: ‘@findex @sortas{\}

\ @r{(literal \ in @code{@@math})’ sorts the index entry this produces under backslash.

To reduce the quantity of sort keys you need to provide explicitly, you may choose
to ignore certain characters in index entries for the purposes of sorting. The charac-
ters that you can currently choose to ignore are ‘\’, ‘-’, ‘<’ and ‘@’, which are ignored
by giving as an argument to the @set command, respectively, txiindexbackslashignore,
txiindexhyphenignore, txiindexlessthanignore and txiindexatsignignore. For exam-
ple, specifying ‘@set txiindexbackslashignore’ causes the ‘\mathopsup’ entry in the index
for this manual to be sorted as if it were ‘mathopsup’, so that it appears among the other entries
beginning with ‘M’.

11.3 Advanced Indexing Commands

Texinfo provides several commands for doing advanced indexing, similar to the indices you may
see in professionally published books.

First, you can create multilevel index entries, allowing you to group many related subtopics
under the same higher level topic. You do this by separating the parts of such an entry with
the @subentry command. Such commands might look like this:

@cindex Superhumans @subentry villians

@cindex Superhumans @subentry heros

You may have up to three levels in an entry:

@cindex coffee makers @subentry electric @subentry pink

@cindex coffee makers @subentry electric @subentry blue

You can use the @sortas command mentioned earlier with any or all of the three parts of an
entry to cause them to sort differently than they would by default.

Second, you may provide an index entry that points to another, using the @seeentry (“see
entry”) command. For example:

@cindex Indexes @seeentry{Indices}

Such an entry should be unique in your document; the idea is to redirect the reader to the
other entry where they will find all the information they are looking for.



Chapter 11: Indices 86

Finally, you may provide a “see also” entry using the @seealso command. These entries go
along with regular entries, and are grouped together with them in the final printed index. For
example:

@cindex Coffee

@cindex Coffee @subentry With milk and sugar

@cindex Coffee @subentry With doughnuts

@cindex Coffee @subentry Decaffeinated

@cindex Coffee @seealso{Tea}

When using all three of these advanced commands, do not place a comma betwen the different
parts of the index text. The texindex program, which sorts the index entries and generates the
indexing formatting commands, takes care of placing commas in the correct places for you.

These features are most useful with printed documents created with TEX, and when trans-
lating Texinfo to Docbook.

11.4 Making Index Entries

Concept index entries consist of text. The best way to write an index is to devise entries which
are terse yet clear. If you can do this, the index usually looks better if the entries are written
just as they would appear in the middle of a sentence, that is, capitalizing only proper names
and acronyms that always call for uppercase letters. This is the case convention we use in most
GNU manuals’ indices.

If you don’t see how to make an entry terse yet clear, make it longer and clear—not terse
and confusing. If many of the entries are several words long, the index may look better if you
use a different convention: capitalize the first word of each entry. Whichever case convention
you use, use it consistently.

In any event, do not ever capitalize a case-sensitive name such as a C or Lisp function name
or a shell command; that would be a spelling error. Entries in indices other than the concept
index are symbol names in programming languages, or program names; these names are usually
case-sensitive, so likewise use upper- and lowercase as required.

It is a good idea to make index entries unique wherever feasible. That way, people using the
printed output or online completion of index entries don’t see undifferentiated lists. Consider
this an opportunity to make otherwise-identical index entries be more specific, so readers can
more easily find the exact place they are looking for. The advanced indexing features described
in Section 11.3 [Advanced Indexing], page 85, can help with this, as well.

When you are making index entries, it is good practice to think of the different ways people
may look for something. Different people do not think of the same words when they look
something up. A helpful index will have items indexed under all the different words that people
may use. For example, one reader may think it obvious that the two-letter names for indices
should be listed under “Indices, two-letter names”, since “Indices” are the general concept. But
another reader may remember the specific concept of two-letter names and search for the entry
listed as “Two letter names for indices”. A good index will have both entries and will help both
readers.

Like typesetting, the construction of an index is a skilled art, the subtleties of which may
not be appreciated until you need to do it yourself.

11.5 Printing Indices and Menus

To print an index means to include it as part of a manual or Info file. This does not happen
automatically just because you use @cindex or other index-entry generating commands in the
Texinfo file; those just cause the raw data for the index to be accumulated. To generate an
index, you must include the @printindex command at the place in the document where you



Chapter 11: Indices 87

want the index to appear. Also, as part of the process of creating a printed manual, you must
run a program called texindex (see Chapter 19 [Hardcopy], page 143) to sort the raw data to
produce a sorted index file. The sorted index file is what is actually used to print the index.

Texinfo offers six separate types of predefined index, which suffice in most cases. See the other
parts of this chapter for information on this, as well as advanced indexing commands, defining
your own new indices, combining indices, and, most importantly, advice on writing the actual
index entries. This section focuses on printing indices, which is done with the @printindex

command.

@printindex takes one argument, a two-letter index abbreviation. It reads the corresponding
sorted index file (for printed output), and formats it appropriately into an index.

The @printindex command does not generate a chapter heading for the index, since different
manuals have different needs. Consequently, you should precede the @printindex command
with a suitable section or chapter command (usually @appendix or @unnumbered) to supply the
chapter heading and put the index into the table of contents. Precede the chapter heading with
an @node line as usual.

For example:
@node Variable Index

@unnumbered Variable Index

@printindex vr

@node Concept Index

@unnumbered Concept Index

@printindex cp

If you have more than one index, we recommend placing the concept index last.

• In printed output, @printindex produces a traditional two-column index, with dot leaders
between the index terms and page numbers.

• In Info output, @printindex produces a special menu containing the line number of the
entry, relative to the start of the node. Info readers can use this to go to the exact line of
an entry, not just the containing node. (Older Info readers will just go to the node.) Here’s
an example:

* First index entry: Top. (line 7)

The actual number of spaces is variable, to right-justify the line number; it’s been reduced
here to make the line fit in the printed manual.

• In plain text output, @printindex produces the same menu, but the line numbers are
relative to the start of the file, since that’s more convenient for that format.

• In HTML output, @printindex produces links to the index entries.

• In XML and Docbook output, it simply records the index to be printed.

11.6 Combining Indices

Sometimes you will want to combine two disparate indices such as functions and concepts,
perhaps because you have few enough entries that a separate index would look silly.

You could put functions into the concept index by writing @cindex commands for them
instead of @findex commands, and produce a consistent manual by printing the concept index
with the title ‘Function and Concept Index’ and not printing the ‘Function Index’ at all; but
this is not a robust procedure. It works only if your document is never included as part of
another document that is designed to have a separate function index; if your document were to
be included with such a document, the functions from your document and those from the other
would not end up together. Also, to make your function names appear in the right font in the
concept index, you would need to enclose every one of them between the braces of @code.



Chapter 11: Indices 88

11.6.1 @syncodeindex: Combining Indices Using @code

When you want to combine functions and concepts into one index, you should index the functions
with @findex and index the concepts with @cindex, and use the @syncodeindex command to
redirect the function index entries into the concept index.

The @syncodeindex command takes two arguments; they are the name of the index to
redirect, and the name of the index to redirect it to. The template looks like this:

@syncodeindex from to

For this purpose, the indices are given two-letter names:

‘cp’ Concept index

‘fn’ Function index

‘ky’ Key index

‘pg’ Program index

‘tp’ Data type index

‘vr’ Variable index

Write a @syncodeindex command before or shortly after the end-of-header line at the be-
ginning of a Texinfo file. For example, to merge a function index with a concept index, write
the following:

@syncodeindex fn cp

This causes all entries designated for the function index to merge in with the concept index
instead.

To merge both a variables index and a function index into a concept index, write the following:

@syncodeindex vr cp

@syncodeindex fn cp

The @syncodeindex command puts all the entries from the ‘from’ index (the redirected
index) into the @code font, overriding whatever default font is used by the index to which the
entries are now directed. This way, if you direct function names from a function index into a
concept index, all the function names are printed in the @code font as you would expect.

11.6.2 @synindex: Combining Indices

The @synindex command is nearly the same as the @syncodeindex command, except that it
does not put the ‘from’ index entries into the @code font; rather it puts them in the roman font.
Thus, you use @synindex when you merge a concept index into a function index.

See Section 11.5 [Printing Indices & Menus], page 86, for information about printing an index
at the end of a book or creating an index menu in an Info file.

11.7 Defining New Indices

In addition to the predefined indices (see Section 11.1 [Predefined Indices], page 84), you may use
the @defindex and @defcodeindex commands to define new indices. These commands create
new indexing @-commands with which you mark index entries. The @defindex command is
used like this:

@defindex name

New index names are usually two-letter words, such as ‘au’. For example:

@defindex au

This defines a new index, called the ‘au’ index. At the same time, it creates a new indexing
command, @auindex, that you can use to make index entries. Use this new indexing command
just as you would use a predefined indexing command.



Chapter 11: Indices 89

For example, here is a section heading followed by a concept index entry and two ‘au’ index
entries.

@section Cognitive Semantics

@cindex kinesthetic image schemas

@auindex Johnson, Mark

@auindex Lakoff, George

(Evidently, ‘au’ serves here as an abbreviation for “author”.)

Texinfo constructs the new indexing command by concatenating the name of the index with
‘index’; thus, defining an ‘xy’ index leads to the automatic creation of an @xyindex command.

Use the @printindex command to print the index, as you do with the predefined indices.
For example:

@node Author Index

@unnumbered Author Index

@printindex au

The @defcodeindex command is like the @defindex command, except that, in the printed
output, it prints entries in an @code font by default instead of in a roman font.

You should define new indices before the end-of-header line of a Texinfo file, and (of course)
before any @synindex or @syncodeindex commands (see Section 3.2 [Texinfo File Header],
page 14).

As mentioned earlier (see Section 11.1 [Predefined Indices], page 84), we recommend having
a single index in the final document whenever possible (no matter however many source indices
you use), since then readers have only one place to look.

When creating an index, TEX creates a file whose extension is the name of the index (see
[Names of index files], page 145). Therefore you should avoid using index names that collide
with extensions used for other purposes, such as ‘.aux’ or ‘.xml’. makeinfo already reports an
error if a new index conflicts well-known extension name.



90

12 Special Insertions

Texinfo provides several commands for inserting characters that have special meaning in Texinfo,
such as braces, and for other graphic elements that do not correspond to simple characters you
can type.

These are:

• The Texinfo special characters: ‘@ {} , \ # &’.

• Whitespace within and around a sentence.

• Accents.

• Dots and bullets.

• The TEX logo and the copyright symbol.

• The euro and pounds currency symbols.

• The degrees symbol.

• The minus sign.

• Mathematical expressions.

• Glyphs for examples of programming: evaluation, macros, errors, etc.

• Footnotes.

12.1 Special Characters: Inserting @ {} , \ # &

‘@’ and curly braces are the basic special characters in Texinfo. To insert these characters so
they appear in text, you must put an ‘@’ in front of these characters to prevent Texinfo from
misinterpreting them. Alphabetic commands are also provided.

The other characters (comma, backslash, hash, ampersand) are special only in restricted
contexts, as explained in the respective sections.

12.1.1 Inserting ‘@’ with @@ and @atchar{}

@@ produces a single ‘@’ character in the output. Do not put braces after an @@ command.

@atchar{} also produces a single ‘@’ character in the output. It does need following braces,
as usual for alphabetic commands. In inline conditionals (see Section 16.4 [Inline Conditionals],
page 125), it can be necessary to avoid using the literal ‘@’ character in the source (and may be
clearer in other contexts).

12.1.2 Inserting ‘{ ‘}’ with @{ @} and @l rbracechar{}

@{ produces a single ‘{’ in the output, and @} produces a single ‘}’. Do not put braces after
either an @{ or an @} command.

@lbracechar{} and @rbracechar{} also produce single ‘{’ and ‘}’ characters in the output.
They do need following braces, as usual for alphabetic commands. In inline conditionals (see
Section 16.4 [Inline Conditionals], page 125), it can be necessary to avoid using literal brace
characters in the source (and may be clearer in other contexts).

12.1.3 Inserting ‘,’ with @comma{}

Ordinarily, a comma ‘,’ is a normal character that can be simply typed in your input where you
need it.

However, Texinfo uses the comma as a special character only in one context: to separate ar-
guments to those Texinfo commands, such as @acronym (see Section 7.1.14 [@acronym], page 59)
and @xref (see Chapter 6 [Cross References], page 43), as well as user-defined macros (see
Section 17.1 [Defining Macros], page 131), which take more than one argument.



Chapter 12: Special Insertions 91

Since a comma character would confuse Texinfo’s parsing for these commands, you must use
the command ‘@comma{}’ instead if you want to pass an actual comma. Here are some examples:

@acronym{ABC, A Bizarre @comma{}}

@xref{Comma,, The @comma{} symbol}

@mymac{One argument@comma{} containing a comma}

Although ‘@comma{}’ can be used nearly anywhere, there is no need for it anywhere except
in this unusual case.

(Incidentally, the name ‘@comma’ lacks the ‘char’ suffix used in its companion commands only
for historical reasons. It didn’t seem important enough to define a synonym.)

12.1.4 Inserting ‘\’ with @backslashchar{}

Ordinarily, a backslash ‘\’ is a normal character in Texinfo that can be simply typed in your
input where you need it. The result is to typeset the backslash from the typewriter font.

However, Texinfo uses the backslash as a special character in one restricted context: to delimit
formal arguments in the bodies of user-defined macros (see Section 17.1 [Defining Macros],
page 131).

Due to the vagaries of macro argument parsing, it is more reliable to pass an alphabetic
command that produces a backslash instead of using a literal \. Hence @backslashchar{}.
Here is an example macro call:

@mymac{One argument@backslashchar{} with a backslash}

Texinfo documents may also use \ as a command character inside @math (see Section 12.7
[Inserting Math], page 97). In this case, @\ or \backslash produces a “math” backslash (from
the math symbol font), while @backslashchar{} produces a typewriter backslash as usual.

Although ‘@backslashchar{}’ can be used nearly anywhere, there is no need for it except
in these unusual cases.

12.1.5 Inserting ‘#’ with @hashchar{}

Ordinarily, a hash ‘#’ is a normal character in Texinfo that can be simply typed in your input
where you need it. The result is to typeset the hash character from the current font.

This character has many other names, varying by locale, such as “number sign”, “pound”,
and “octothorp”. It is also sometimes called “sharp” or “sharp sign” since it vaguely resembles
the musical symbol by that name. In situations where Texinfo is used, “hash” is the most
common in our experience.

However, Texinfo uses the hash character as a special character in one restricted context: to
introduce the so-called #line directive and variants (see Section 17.6 [External Macro Proces-
sors], page 137).

So, in order to typeset an actual hash character in such a place (for example, in a program that
needs documentation about #line), it’s necessary to use @hashchar{} or some other construct.
Here’s an example:

@hashchar{} 10 "example.c"

Although ‘@hashchar{}’ can be used nearly anywhere, there is no need for it anywhere except
this unusual case.

12.1.6 Inserting ‘&’ with @& and @ampchar{}

Ordinarily, an ampersand ‘&’ is a normal character in Texinfo that can be simply typed in your
input where you need it. The result is to typeset the ampersand character.

However, the ampersand character has a special meaning in Texinfo in just one restricted
context. In the argument to a definition command (see Chapter 14 [Definition Commands],



Chapter 12: Special Insertions 92

page 109), Emacs Lisp keywords beginning with ampersands are recognized and typeset specially.
See Section “A Sample Function Description” in GNU Emacs Lisp Reference Manual. For
example:

@defun foo integer1 &optional integer2 &rest integers

@code{foo} described here.

@end defun

leads to the output

[Function]foo integer1 &optional integer2 &rest integers
foo described here.

So, in order to typeset an ampersand in such a context (for example, in documentation of a
C++ function taking a reference as a parameter), it’s necessary to use @& or some other construct.
Here’s an example:

@deftypefn Function int foo (@code{const std::vector<int>@&} bar)

Documentation of @code{foo}.

@end deftypefn

This gives the output

[Function]int foo (const std::vector<int>& bar)
Documentation of foo.

Although ‘@&’ and ‘@ampchar{}’ can be used nearly anywhere, there is no need for them
anywhere except this unusual case.

12.2 Inserting Quote Characters

As explained in the early section on general Texinfo input conventions (see Section 2.1 [Con-
ventions], page 8), Texinfo source files use the ASCII character ‘ (96 decimal) to produce a
left quote (‘), and ASCII ’ (39 decimal) to produce a right quote (’). Doubling these input
characters (‘‘ and ’’) produces double quotes (“ and ”). These are the conventions used by
TEX.

This works all right for text. However, in examples of computer code, readers are especially
likely to cut and paste the text verbatim—and, unfortunately, some document viewers will
mangle these characters. (The free PDF reader xpdf works fine, but other PDF readers, both
free and nonfree, have problems.)

If this is a concern for you, Texinfo provides these two commands:

@codequoteundirected on-off

causes the output for the ’ character in code environments to be the undirected
single quote, like this: '.

@codequotebacktick on-off

causes the output for the ‘ character in code environments to be the backtick char-
acter (standalone grave accent), like this: `.

If you want these settings for only part of the document, @codequote... off will restore the
normal behavior, as in @codequoteundirected off.

These settings affect @code, @example, @kbd, @samp, @verb, and @verbatim. See Section 7.1.1
[Useful Highlighting], page 53.

This feature used to be controlled by using @set to change the values of the corresponding
variables txicodequoteundirected and txicodequotebacktick; they are still supported, but
the command interface is preferred.



Chapter 12: Special Insertions 93

12.3 Inserting Space

The following sections describe commands that control spacing of various kinds within and after
sentences.

12.3.1 Multiple Spaces

Ordinarily, multiple whitespace characters (space, tab, and newline) are collapsed into a single
space.

Occasionally, you may want to produce several consecutive spaces, either for purposes of
example (e.g., what your program does with multiple spaces as input), or merely for purposes
of appearance in headings or lists. Texinfo supports three commands: @SPACE, @TAB, and @NL,
all of which insert a single space into the output. (Here, @SPACE represents an ‘@’ character
followed by a space, i.e., ‘@ ’, TAB represents an actual tab character, and @NL represents an ‘@’
character and end-of-line, i.e., when ‘@’ is the last character on a line.)

For example,

Spacey@ @ @ @

example.

produces

Spacey example.

Other possible uses of @SPACE have been subsumed by @multitable (see Section 9.5 [Multi-
column Tables], page 76).

Do not follow any of these commands with braces.

To produce a non-breakable space, see Section 13.6 [@tie], page 107.

12.3.2 Not Ending a Sentence

When a period, exclamation point or question mark is at the end of a sentence, slightly more
space is inserted after it in a typeset manual.

Usually, Texinfo can determine automatically when a period ends a sentence. However,
special commands are needed in some circumstances. Use the @: command after a period,
question mark, exclamation mark or colon that should not be followed by extra space. This is
necessary in the following situations:

1. After a period that ends a lowercase abbreviation which is not at the end of a sentences.

2. When a parenthetical remark in the middle of a sentence (like this one!) ends with a period,
exclamation point or question mark, @: should be used after the right parenthesis. Similarly
for right brackets and right quotes (both single and double).

For example:

‘foo vs.@: bar (or?)@: baz’,

The first line below shows the output, and for comparison, the second line shows the spacing
when the ‘@:’ commands were not used.

foo vs. bar (or?) baz
foo vs. bar (or?) baz

If you look carefully, you will see a bit of extraneous space after the ‘vs.’ and ‘(or?)’.

It may help you to remember what @: does by imagining that it stands for an invisible
lower-case character that stops a word ending in a period.

A few Texinfo commands force normal interword spacing, so that you don’t have to insert
@: where you otherwise would. These are the code-like highlighting commands, @var, @abbr,
and @acronym (see Section 7.1.1 [Useful Highlighting], page 53). For example, in ‘@code{foo.
bar}’ the period is not considered to be the end of a sentence, and no extra space is inserted.

@: has no effect on the HTML or Docbook output.



Chapter 12: Special Insertions 94

12.3.3 Ending a Sentence

As mentioned above, Texinfo normally inserts additional space after the end of a sentence. It
uses the same heuristic for this as TEX: a sentence ends with a period, exclamation point, or
question mark, either preceded or followed by optional closing punctuation, and then whitespace,
and not preceded by a capital letter.

Use @. instead of a period, @! instead of an exclamation point, and @? instead of a question
mark at the end of a sentence that does end with a capital letter. Do not put braces after any
of these commands. For example:

Give it to M.I.B. and to M.E.W@. Also, give it to R.J.C@.

Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

The output follows. In printed output and Info, you can see the desired extra whitespace after
the ‘W’ in the first line.

Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

In the HTML output, @. is equivalent to a simple ‘.’; likewise for @! and @?.

The “closing punctuation” mentioned above is defined as a right parenthesis (‘)’, right bracket
(‘]’), or right quote, either single or double (‘'’ and ‘''’; the many possible additional Unicode
right quotes are not included). These characters can be thought of as invisible with respect
to whether a given period ends a sentence. (This is the same rule as TEX.) For instance, the
periods in ‘foo.) Bar’ and ‘foo.'' Bar’ do end sentences.

The meanings of @: and @., etc. in Texinfo are designed to work well with the Emacs sentence
motion commands (see Section “Sentences” in The GNU Emacs Manual). It may help to imagine
that the ‘@’ in ‘@.’, etc., is an invisible lower-case letter ‘a’ which makes an upper-case letter
before it immaterial for the purposes of deciding whether the period ends the sentence.

A few Texinfo commands are not considered as being an abbreviation, even though they may
end with a capital letter when expanded, so that you don’t have to insert @. and companions.
Notably, this is the case for code-like highlighting commands, @var arguments ending with a
capital letter, @LaTeX, and @TeX. For example, that sentence ended with ‘... @code{@@TeX}.’;
@. was not needed. Similarly, in ... @var{VARNAME}. Text the period after VARNAME ends
the sentence; there is no need to use @..

12.3.4 @frenchspacing val: Control Sentence Spacing

In American typography, it is traditional and correct to put extra space at the end of a sentence.
This is the default in Texinfo (implemented in Info and printed output; for HTML, we don’t
try to override the browser). In French typography (and others), this extra space is wrong; all
spaces are uniform.

Therefore Texinfo provides the @frenchspacing command to control the spacing after punc-
tuation. It reads the rest of the line as its argument, which must be the single word ‘on’ or ‘off’
(always these words, regardless of the language of the document). Here is an example:

@frenchspacing on

This is text. Two sentences. Three sentences. French spacing.

@frenchspacing off

This is text. Two sentences. Three sentences. Non-French spacing.

produces:

This is text. Two sentences. Three sentences. French spacing.

This is text. Two sentences. Three sentences. Non-French spacing.

@frenchspacing also affects the output after @., @!, and @? (see Section 12.3.3 [Ending a
Sentence], page 94).



Chapter 12: Special Insertions 95

@frenchspacing has no effect on the HTML or Docbook output; for XML, it outputs a
transliteration of itself (see Section 1.2 [Output Formats], page 3).

12.3.5 @dmn{dimension}: Format a Dimension

You can use the @dmn command to format a dimension with a little extra space in the printed
output. That is, on seeing @dmn, TEX inserts just enough space for proper typesetting; in other
output formats, the formatting commands insert no space at all.

To use the @dmn command, write the number and then follow it immediately, with no inter-
vening space, by @dmn, and then by the dimension within braces. For example,

A4 paper is 8.27@dmn{in} wide.

produces

A4 paper is 8.27 in wide.

Not everyone uses this style. Some people prefer ‘8.27 in.’ or ‘8.27 inches’. In these cases,
however, you need to use @tie (see Section 13.6 [@tie], page 107) or @w (see Section 13.5 [@w],
page 106) so that no line break can occur between the number and the dimension. Also, if
you write a period after an abbreviation within a sentence (as with the ‘in.’ above), you should
write ‘@:’ after the period to prevent TEX from inserting extra whitespace, as shown here. See
Section 12.3.2 [Not Ending a Sentence], page 93.

12.4 Inserting Accents

Here is a table with the commands Texinfo provides for inserting floating accents. They all need
an argument, the character to accent, which can either be given in braces as usual (@'{e}), or,
as a special case, the braces can be omitted, in which case the argument is the next character
(@'e). This is to make the source as convenient as possible to type and read, since accented
characters are very common in some languages.

If the command is alphabetic, such as @dotaccent, then there must be a space between the
command name and argument if braces are not used. If the command is non-alphabetic, such
as @', then there must not be a space; the argument is the very next character.

Exception: the argument to @tieaccent must be enclosed in braces (since it is two characters
instead of one).

To get the true accented characters output in Info, not just the ASCII transliterations,
it is necessary to specify @documentencoding with an encoding which supports the required
characters (see Section 15.2 [@documentencoding], page 120). In this case, you can also use
non-ASCII (e.g., pre-accented) characters in the source file.

Command Output What
@"o ö umlaut accent
@’o ó acute accent
@,{c} ç cedilla accent
@=o ō macron/overbar accent
@^o ô circumflex accent
@‘o ò grave accent
@~o ~o tilde accent
@dotaccent{o} ȯ overdot accent
@H{o} ő long Hungarian umlaut
@ogonek{a} ą ogonek
@ringaccent{o} o̊ ring accent
@tieaccent{oo} �oo tie-after accent
@u{o} ŏ breve accent



Chapter 12: Special Insertions 96

@ubaraccent{o} o
¯

underbar accent
@udotaccent{o} o. underdot accent
@v{o} ǒ caron/hacek/check accent

This table lists the Texinfo commands for inserting other characters commonly used in lan-
guages other than English.

@exclamdown{} ¡ upside-down !
@questiondown{} ¿ upside-down ?

@aa{} @AA{} å Å a,A with circle
@ae{} @AE{} æ Æ ae,AE ligatures
@dh{} @DH{} ð Ð Icelandic eth
@dotless{i} ı dotless i
@dotless{j} ȷ dotless j
@l{} @L{}  l  L suppressed-L,l
@o{} @O{} ø Ø O,o with slash
@oe{} @OE{} œ Œ oe,OE ligatures
@ordf{} @ordm{} a o Spanish ordinals
@ss{} ß es-zet or sharp S
@th{} @TH{} þ Þ Icelandic thorn

12.5 Inserting Quotation Marks

Use doubled single-quote characters to begin and end quotations: ‘‘...’’. TEX converts two
single quotes to left- and right-hand doubled quotation marks, “like this”, and Info converts
doubled single-quote characters to ASCII double-quotes: ‘‘...’’ becomes "...".

You may occasionally need to produce two consecutive single quotes; for example, in docu-
menting a computer language such as Maxima where ’’ is a valid command. You can do this
with the input ’@w{}’; the empty @w command stops the combination into the double-quote
characters.

The left quote character (‘, ASCII code 96) used in Texinfo is a grave accent in ANSI and
ISO character set standards. We use it as a quote character because that is how TEX is set up,
by default.

Texinfo supports several other quotation marks used in languages other than English. Below
is a table with the commands Texinfo provides for inserting quotation marks.

In order to get the symbols for the quotation marks in encoded Info output, it is necessary to
specify @documentencoding UTF-8. (See Section 15.2 [@documentencoding], page 120.) Double
guillemets are also present in ISO 8859-1 (aka Latin 1) and ISO 8859-15 (aka Latin 9).

The standard TEX fonts support the usual quotation marks used in English (the ones pro-
duced with single and doubled ASCII single-quotes). For the other quotation marks, TEX
uses European Computer Modern (EC) fonts (ecrm1000 and other variants). These fonts are
freely available, of course; you can download them from http://ctan.org/pkg/ec, among other
places.

The free EC fonts are bitmap fonts created with Metafont. Especially for on-line viewing,
Type 1 (vector) versions of the fonts are preferable; these are available in the CM-Super font
package (http://ctan.org/pkg/cm-super).

Both distributions include installation instructions.

Command Glyph Unicode name (point)
@quotedblleft{} `` “ Left double quotation mark (U+201C)
@quotedblright{} '' ” Right double quotation mark (U+201D)
@quoteleft{} ` ‘ Left single quotation mark (U+2018)

http://ctan.org/pkg/ec
http://ctan.org/pkg/cm-super


Chapter 12: Special Insertions 97

@quoteright{} ' ’ Right single quotation mark (U+2019)
@quotedblbase{} „ Double low-9 quotation mark (U+201E)
@quotesinglbase{} ‚ Single low-9 quotation mark (U+201A)
@guillemetleft{} « Left-pointing double angle quotation

mark (U+00AB)

@guillemetright{} » Right-pointing double angle quotation
mark (U+00BB)

@guilsinglleft{} ‹ Single left-pointing angle quotation
mark (U+2039)

@guilsinglright{} › Single right-pointing angle quotation
mark (U+203A)

For the double angle quotation marks, Adobe and LATEX glyph names are also supported:
@guillemotleft and @guillemotright. These names are incorrect; a “guillemot” is a bird
species (a type of auk).

Traditions for quotation mark usage vary to a great extent between languages (http://en.
wikipedia.org/wiki/Quotation_mark). Texinfo does not provide commands or configurations
for typesetting quotation marks according to the numerous traditions. Therefore, you have
to choose the commands appropriate for the language of your manual. Sometimes aliases (see
Section 17.4 [@alias], page 136) can simplify the usage and make the source code more readable.
For example, in German, @quotedblbase is used for the left double quote, and the right double
quote is the glyph produced by @quotedblleft, which is counter-intuitive. Thus, in this case
the following aliases would be convenient:

@alias lgqq = quotedblbase

@alias rgqq = quotedblleft

12.6 @sub and @sup: Inserting Subscripts and Superscripts

You can insert subscripts and superscripts, in either text or math, with the @sub and @sup

commands. (For other mathematical expressions, see the next section.) For example, here is a
purely textual subscript and superscript:

here@sub{below}@sup{above}

produces:

herebelow
above

Inside @math, @sub and @sup produce mathematical subscripts and superscripts. This uses
a different font in the TEX output (math italic instead of text italic); it makes no difference in
the other output formats. Here’s an example:

@math{e@sup{x}}

produces:

ex

In Info and plain text, regardless of being used inside @math, @sub{text} is output as
‘_{text}’ and @sup{text} as ‘^{text}’, including the literal braces (to mark the beginning
and end of the “script” text to the reader).

When the output format (and display program) permit (TEX math, HTML), the superscript
is set above the subscript when both commands are given consecutively.

12.7 @math: Inserting Mathematical Expressions

You can write a short mathematical expression with the @math command. Write the mathemat-
ical expression between braces, like this:

@math{(a + b) = (b + a)}

http://en.wikipedia.org/wiki/Quotation_mark
http://en.wikipedia.org/wiki/Quotation_mark


Chapter 12: Special Insertions 98

This produces the following in TEX:

(a + b) = (b + a)

and the following in other formats:

(a + b) = (b + a)

The @math command has no special effect on the Info and HTML output. makeinfo expands
any @-commands as usual, but it does not try to use produce good mathematical formatting
in any way (no use of MathML, etc.). The HTML output is enclosed by <em>...</em>, but
nothing more.

However, as far as the TEX output is concerned, plain TEX mathematical commands are
allowed in @math, starting with ‘\’. In essence, @math switches into plain TEX math mode.
(Exception: the plain TEX command \sup, which typesets the mathematical operator name
‘sup’, must be accessed as \mathopsup, due to the conflict with Texinfo’s @sup command.)

This allows you to use all the plain TEX math control sequences for symbols, functions, and
so on, and thus get proper formatting in the TEX output, at least.

The @sub and @sup commands described in the previous section produce subscripts and
superscripts in HTML output as well as TEX; the plain TEX characters _ and ^ for subscripts
and superscripts are recognized by TEX inside @math, but do nothing special in HTML or other
output formats.

It’s best to use ‘\’ instead of ‘@’ for any such mathematical commands; otherwise, makeinfo
will complain. On the other hand, makeinfo does allow input with matching (but unescaped)
braces, such as ‘k_{75}’; it complains about such bare braces in regular input.

Here’s an example:

@math{\sin 2\pi \equiv \cos 3\pi}

which looks like this in TEX:

sin 2π ≡ cos 3π

but which looks like the input in Info and HTML:

\sin 2\pi \equiv \cos 3\pi

Since ‘\’ is an escape character inside @math, you can use @\ to get a literal backslash (\\
will work in TEX, but you’d get the literal two characters ‘\\’ in Info). @\ is not defined
outside of @math, since a ‘\’ ordinarily produces a literal (typewriter) ‘\’. You can also use
@backslashchar{} in any mode to get a typewriter backslash. See Section 12.1.4 [Inserting a
Backslash], page 91.

For displayed equations, you must at present use TEX directly (see Section 16.3 [Raw For-
matter Commands], page 123).

12.8 Glyphs for Text

Texinfo has support for a few additional glyphs that are commonly used in printed text but not
available in ASCII. Of course, there are many thousands more. It is possible to use Unicode
characters as-is as far as makeinfo is concerned, but TEX is not so lucky.

12.8.1 @TeX{} (TEX) and @LaTeX{} (LATEX)

Use the @TeX{} command to generate ‘TEX’. In a printed manual, this is a special logo that is
different from three ordinary letters. In Info, it just looks like ‘TeX’.

Similarly, use the @LaTeX{} command to generate ‘LATEX’, which is even more special in
printed manuals (and different from the incorrect La@TeX{}. In Info, the result is just ‘LaTeX’.
(LATEX is another macro package built on top of TEX, very loosely analogous to Texinfo in that
it emphasizes logical structure, but much (much) larger.)



Chapter 12: Special Insertions 99

The spelling of these commands are unusual for Texinfo, in that they use both uppercase
and lowercase letters.

12.8.2 @copyright{} ( c©)

Use the @copyright{} command to generate the copyright symbol, ‘ c©’. Where possible, this
is a ‘c’ inside a circle; in Info, this is ‘(C)’.

Legally, it’s not necessary to use the copyright symbol; the English word ‘Copyright’ suffices,
according to international treaty.

12.8.3 @registeredsymbol{} ( R©)

Use the @registeredsymbol{} command to generate the registered symbol, ‘ R©’. Where possi-
ble, this is an ‘R’ inside a circle; in Info, this is ‘(R)’.

12.8.4 @dots (. . . ) and @enddots (. . . )

An ellipsis (a sequence of dots) would be spaced wrong when typeset as a string of periods, so
a special command is used in Texinfo: use the @dots{} command to generate a normal ellipsis,
which is three dots in a row, appropriately spaced . . . like so. To emphasize: do not simply
write three periods in the input file; that would work for the Info file output, but would produce
the wrong amount of space between the periods in the printed manual.

The @enddots{} command generates an end-of-sentence ellipsis, which also has three dots,
but with different spacing afterwards, . . . Look closely to see the difference.

Here is an ellipsis: . . . Here are three periods in a row: ...

In printed (and usually HTML) output, the three periods in a row are much closer together
than the dots in the ellipsis.

12.8.5 @bullet (•)
Use the @bullet{} command to generate a large round dot, or the closest possible thing to one.
In Info, an asterisk is used. Here is a bullet: •

When you use @bullet in @itemize, you do not need to type the braces, because @itemize

supplies them. (see Section 9.2 [@itemize], page 71).

12.8.6 @euro (e): Euro Currency Symbol

Use the @euro{} command to generate ‘e’. Where possible, this is the symbol for the Euro
currency. Otherwise, the word ‘Euro’ is used.

Texinfo cannot magically synthesize support for the Euro symbol where the underlying system
(fonts, software, whatever) does not support it. Therefore, you may find it preferable to use the
word “Euro”. (In banking contexts, the abbreviation for the Euro is EUR.)

In order to get the Euro symbol in encoded Info output, for example, it is necessary
to specify @documentencoding ISO-8859-15 or @documentencoding UTF-8 (See Section 15.2
[@documentencoding], page 120.) The Euro symbol is in ISO 8859-15 (aka Latin 9), and is not
in the more widely-used ISO 8859-1 (Latin 1).

The Euro symbol does not exist in the standard TEX fonts (which were designed before the
Euro was legislated into existence). Therefore, TEX uses an additional font, named feymr10

(along with other variables). It is freely available, of course; you can download it from http://

ctan.org/pkg/eurosym, among other places. The distribution includes installation instructions.

12.8.7 @pounds (£): Pounds Sterling

Use the @pounds{} command to generate ‘£’. Where possible, this is the symbol for the pounds
sterling British currency. Otherwise, it is ‘#’.

http://ctan.org/pkg/eurosym
http://ctan.org/pkg/eurosym


Chapter 12: Special Insertions 100

12.8.8 @textdegree (◦): Degrees Symbol

Use the @textdegree{} command to generate ‘◦’. Where possible, this is the normal symbol
for degrees. Otherwise, it is an ‘o’.

12.8.9 @minus (−): Inserting a Minus Sign

Use the @minus{} command to generate a minus sign. In a fixed-width font, this is a single
hyphen, but in a proportional font, the symbol is the customary length for a minus sign—a little
longer than a hyphen, shorter than an em-dash:

‘−’ is a minus sign generated with ‘@minus{}’,

‘-’ is a hyphen generated with the character ‘-’,

‘—’ is an em-dash for text.

In the fixed-width font used by Info, @minus{} is the same as a hyphen.

You should not use @minus{} inside @code or @example because the width distinction is not
made in the fixed-width font they use.

When you use @minus to specify the mark beginning each entry in an itemized list, you do
not need to type the braces (see Section 9.2 [@itemize], page 71).

If you actually want to typeset some math that does a subtraction, it is better to use @math.
Then the regular ‘-’ character produces a minus sign, as in @math{a-b} (see Section 12.7 [In-
serting Math], page 97).

12.8.10 @geq (≥) and @leq (≤): Inserting Relations

Use the @geq{} and @leq{} commands to generate greater-than-or-equal and less-than-equal-
signs, ‘≥’ and ‘≤’. When those symbols are not available, the ASCII sequences ‘>=’ and ‘<=’ are
output.

12.9 Glyphs for Programming

In Texinfo, code is often illustrated in examples that are delimited by @example and @end

example, or by @lisp and @end lisp. In such examples, you can indicate the results of eval-
uation or an expansion using ‘⇒’ or ‘ 7→’. Likewise, there are commands to insert glyphs to
indicate printed output, error messages, equivalence of expressions, the location of point in an
editor, and GUI operation sequences.

The glyph-insertion commands do not need to be used within an example, but most often
they are. All glyph-insertion commands are followed by empty braces.

12.9.1 Glyphs Summary

Here is a summary of the glyph commands:

⇒ @result{} indicates the result of an expression.

7→ @expansion{} indicates the results of a macro expansion.

a @print{} indicates printed output.

error @error{} indicates the following text is an error message.

≡ @equiv{} indicates the exact equivalence of two forms.

? @point{} shows the location of point.

A → B @clicksequence{A @click{} B indicates a GUI operation sequence: first A, then
clicking B, or choosing B from a menu, or otherwise selecting it.



Chapter 12: Special Insertions 101

12.9.2 @result{} (⇒): Result of an Expression

Use the @result{} command to indicate the result of evaluating an expression.

The @result{} command is displayed as ‘⇒’, either a double stemmed arrow or (when that
is not available) the ASCII sequence ‘=>’.

Thus, the following,

(cdr '(1 2 3))

⇒ (2 3)

may be read as “(cdr '(1 2 3)) evaluates to (2 3)”.

12.9.3 @expansion{} ( 7→): Indicating an Expansion

When an expression is a macro call, it expands into a new expression. You can indicate the
result of the expansion with the @expansion{} command.

The @expansion{} command is displayed as ‘ 7→’, either a long arrow with a flat base or
(when that is not available) the ASCII sequence ‘==>’.

For example, the following

@lisp

(third '(a b c))

@expansion{} (car (cdr (cdr '(a b c))))

@result{} c

@end lisp

produces

(third '(a b c))

7→ (car (cdr (cdr '(a b c))))

⇒ c

which may be read as:

(third '(a b c)) expands to (car (cdr (cdr '(a b c)))); the result of evaluating
the expression is c.

Often, as in this case, an example looks better if the @expansion{} and @result{} commands
are indented.

12.9.4 @print{} ( a ): Indicating Generated Output

Sometimes an expression will generate output during its execution. You can indicate such
displayed output with the @print{} command.

The @print{} command is displayed as ‘ a ’, either a horizontal dash butting against a
vertical bar or (when that is not available) the ASCII sequence ‘-|’.

In the following example, the printed text is indicated with ‘ a ’, and the value of the expres-
sion follows on the last line.

(progn (print 'foo) (print 'bar))

a foo

a bar

⇒ bar

In a Texinfo source file, this example is written as follows:

@lisp

(progn (print 'foo) (print 'bar))

@print{} foo

@print{} bar

@result{} bar

@end lisp



Chapter 12: Special Insertions 102

12.9.5 @error{} ( error ): Indicating an Error Message

A piece of code may cause an error when you evaluate it. You can designate the error message
with the @error{} command.

The @error{} command is displayed as ‘ error ’, either the word ‘error’ in a box in the
printed output, the word error followed by an arrow in other formats or (when no arrow is
available) ‘error-->’.

Thus,

@lisp

(+ 23 'x)

@error{} Wrong type argument: integer-or-marker-p, x

@end lisp

produces

(+ 23 'x)

error Wrong type argument: integer-or-marker-p, x

This indicates that the following error message is printed when you evaluate the expression:

Wrong type argument: integer-or-marker-p, x

The word ‘ error ’ itself is not part of the error message.

12.9.6 @equiv{} (≡ ): Indicating Equivalence

Sometimes two expressions produce identical results. You can indicate the exact equivalence of
two forms with the @equiv{} command. The @equiv{} command is displayed as ‘≡ ’, either
a standard mathematical equivalence sign (three parallel horizontal lines) or (when that is not
available) as the ASCII sequence ‘==’.

Thus,

@lisp

(make-sparse-keymap) @equiv{} (list 'keymap)

@end lisp

produces

(make-sparse-keymap) ≡ (list 'keymap)

This indicates that evaluating (make-sparse-keymap) produces identical results to evaluating
(list 'keymap).

12.9.7 @point{} (?): Indicating Point in a Buffer

Sometimes you need to show an example of text in an Emacs buffer. In such examples, the
convention is to include the entire contents of the buffer in question between two lines of dashes
containing the buffer name.

You can use the ‘@point{}’ command to show the location of point in the text in the buffer.
(The symbol for point, of course, is not part of the text in the buffer; it indicates the place
between two characters where point is located.)

The @point{} command is displayed as ‘?’, either a pointed star or (when that is not avail-
able) the ASCII sequence ‘-!-’.

The following example shows the contents of buffer foo before and after evaluating a Lisp
command to insert the word changed.

---------- Buffer: foo ----------

This is the ?contents of foo.

---------- Buffer: foo ----------



Chapter 12: Special Insertions 103

(insert "changed ")

⇒ nil

---------- Buffer: foo ----------

This is the changed ?contents of foo.

---------- Buffer: foo ----------

In a Texinfo source file, the example is written like this:

@example

---------- Buffer: foo ----------

This is the @point{}contents of foo.

---------- Buffer: foo ----------

(insert "changed ")

@result{} nil

---------- Buffer: foo ----------

This is the changed @point{}contents of foo.

---------- Buffer: foo ----------

@end example

12.9.8 Click Sequences

When documenting graphical interfaces, it is necessary to describe sequences such as ‘Click on
‘File’, then choose ‘Open’, then . . . ’. Texinfo offers commands @clicksequence and click to
represent this, typically used like this:

... @clicksequence{File @click{} Open} ...

which produces:

. . . File → Open . . .

The @click command produces a right arrow by default; this glyph is also available inde-
pendently via the command @arrow{}.

You can change the glyph produced by @click with the command @clickstyle, which takes
a command name as its single argument on the rest of the line, much like @itemize and friends
(see Section 9.2 [@itemize], page 71). The command should produce a glyph, and the usual
empty braces ‘{}’ are omitted. Here’s an example:

@clickstyle @result

... @clicksequence{File @click{} Open} ...

now produces:

. . . File ⇒ Open . . .

12.10 Inserting Unicode: @U

The command @U{hex} inserts a representation of the Unicode character U+hex. For example,
@U{0132} inserts the Dutch ‘IJ’ ligature (‘IJ’).

The hex value should be at least four hex digits; leading zeros are not added. In general,
hex must specify a valid normal Unicode character; e.g., U+10FFFF (the very last code point)
is invalid by definition, and thus cannot be inserted this way.

@U is useful for inserting occasional glyphs for which Texinfo has no dedicated command,
while allowing the Texinfo source to remain purely 7-bit ASCII for maximum portability.

This command has many limitations—the same limitations as inserting Unicode characters
in UTF-8 or another binary form. First and most importantly, TEX knows nothing about most
of Unicode. Supporting specific additional glyphs upon request is possible, but it’s not viable



Chapter 12: Special Insertions 104

for texinfo.tex to support whole additional scripts (Japanese, Urdu, . . . ). The @U command
does nothing to change this. If the specified character is not supported in TEX, an error is given.
(See Section 15.2 [@documentencoding], page 120.)

In HTML, XML, and Docbook, the output from @U is always an entity reference of the form
‘&#xhex;’, as in ‘&#x0132;’ for the example above. This should work even when an HTML
document uses some other encoding (say, Latin 1) and the given character is not supported in
that encoding.

In Info and plain text, if the output encoding is not UTF-8, the output is the ASCII sequence
‘U+hex’, as in the six ASCII characters ‘U+0132’ for the example above.



105

13 Forcing and Preventing Breaks

Line and page breaks can sometimes occur in the ‘wrong’ place in one or another form of output.
It’s up to you to ensure that text looks right in all the output formats.

For example, in a printed manual, page breaks may occur awkwardly in the middle of an
example; to prevent this, you can hold text together using a grouping command that keeps the
text from being split across two pages. Conversely, you may want to force a page break where
none would occur normally.

You can use the break, break prevention, or pagination commands to fix problematic line
and page breaks.

13.1 Break Commands

The break commands create or allow line and paragraph breaks:

@* Force a line break.

@sp n Skip n blank lines.

@- Insert a discretionary hyphen.

@hyphenation{hy-phen-a-ted words}

Define hyphen points in hy-phen-a-ted words.

These commands hold text together on a single line:

@w{text} Prevent text from being split and hyphenated across two lines.

@tie{} Insert a normal interword space at which a line break may not occur.

The pagination commands apply only to printed output, since other output formats do not
have pages.

@page Start a new page.

@group Hold text together that must appear on one page.

@need mils

Start a new page if not enough space on this one.

13.2 @* and @/: Generate and Allow Line Breaks

The @* command forces a line break in all output formats. The @/ command allows a line break
(printed manual only).

Here is an example with @*:

This sentence is broken @*into two lines.

produces

This sentence is broken

into two lines.

The @/ command can be useful within long urls or other identifiers where TEX can’t find a
good place to break. TEX will automatically break urls at the natural places (see Section 6.10.2
[URL Line Breaking], page 51), so only use @/ if you need it. @/ has no effect in the other output
format.



Chapter 13: Forcing and Preventing Breaks 106

13.3 @- and @hyphenation: Helping TEX Hyphenate

Although TEX’s hyphenation algorithm is generally pretty good, it does miss useful hyphenation
points from time to time. (Or, far more rarely, insert an incorrect hyphenation.) So, for
documents with an unusual vocabulary or when fine-tuning for a printed edition, you may wish
to help TEX out. Texinfo supports two commands for this:

@- Insert a discretionary hyphen, i.e., a place where TEX can (but does not have to)
hyphenate. This is especially useful when you notice an overfull hbox is due to TEX
missing a hyphenation (see Section 19.10 [Overfull hboxes], page 150). TEX will not
insert any hyphenation points itself into a word containing @-.

@hyphenation{hy-phen-a-ted words}

Tell TEX how to hyphenate hy-phen-a-ted words. As shown, you put a ‘-’ at each
hyphenation point. For example:

@hyphenation{man-u-script man-u-scripts}

TEX only uses the specified hyphenation points when the words match exactly, so
give all necessary variants, such as plurals.

Info, HTML, and other non-TEX output is not hyphenated, so none of these commands have
any effect there.

13.4 @allowcodebreaks: Control Line Breaks in @code

Ordinarily, TEX considers breaking lines at ‘-’ and ‘_’ characters within @code and related
commands (see Section 7.1.2 [@code], page 54), more or less as if they were “empty” hyphenation
points.

This is necessary since many manuals, especially for Lisp-family languages, must document
very long identifiers. On the other hand, some manuals don’t have this problems, and you may
not wish to allow a line break at the underscore in, for example, SIZE_MAX, or even worse, after
any of the four underscores in __typeof__.

So Texinfo provides this command:

@allowcodebreaks false

to prevent from breaking at ‘-’ or ‘_’ within @code. You can go back to allowing such breaks
with @allowcodebreaks true. Write these commands on lines by themselves.

These commands can be given anywhere in the document. For example, you may have just
one problematic paragraph where you need to turn off the breaks, but want them in general, or
vice versa.

This command has no effect except in HTML and TEX output.

13.5 @w{text}: Prevent Line Breaks

@w{text} outputs text, while prohibiting line breaks within text.

Thus, you can use @w to produce a non-breakable space, fixed at the width of a normal
interword space:

@w{ } @w{ } @w{ } indentation.

produces:

indentation.

The space from @w{ }, as well as being non-breakable, also will not stretch or shrink. Some-
times that is what you want, for instance if you’re doing manual indenting. However, usually
you want a normal interword space that does stretch and shrink (in the printed output); for
that, see the @tie command in the next section.



Chapter 13: Forcing and Preventing Breaks 107

You can also use the @w command to prevent TEX from automatically hyphenating a long
name or phrase that happens to fall near the end of a line. makeinfo does not ever hyphenate
words.

You can also use @w to avoid unwanted keyword expansion in source control systems. For
example, to literally write $Id$ in your document, use @w{$}Id$. This trick isn’t effective in
Info or plain text output, though.

13.6 @tie{}: Inserting an Unbreakable Space

The @tie{} command produces a normal interword space at which a line break may not occur.
Always write it with following (empty) braces, as usual for commands used within a paragraph.
Here’s an example:

@TeX{} was written by Donald E.@tie{}Knuth.

produces:

TEX was written by Donald E. Knuth.

There are two important differences between @tie{} and @w{ }:

• The space produced by @tie{} will stretch and shrink slightly along with the normal inter-
word spaces in the paragraph; the space produced by @w{ } will not vary.

• @tie{} allows hyphenation of the surrounding words, while @w{ } inhibits hyphenation of
those words (for TEXnical reasons, namely that it produces an ‘\hbox’).

13.7 @sp n: Insert Blank Lines

A line beginning with and containing only @sp n generates n blank lines of space in both the
printed manual and the Info file. @sp also forces a paragraph break. For example,

@sp 2

generates two blank lines.

The @sp command is most often used in the title page.

13.8 @page: Start a New Page

A line containing only @page starts a new page in a printed manual. In other formats, without the
concept of pages, it starts a new paragraph. A @page command is often used in the @titlepage

section of a Texinfo file to start the copyright page.

13.9 @group: Prevent Page Breaks

The @group command (on a line by itself) is used inside an @example or similar construct
to begin an unsplittable vertical group, which will appear entirely on one page in the printed
output. The group is terminated by a line containing only @end group. These two lines produce
no output of their own, and in the Info file output they have no effect at all.

Although @group would make sense conceptually in a wide variety of contexts, its current im-
plementation works reliably only within @example and variants, and within @display, @format,
@flushleft and @flushright. See Chapter 8 [Quotations and Examples], page 63. (What all
these commands have in common is that each line of input produces a line of output.) In other
contexts, @group can cause anomalous vertical spacing.

This formatting requirement means that you should write:

@example

@group

...

@end group

@end example



Chapter 13: Forcing and Preventing Breaks 108

with the @group and @end group commands inside the @example and @end example commands.

The @group command is most often used to hold an example together on one page. In this
Texinfo manual, more than 100 examples contain text that is enclosed between @group and @end

group.

If you forget to end a group, you may get strange and unfathomable error messages when you
run TEX. This is because TEX keeps trying to put the rest of the Texinfo file onto the one page
and does not start to generate error messages until it has processed considerable text. It is a
good rule of thumb to look for a missing @end group if you get incomprehensible error messages
in TEX.

13.10 @need mils: Prevent Page Breaks

A line containing only @need n starts a new page in a printed manual if fewer than n mils
(thousandths of an inch) remain on the current page. Do not use braces around the argument
n. The @need command has no effect on other output formats since they are not paginated.

This paragraph is preceded by a @need command that tells TEX to start a new page if fewer
than 800 mils (eight-tenths inch) remain on the page. It looks like this:

@need 800

This paragraph is preceded by ...

The @need command is useful for preventing orphans: single lines at the bottoms of printed
pages.



109

14 Definition Commands

The @deffn command and the other definition commands enable you to describe functions,
variables, macros, commands, user options, special forms and other such artifacts in a uniform
format.

In the Info file, a definition causes the entity category—‘Function’, ‘Variable’, or whatever—
to appear at the beginning of the first line of the definition, followed by the entity’s name and
arguments. In the printed manual, the command causes TEX to print the entity’s name and its
arguments on the left margin and print the category next to the right margin. In both output
formats, the body of the definition is indented. Also, the name of the entity is entered into the
appropriate index: @deffn enters the name into the index of functions, @defvr enters it into
the index of variables, and so on (see Section 11.1 [Predefined Indices], page 84).

A manual need not and should not contain more than one definition for a given name. An
appendix containing a summary should use @table rather than the definition commands.

14.1 The Template for a Definition

The @deffn command is used for definitions of entities that resemble functions. To write a
definition using the @deffn command, write the @deffn command at the beginning of a line
and follow it on the same line by the category of the entity, the name of the entity itself, and its
arguments (if any). Then write the body of the definition on succeeding lines. (You may embed
examples in the body.) Finally, end the definition with an @end deffn command written on a
line of its own.

The other definition commands follow the same format: a line with the @def... command
and whatever arguments are appropriate for that command; the body of the definition; and a
corresponding @end line.

The template for a definition looks like this:

@deffn category name arguments...

body-of-definition

@end deffn

For example,

@deffn Command forward-word count

This command moves point forward @var{count} words

(or backward if @var{count} is negative). ...

@end deffn

produces

[Command]forward-word count
This command moves point forward count words (or backward if count is nega-
tive). . . .

Capitalize the category name like a title. If the name of the category contains spaces, as in
the phrase ‘Interactive Command’, enclose it in braces. For example:

@deffn {Interactive Command} isearch-forward

...

@end deffn

Otherwise, the second word will be mistaken for the name of the entity. As a general rule, when
any of the arguments in the heading line except the last one are more than one word, you need to
enclose them in braces. This may also be necessary if the text contains commands, for example,
‘{declaraci@'on}’ if you are writing in Spanish.



Chapter 14: Definition Commands 110

Some of the definition commands are more general than others. The @deffn command, for
example, is the general definition command for functions and the like—for entities that may take
arguments. When you use this command, you specify the category to which the entity belongs.
Three predefined, specialized variations (@defun, @defmac, and @defspec) specify the category
for you: “Function”, “Macro”, and “Special Form” respectively. (In Lisp, a special form is an
entity much like a function.) Similarly, the general @defvr command is accompanied by several
specialized variations for describing particular kinds of variables.

See Section 14.7 [Sample Function Definition], page 118, for a detailed example of a function
definition, including the use of @example inside the definition.

14.2 Definition Command Continuation Lines

The heading line of a definition command can get very long. Therefore, Texinfo has a special
syntax allowing them to be continued over multiple lines of the source file: a lone ‘@’ at the end
of each line to be continued. Here’s an example:

@defun fn-name @

arg1 arg2 arg3

This is the basic continued defun.

@end defun

produces:

[Function]fn-name arg1 arg2 arg3
This is the basic continued defun.

As you can see, the continued lines are combined, as if they had been typed on one source line.

Although this example only shows a one-line continuation, continuations may extend over
any number of lines, in the same way; put an @ at the end of each line to be continued.

In general, any number of spaces or tabs before the @ continuation character are collapsed into
a single space. There is one exception: the Texinfo processors will not fully collapse whitespace
around a continuation inside braces. For example:

@deffn {Category @

Name} ...

The output (not shown) has excess space between ‘Category’ and ‘Name’. To avoid this, elide
the unwanted whitespace in your input, or put the continuation @ outside braces.

@ does not function as a continuation character in any other context. Ordinarily, ‘@’ fol-
lowed by a whitespace character (space, tab, newline) produces a normal interword space (see
Section 12.3.1 [Multiple Spaces], page 93).

14.3 Optional and Repeated Arguments

Some entities take optional or repeated arguments, conventionally specified by using square
brackets and ellipses: an argument enclosed within square brackets is optional, and an argument
followed by an ellipsis is optional and may be repeated more than once.

Thus, [optional-arg ] means that optional-arg is optional and repeated-args... stands for zero
or more arguments. Parentheses are used when several arguments are grouped into additional
levels of list structure in Lisp.

Here is the @defspec line of an example of an imaginary (complicated) special form:

[Special Form]foobar (var [from to [inc]]) body. . .
In this example, the arguments from and to are optional, but must both be present or both
absent. If they are present, inc may optionally be specified as well. These arguments are



Chapter 14: Definition Commands 111

grouped with the argument var into a list, to distinguish them from body, which includes all
remaining elements of the form.

In a Texinfo source file, this @defspec line is written like this:

@defspec foobar (var [from to [inc]]) body@dots{}

The function is listed in the Command and Variable Index under ‘foobar’.

14.4 @deffnx, et al.: Two or More ‘First’ Lines

To create two or more ‘first’ or header lines for a definition, follow the first @deffn line by a line
beginning with @deffnx. The @deffnx command works exactly like @deffn except that it does
not generate extra vertical white space between it and the preceding line.

For example,

@deffn {Interactive Command} isearch-forward

@deffnx {Interactive Command} isearch-backward

These two search commands are similar except ...

@end deffn

produces

[Interactive Command]isearch-forward
[Interactive Command]isearch-backward

These two search commands are similar except . . .

Each definition command has an ‘x’ form: @defunx, @defvrx, @deftypefunx, etc.

The ‘x’ forms work similarly to @itemx (see Section 9.4.3 [@itemx], page 75).

14.5 The Definition Commands

Texinfo provides more than a dozen definition commands, all of which are described in this
section.

The definition commands automatically enter the name of the entity in the appropriate index:
for example, @deffn, @defun, and @defmac enter function names in the index of functions;
@defvr and @defvar enter variable names in the index of variables.

Although the examples that follow mostly illustrate Lisp, the commands can be used for
other programming languages.

14.5.1 Functions and Similar Entities

This section describes the commands for describing functions and similar entities:

@deffn category name arguments...

The @deffn command is the general definition command for functions, interactive
commands, and similar entities that may take arguments. You must choose a term
to describe the category of entity being defined; for example, “Function” could be
used if the entity is a function. The @deffn command is written at the beginning of
a line and is followed on the same line by the category of entity being described, the
name of this particular entity, and its arguments, if any. Terminate the definition
with @end deffn on a line of its own.

For example, here is a definition:

@deffn Command forward-char nchars

Move point forward @var{nchars} characters.

@end deffn

This shows a rather terse definition for a “command” named forward-char with
one argument, nchars.



Chapter 14: Definition Commands 112

@deffn prints argument names such as nchars in slanted type in the printed output,
because we think of these names as metasyntactic variables—they stand for the
actual argument values. Within the text of the description, however, write an
argument name explicitly with @var to refer to the value of the argument. In the
example above, we used ‘@var{nchars}’ in this way.

In the extremely unusual case when an argument name contains ‘--’, or another
character sequence which is treated specially (see Section 2.1 [Conventions], page 8),
use @code around the special characters. This avoids the conversion to typographic
en-dashes and em-dashes.

The template for @deffn is:

@deffn category name arguments...

body-of-definition

@end deffn

@defun name arguments...

The @defun command is the definition command for functions. @defun is equivalent
to ‘@deffn Function ...’. Terminate the definition with @end defun on a line of
its own. Thus, the template is:

@defun function-name arguments...

body-of-definition

@end defun

@defmac name arguments...

The @defmac command is the definition command for macros. @defmac is equivalent
to ‘@deffn Macro ...’ and works like @defun.

@defspec name arguments...

The @defspec command is the definition command for special forms. (In Lisp, a
special form is an entity much like a function; see Section “Special Forms” in GNU
Emacs Lisp Reference Manual.) @defspec is equivalent to ‘@deffn {Special Form}

...’ and works like @defun.

All these commands create entries in the index of functions.

14.5.2 Variables and Similar Entities

Here are the commands for defining variables and similar entities:

@defvr category name

The @defvr command is a general definition command for something like a
variable—an entity that records a value. You must choose a term to describe the
category of entity being defined; for example, “Variable” could be used if the entity
is a variable. Write the @defvr command at the beginning of a line and follow it on
the same line by the category of the entity and the name of the entity.

We recommend capitalizing the category name like a title. If the name of the cate-
gory contains spaces, as in the name “User Option”, enclose it in braces. Otherwise,
the second word will be mistaken for the name of the entity. For example,

@defvr {User Option} fill-column

This buffer-local variable specifies

the maximum width of filled lines.

...

@end defvr

Terminate the definition with @end defvr on a line of its own.



Chapter 14: Definition Commands 113

The template is:

@defvr category name

body-of-definition

@end defvr

@defvr creates an entry in the index of variables for name.

@defvar name

The @defvar command is the definition command for variables. @defvar is equiv-
alent to ‘@defvr Variable ...’.

For example:

@defvar kill-ring

...

@end defvar

The template is:

@defvar name

body-of-definition

@end defvar

@defvar creates an entry in the index of variables for name.

@defopt name

The @defopt command is the definition command for user options, i.e., variables
intended for users to change according to taste; Emacs has many such (see Section
“Variables” in The GNU Emacs Manual). @defopt is equivalent to ‘@defvr {User

Option} ...’ and works like @defvar. It creates an entry in the index of variables.

14.5.3 Functions in Typed Languages

The @deftypefn command and its variations are for describing functions in languages in which
you must declare types of variables and functions, such as C and C++.

@deftypefn category data-type name arguments...

The @deftypefn command is the general definition command for functions and
similar entities that may take arguments and that are typed. The @deftypefn

command is written at the beginning of a line and is followed on the same line by
the category of entity being described, the type of the returned value, the name of
this particular entity, and its arguments, if any.

For example,

@deftypefn {Library Function} int foobar @

(int @var{foo}, float @var{bar})

...

@end deftypefn

produces:

[Library Function]int foobar (int foo, float bar)
. . .

This means that foobar is a “library function” that returns an int, and its argu-
ments are foo (an int) and bar (a float).

Since in typed languages, the actual names of the arguments are typically scattered
among data type names and keywords, Texinfo cannot find them without help. You
can either (a) write everything as straight text, and it will be printed in slanted
type; (b) use @var for the variable names, which will uppercase the variable names
in Info and use the slanted typewriter font in printed output; (c) use @var for the



Chapter 14: Definition Commands 114

variable names and @code for the type names and keywords, which will be dutifully
obeyed.

The template for @deftypefn is:

@deftypefn category data-type name arguments ...

body-of-description

@end deftypefn

Note that if the category or data type is more than one word then it must be
enclosed in braces to make it a single argument.

If you are describing a procedure in a language that has packages, such as Ada, you
might consider using @deftypefn in a manner somewhat contrary to the convention
described in the preceding paragraphs. For example:

@deftypefn stacks private push @

(@var{s}:in out stack; @

@var{n}:in integer)

...

@end deftypefn

(In these examples the @deftypefn arguments are shown using continuations (see
Section 14.2 [Def Cmd Continuation Lines], page 110), but could be on a single
line.)

In this instance, the procedure is classified as belonging to the package stacks

rather than classified as a ‘procedure’ and its data type is described as private.
(The name of the procedure is push, and its arguments are s and n.)

@deftypefn creates an entry in the index of functions for name.

@deftypefun data-type name arguments...

The @deftypefun command is the specialized definition command for functions in
typed languages. The command is equivalent to ‘@deftypefn Function ...’. The
template is:

@deftypefun type name arguments...

body-of-description

@end deftypefun

@deftypefun creates an entry in the index of functions for name.

Ordinarily, the return type is printed on the same line as the function name and arguments,
as shown above. In source code, GNU style is to put the return type on a line by itself. So
Texinfo provides an option to do that: @deftypefnnewline on.

This affects typed functions only—not untyped functions, not typed variables, etc.. Specifi-
cally, it affects the commands in this section, and the analogous commands for object-oriented
languages, namely @deftypeop and @deftypemethod (see Section 14.5.6.2 [Object-Oriented
Methods], page 117).

Specifying @deftypefnnewline off reverts to the default.

14.5.4 Variables in Typed Languages

Variables in typed languages are handled in a manner similar to functions in typed languages.
See Section 14.5.3 [Typed Functions], page 113. The general definition command @deftypevr

corresponds to @deftypefn and the specialized definition command @deftypevar corresponds
to @deftypefun.

@deftypevr category data-type name

The @deftypevr command is the general definition command for something like a
variable in a typed language—an entity that records a value. You must choose a



Chapter 14: Definition Commands 115

term to describe the category of the entity being defined; for example, “Variable”
could be used if the entity is a variable.

The @deftypevr command is written at the beginning of a line and is followed on
the same line by the category of the entity being described, the data type, and the
name of this particular entity.

For example:

@deftypevr {Global Flag} int enable

...

@end deftypevr

produces the following:

[Global Flag]int enable
. . .

The template is:

@deftypevr category data-type name

body-of-description

@end deftypevr

@deftypevar data-type name

The @deftypevar command is the specialized definition command for variables in
typed languages. @deftypevar is equivalent to ‘@deftypevr Variable ...’. The
template is:

@deftypevar data-type name

body-of-description

@end deftypevar

These commands create entries in the index of variables.

14.5.5 Data Types

Here is the command for data types:

@deftp category name attributes...

The @deftp command is the generic definition command for data types. The com-
mand is written at the beginning of a line and is followed on the same line by the
category, by the name of the type (which is a word like int or float), and then by
names of attributes of objects of that type. Thus, you could use this command for
describing int or float, in which case you could use data type as the category. (A
data type is a category of certain objects for purposes of deciding which operations
can be performed on them.)

In Lisp, for example, pair names a particular data type, and an object of that type
has two slots called the car and the cdr. Here is how you would write the first line
of a definition of pair.

@deftp {Data type} pair car cdr

...

@end deftp

The template is:

@deftp category name-of-type attributes...

body-of-definition

@end deftp

@deftp creates an entry in the index of data types.



Chapter 14: Definition Commands 116

14.5.6 Object-Oriented Programming

Here are the commands for formatting descriptions about abstract objects, such as are used in
object-oriented programming. A class is a defined type of abstract object. An instance of a
class is a particular object that has the type of the class. An instance variable is a variable that
belongs to the class but for which each instance has its own value.

14.5.6.1 Object-Oriented Variables

These commands allow you to define different sorts of variables in object-oriented programming
languages.

@defcv category class name

The @defcv command is the general definition command for variables associated
with classes in object-oriented programming. The @defcv command is followed by
three arguments: the category of thing being defined, the class to which it belongs,
and its name. For instance:

@defcv {Class Option} Window border-pattern

...

@end defcv

produces:

[Class Option of Window]border-pattern
. . .

@defcv creates an entry in the index of variables.

@deftypecv category class data-type name

The @deftypecv command is the definition command for typed class variables in
object-oriented programming. It is analogous to @defcv with the addition of the
data-type parameter to specify the type of the instance variable. Ordinarily, the
data type is a programming language construct that should be marked with @code.
For instance:

@deftypecv {Class Option} Window @code{int} border-pattern

...

@end deftypecv

produces:

[Class Option of Window]int border-pattern
. . .

@deftypecv creates an entry in the index of variables.

@defivar class name

The @defivar command is the definition command for instance variables in object-
oriented programming. @defivar is equivalent to ‘@defcv {Instance Variable}

...’. For instance:

@defivar Window border-pattern

...

@end defivar

produces:

[Instance Variable of Window]border-pattern
. . .



Chapter 14: Definition Commands 117

@defivar creates an entry in the index of variables.

@deftypeivar class data-type name

The @deftypeivar command is the definition command for typed instance variables
in object-oriented programming. It is analogous to @defivar with the addition of
the data-type parameter to specify the type of the instance variable. Ordinarily, the
data type is a programming language construct that should be marked with @code.
For instance:

@deftypeivar Window @code{int} border-pattern

...

@end deftypeivar

produces:

[Instance Variable of Window]int border-pattern
. . .

@deftypeivar creates an entry in the index of variables.

14.5.6.2 Object-Oriented Methods

These commands allow you to define different sorts of function-like entities resembling methods
in object-oriented programming languages. These entities take arguments, as functions do, but
are associated with particular classes of objects.

@defop category class name arguments...

The @defop command is the general definition command for these method-like en-
tities.

For example, some systems have constructs called wrappers that are associated with
classes as methods are, but that act more like macros than like functions. You could
use @defop Wrapper to describe one of these.

Sometimes it is useful to distinguish methods and operations. You can think of
an operation as the specification for a method. Thus, a window system might
specify that all window classes have a method named expose; we would say that
this window system defines an expose operation on windows in general. Typically,
the operation has a name and also specifies the pattern of arguments; all methods
that implement the operation must accept the same arguments, since applications
that use the operation do so without knowing which method will implement it.

Often it makes more sense to document operations than methods. For example,
window application developers need to know about the expose operation, but need
not be concerned with whether a given class of windows has its own method to
implement this operation. To describe this operation, you would write:

@defop Operation windows expose

The @defop command is written at the beginning of a line and is followed on the
same line by the overall name of the category of operation, the name of the class of
the operation, the name of the operation, and its arguments, if any.

The template is:

@defop category class name arguments...

body-of-definition

@end defop

@defop creates an entry, such as ‘expose on windows’, in the index of functions.

@deftypeop category class data-type name arguments...

The @deftypeop command is the definition command for typed operations in object-
oriented programming. It is similar to @defop with the addition of the data-type



Chapter 14: Definition Commands 118

parameter to specify the return type of the method. @deftypeop creates an entry
in the index of functions.

@defmethod class name arguments...

The @defmethod command is the definition command for methods in object-oriented
programming. A method is a kind of function that implements an operation for a
particular class of objects and its subclasses.

@defmethod is equivalent to ‘@defop Method ...’. The command is written at the
beginning of a line and is followed by the name of the class of the method, the name
of the method, and its arguments, if any.

For example:

@defmethod bar-class bar-method argument

...

@end defmethod

illustrates the definition for a method called bar-method of the class bar-class.
The method takes an argument.

@defmethod creates an entry in the index of functions.

@deftypemethod class data-type name arguments...

The @deftypemethod command is the definition command for methods in object-
oriented typed languages, such as C++ and Java. It is similar to the @defmethod

command with the addition of the data-type parameter to specify the return type
of the method. @deftypemethod creates an entry in the index of functions.

The typed commands are affected by the @deftypefnnewline option (see Section 14.5.3
[Functions in Typed Languages], page 113).

14.6 Conventions for Writing Definitions

When you write a definition using @deffn, @defun, or one of the other definition commands,
please take care to use arguments that indicate the meaning, as with the count argument to the
forward-word function. Also, if the name of an argument contains the name of a type, such as
integer, take care that the argument actually is of that type.

14.7 A Sample Function Definition

A function definition uses the @defun and @end defun commands. The name of the function
follows immediately after the @defun command and it is followed, on the same line, by the
parameter list.

Here is a definition from Section “Calling Functions” in The GNU Emacs Lisp Reference
Manual.

[Function]apply function &rest arguments
apply calls function with arguments, just like funcall but with one difference:
the last of arguments is a list of arguments to give to function, rather than a
single argument. We also say that this list is appended to the other arguments.

apply returns the result of calling function. As with funcall, function must
either be a Lisp function or a primitive function; special forms and macros do
not make sense in apply.

(setq f 'list)

⇒ list

(apply f 'x 'y 'z)

error Wrong type argument: listp, z



Chapter 14: Definition Commands 119

(apply '+ 1 2 '(3 4))

⇒ 10

(apply '+ '(1 2 3 4))

⇒ 10

(apply 'append '((a b c) nil (x y z) nil))

⇒ (a b c x y z)

An interesting example of using apply is found in the description of mapcar.

In the Texinfo source file, this example looks like this:

@defun apply function &rest arguments

@code{apply} calls @var{function} with

@var{arguments}, just like @code{funcall} but with one

difference: the last of @var{arguments} is a list of

arguments to give to @var{function}, rather than a single

argument. We also say that this list is @dfn{appended}

to the other arguments.

@code{apply} returns the result of calling

@var{function}. As with @code{funcall},

@var{function} must either be a Lisp function or a

primitive function; special forms and macros do not make

sense in @code{apply}.

@example

(setq f 'list)

@result{} list

(apply f 'x 'y 'z)

@error{} Wrong type argument: listp, z

(apply '+ 1 2 '(3 4))

@result{} 10

(apply '+ '(1 2 3 4))

@result{} 10

(apply 'append '((a b c) nil (x y z) nil))

@result{} (a b c x y z)

@end example

An interesting example of using @code{apply} is found

in the description of @code{mapcar}.

@end defun

In this manual, this function is listed in the Command and Variable Index under apply.

Ordinary variables and user options are described using a format like that for functions except
that variables do not take arguments.



120

15 Internationalization

Texinfo has some support for writing in languages other than English, although this area still
needs considerable work. (If you are the one helping to translate the fixed strings written to
documents, see Section 20.7 [Internationalization of Document Strings], page 172.)

For a list of the various accented and special characters Texinfo supports, see Section 12.4
[Inserting Accents], page 95.

15.1 @documentlanguage ll[_cc]: Set the Document Language

The @documentlanguage command declares the current document locale. Write it on a line by
itself, near the beginning of the file.

@documentlanguage ll[_cc]

Include a two-letter ISO 639-2 language code (ll) following the command name, optionally
followed by an underscore and two-letter ISO 3166 two-letter country code (cc). If you have a
multilingual document, the intent is to be able to use this command multiple times, to declare
each language change. If the command is not used at all, the default is en_US for US English.

As with GNU Gettext (see Gettext), if the country code is omitted, the main dialect is
assumed where possible. For example, de is equivalent to de_DE (German as spoken in Germany).

For Info and other online output, this command changes the translation of various document
strings such as “see” in cross-references (see Chapter 6 [Cross References], page 43), “Function”
in defuns (see Chapter 14 [Definition Commands], page 109), and so on. Some strings, such as
“Node:”, “Next:”, “Menu:”, etc., are keywords in Info output, so are not translated there; they
are translated in other output formats.

For TEX, this command causes a file txi-locale.tex to be read (if it exists). If
@documentlanguage argument contains the optional ‘_cc’ suffix, this is tried first. For example,
with @documentlanguage de_DE, TEX first looks for txi-de_DE.tex, then txi-de.tex.

Such a txi-* file is intended to redefine the various English words used in TEX output, such
as ‘Chapter’, ‘See’, and so on. We are aware that individual words like these cannot always
be translated in isolation, and that a very different strategy would be required for ideographic
(among other) scripts. Help in improving Texinfo’s language support is welcome.

@documentlanguage also changes TEX’s current hyphenation patterns, if the TEX program
being run has the necessary support included. This will generally not be the case for tex itself,
but will usually be the case for up-to-date distributions of the extended TEX programs etex

(DVI output) and pdftex (PDF output). texi2dvi will use the extended TEXs if they are
available (see Section 19.2 [Format with texi2dvi], page 143).

In September 2006, the W3C Internationalization Activity released a new recommendation
for specifying languages: http://www.rfc-editor.org/rfc/bcp/bcp47.txt. When Gettext
supports this new scheme, Texinfo will too.

Since the lists of language codes and country codes are updated relatively frequently, we
don’t attempt to list them here. The valid language codes are on the official home page for
ISO 639, http://www.loc.gov/standards/iso639-2/. The country codes and the official web
site for ISO 3166 can be found via http://en.wikipedia.org/wiki/ISO_3166.

15.2 @documentencoding enc: Set Input Encoding

The @documentencoding command declares the input document encoding, and can also affect
the encoding of the output. Write it on a line by itself, with a valid encoding specification
following, near the beginning of the file.

@documentencoding enc

http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.loc.gov/standards/iso639-2/
http://en.wikipedia.org/wiki/ISO_3166


Chapter 15: Internationalization 121

Texinfo supports these encodings:

US-ASCII This has no particular effect, but it’s included for completeness.

UTF-8 The vast global character encoding, expressed in 8-bit bytes.

ISO-8859-1

ISO-8859-15

ISO-8859-2

These specify the standard encodings for Western European (the first two) and
Eastern European languages (the third), respectively. ISO 8859-15 replaces some
little-used characters from 8859-1 (e.g., precomposed fractions) with more commonly
needed ones, such as the Euro symbol (e).

A full description of the encodings is beyond our scope here; one useful reference is
http://czyborra.com/charsets/iso8859.html.

koi8-r This is the commonly used encoding for the Russian language.

koi8-u This is the commonly used encoding for the Ukrainian language.

Specifying an encoding enc has the following effects:

In Info output, a so-called ‘Local Variables’ section (see Section “File Variables” in The
GNU Emacs Manual) is output including enc. This allows Info readers to set the encoding
appropriately. It looks like this:

Local Variables:

coding: enc

End:

Also, in Info and plain text output, unless the option --disable-encoding is given to
makeinfo, accent constructs and special characters, such as @'e, are output as the actual 8-
bit or UTF-8 character in the given encoding where possible.

In HTML output, a ‘<meta>’ tag is output, in the ‘<head>’ section of the HTML, that specifies
enc. Web servers and browsers cooperate to use this information so the correct encoding is used
to display the page, if supported by the system. That looks like this:

<meta http-equiv="Content-Type" content="text/html;

charset=enc">

In XML and Docbook output, UTF-8 is always used for the output, according to the con-
ventions of those formats.

In TEX output, the characters which are supported in the standard Computer Modern fonts
are output accordingly. For example, this means using constructed accents rather than precom-
posed glyphs. Using a missing character generates a warning message, as does specifying an
unimplemented encoding.

Although modern TEX systems support nearly every script in use in the world, this wide-
ranging support is not available in texinfo.tex, and it’s not feasible to duplicate or incorporate
all that effort. (Our plan to support other scripts is to create a LATEX back-end to texi2any,
where the support is already present.)

For maximum portability of Texinfo documents across the many different user environments
in the world, we recommend sticking to 7-bit ASCII in the input unless your particular man-
ual needs a substantial amount of non-ASCII, e.g., it’s written in German. You can use the
@U command to insert an occasional needed character (see Section 12.10 [Inserting Unicode],
page 103).

http://czyborra.com/charsets/iso8859.html


122

16 Conditionally Visible Text

The conditional commands allow you to use different text for different output formats, or for
general conditions that you define. For example, you can use them to specify different text for
the printed manual and the Info output.

The conditional commands comprise the following categories.

• Commands specific to an output format (Info, TEX, HTML, . . . ).

• Commands specific to any output format excluding a given one (e.g., not Info, not TEX,
. . . ).

• ‘Raw’ formatter text for any output format, passed straight through with minimal (but not
zero) interpretation of @-commands.

• Format-independent variable substitutions, and testing if a variable is set or clear.

16.1 Conditional Commands

Texinfo has an @ifformat environment for each output format, to allow conditional inclusion
of text for a particular output format.

@ifinfo begins segments of text that should be ignored by TEX when it typesets the printed
manual, and by makeinfo when not producing Info output. The segment of text appears only
in the Info file and, for historical compatibility, the plain text output.

The environments for the other formats are analogous:

@ifdocbook ... @end ifdocbook

Text to appear only in the Docbook output.

@ifhtml ... @end ifhtml

Text to appear only in the HTML output.

@ifplaintext ... @end ifplaintext

Text to appear only in the plain text output.

@iftex ... @end iftex

Text to appear only in the printed manual.

@ifxml ... @end ifxml

Text to appear only in the XML output.

The @if... and @end if... commands must appear on lines by themselves in your source
file. The newlines following the commands are (more or less) treated as whitespace, so that the
conditional text is flowed normally into a surrounding paragraph.

The @if... constructs are intended to conditionalize normal Texinfo source; see Section 16.3
[Raw Formatter Commands], page 123, for using underlying format commands directly.

Here is an example showing all these conditionals:

@iftex

This text will appear only in the printed manual.

@end iftex

@ifinfo

However, this text will appear only in Info and plain text.

@end ifinfo

@ifhtml

And this text will only appear in HTML.

@end ifhtml

@ifplaintext



Chapter 16: Conditionally Visible Text 123

Whereas this text will only appear in plain text.

@end ifplaintext

@ifxml

Notwithstanding that this will only appear in XML.

@end ifxml

@ifdocbook

Nevertheless, this will only appear in Docbook.

@end ifdocbook

The preceding example produces the following line:

This text will appear only in the printed manual.

Notice that you only see one of the input lines, depending on which version of the manual you
are reading.

In complex documents, you may want Texinfo to issue an error message in some conditionals
that should not ever be processed. The @errormsg{text} command will do this; it takes one
argument, the text of the error message.

We mention @errormsg{} here even though it is not strictly related to conditionals, since
in practice it is most likely to be useful in that context. Technically, it can be used anywhere.
See Section 17.6 [External Macro Processors], page 137, for a caveat regarding the line numbers
which @errormsg emits in TEX.

16.2 Conditional Not Commands

You can specify text to be included in any output format other than a given one with the
@ifnot... environments:

@ifnotdocbook ... @end ifnotdocbook

@ifnothtml ... @end ifnothtml

@ifnotinfo ... @end ifnotinfo

@ifnotplaintext ... @end ifnotplaintext

@ifnottex ... @end ifnottex

@ifnotxml ... @end ifnotxml

The @ifnot... command and the @end command must appear on lines by themselves in your
actual source file.

If the output file is being made in the given format, the region is ignored. Otherwise, it is
included.

There is one exception (for historical compatibility): @ifnotinfo text is omitted for both
Info and plain text output, not just Info. To specify text which appears only in Info and not in
plain text, use @ifnotplaintext, like this:

@ifinfo

@ifnotplaintext

This will be in Info, but not plain text.

@end ifnotplaintext

@end ifinfo

The regions delimited by these commands are ordinary Texinfo source as with @iftex, not
raw formatter source as with @tex (see Section 16.3 [Raw Formatter Commands], page 123).

16.3 Raw Formatter Commands

The @if... conditionals just described must be used only with normal Texinfo source. For
instance, most features of plain TEX will not work within @iftex. The purpose of @if... is to
provide conditional processing for Texinfo source, not provide access to underlying formatting



Chapter 16: Conditionally Visible Text 124

features. For that, Texinfo provides so-called raw formatter commands. They should only be
used when truly required (most documents do not need them).

The first raw formatter command is @tex. You can enter plain TEX completely, and use ‘\’
in the TEX commands, by delineating a region with the @tex and @end tex commands. All
plain TEX commands and category codes are restored within a @tex region. The sole exception
is that the @ character still introduces a command, so that @end tex can be recognized. Texinfo
processors will not output material in such a region, unless TEX output is being produced.

In complex cases, you may wish to define new TEX macros within @tex. You must use
\gdef to do this, not \def, because @tex regions are processed in a TEX group. If you need
to make several definitions, you may wish to set \globaldefs=1 (its value will be restored to
zero as usual when the group ends at @end tex, so it won’t cause problems with the rest of the
document).

As an example, here is a displayed equation written in plain TEX:

@tex

$$ \chi^2 = \sum_{i=1}^N

\left (y_i - (a + b x_i)

\over \sigma_i\right)^2 $$

@end tex

The output of this example will appear only in a printed manual. If you are reading this in a
format not generated by TEX, you will not see the equation that appears in the printed manual.

χ2 =
N∑
i=1

(
yi − (a+ bxi)

σi

)2

Analogously, you can use @ifhtml ... @end ifhtml to delimit Texinfo source to be included
in HTML output only, and @html ... @end html for a region of raw HTML.

Likewise, you can use @ifxml ... @end ifxml to delimit Texinfo source to be included in
XML output only, and @xml ... @end xml for a region of raw XML. Regions of raw text in
other formats will also be present in the XML output, but with protection of XML characters
and within corresponding elements. For example, the raw HTML text:

@html

<br />

@end html

will be included in the XML output as:

<html>

&lt;br /&gt;

</html>

Again likewise, you can use @ifdocbook ... @end ifdocbook to delimit Texinfo source to be
included in Docbook output only, and @docbook ... @end docbook for a region of raw Docbook.

The behavior of newlines in raw regions is unspecified.

In all cases, in raw processing, @ retains the same meaning as in the remainder of the doc-
ument. Thus, the Texinfo processors must recognize and even execute, to some extent, the
contents of the raw regions, regardless of the final output format. Therefore, specifying changes
that globally affect the document inside a raw region leads to unpredictable and generally un-
desirable behavior. For example, using the @kbdinputstyle command inside a raw region is
undefined.

The remedy is simple: don’t do that. Use the raw formatter commands for their intended
purpose, of providing material directly in the underlying format. When you simply want to give
different Texinfo specifications for different output formats, use the @if... conditionals and
stay in Texinfo syntax.



Chapter 16: Conditionally Visible Text 125

16.4 Inline Conditionals: @inline, @inlineifelse, @inlineraw

Texinfo provides a set of conditional commands with arguments given within braces:

@inlinefmt{format, text}

Process the Texinfo text if format output is being generated.

@inlinefmtifelse{format, then-text, else-text}

Process the Texinfo then-text if format output is being generated; otherwise, process
else-text.

@inlineraw{format, text}

Similar, but for raw text (see Section 16.3 [Raw Formatter Commands], page 123).

The supported format names are:

docbook html info plaintext tex xml

For example,

@inlinefmt{html, @emph{HTML-only text}}

is nearly equivalent to

@ifhtml

@emph{HTML-only text}

@end ifhtml

except that no whitespace is added, as happens in the latter (environment) case.

In these commands, whitespace is ignored after the comma separating the arguments, as
usual, but is not ignored at the end of text.

To insert a literal at sign, left brace, or right brace in one of the arguments, you must
use the alphabetic commands @atchar{} (see Section 12.1.1 [Inserting an Atsign], page 90),
and @lbracechar{} or @rbracechar{} (see Section 12.1.2 [Inserting Braces], page 90), or the
parsing will become confused.

With @inlinefmtifelse, it is also necessary to use @comma{} to avoid mistaking a ‘,’ in the
text for the delimiter. With @inlinefmt and @inlineraw, @comma{} is not required (though
it’s fine to use it), since these commands always have exactly two arguments.

For TEX, the processed text cannot contain newline-delimited commands. Text to be ignored
(i.e., for non-TEX) can, though.

Two other @inline... conditionals complement the @ifset and @ifclear commands; see
the next section.

16.5 Flags: @set, @clear, conditionals, and @value

You can direct the Texinfo formatting commands to format or ignore parts of a Texinfo file with
the @set, @clear, @ifset, and @ifclear commands.

Here are brief descriptions of these commands, see the following sections for more details:

@set flag [value]

Set the variable flag, to the optional value if specified.

@clear flag

Undefine the variable flag, whether or not it was previously defined.

@ifset flag

If flag is set, text through the next @end ifset command is formatted. If flag is
clear, text through the following @end ifset command is ignored.

@inlineifset{flag, text}

Brace-delimited version of @ifset.



Chapter 16: Conditionally Visible Text 126

@ifclear flag

If flag is set, text through the next @end ifclear command is ignored. If flag is
clear, text through the following @end ifclear command is formatted.

@inlineifclear{flag, text}

Brace-delimited version of @ifclear.

16.5.1 @set and @value

You use the @set command to specify a value for a flag, which is later expanded by the @value

command.

A flag (aka variable) name is an identifier starting with an alphanumeric, ‘-’, or ‘_’. Subse-
quent characters, if any, may not be whitespace, ‘@’, braces, angle brackets, or any of ‘~`^+|’;
other characters, such as ‘%’, may work. However, it is best to use only letters and numerals
in a flag name, not ‘-’ or ‘_’ or others—they will work in some contexts, but not all, due to
limitations in TEX.

The value is the remainder of the input line, and can contain anything. However, unlike
most other commands which take the rest of the line as a value, @set need not appear at the
beginning of a line.

Write the @set command like this:

@set foo This is a string.

This sets the value of the flag foo to “This is a string.”.

The Texinfo formatters then replace a @value{flag} command with the string to which flag
is set. Thus, when foo is set as shown above, the Texinfo formatters convert this:

@value{foo}

to this:
This is a string.

You can write a @value command within a paragraph; but you must write a @set command
on a line of its own.

If you write the @set command like this:

@set foo

without specifying a string, the value of foo is the empty string.

If you clear a previously set flag with @clear flag, a subsequent @value{flag} command
will report an error.

For example, if you set foo as follows:

@set howmuch very, very, very

then the formatters transform

It is a @value{howmuch} wet day.

into
It is a very, very, very wet day.

If you write

@clear howmuch

then the formatters transform

It is a @value{howmuch} wet day.

into
It is a {No value for "howmuch"} wet day.

@value cannot be reliably used as the argument to an accent command (see Section 12.4
[Inserting Accents], page 95). For example, this fails:

@set myletter a

@'@value{myletter}



Chapter 16: Conditionally Visible Text 127

16.5.2 @ifset and @ifclear

When a flag is set, the Texinfo formatting commands format text between subsequent pairs
of @ifset flag and @end ifset commands. When the flag is cleared, the Texinfo formatting
commands do not format the text. @ifclear operates analogously.

Write the conditionally formatted text between @ifset flag and @end ifset commands,
like this:

@ifset flag

conditional-text

@end ifset

For example, you can create one document that has two variants, such as a manual for a
‘large’ and ‘small’ model:

You can use this machine to dig up shrubs

without hurting them.

@set large

@ifset large

It can also dig up fully grown trees.

@end ifset

Remember to replant promptly ...

In the example, the formatting commands will format the text between @ifset large and @end

ifset because the large flag is set.

When flag is cleared, the Texinfo formatting commands do not format the text between
@ifset flag and @end ifset; that text is ignored and does not appear in either printed or Info
output.

For example, if you clear the flag of the preceding example by writing an @clear large

command after the @set large command (but before the conditional text), then the Texinfo
formatting commands ignore the text between the @ifset large and @end ifset commands. In
the formatted output, that text does not appear; in both printed and Info output, you see only
the lines that say, “You can use this machine to dig up shrubs without hurting them. Remember
to replant promptly . . . ”.

If a flag is cleared with a @clear flag command, then the formatting commands format text
between subsequent pairs of @ifclear and @end ifclear commands. But if the flag is set with
@set flag, then the formatting commands do not format text between an @ifclear and an
@end ifclear command; rather, they ignore that text. An @ifclear command looks like this:

@ifclear flag

16.5.3 @inlineifset and @inlineifclear

@inlineifset and @inlineifclear provide brace-delimited alternatives to the @ifset and
@ifclear forms, similar to the other @inline... Commands (see Section 16.4 [Inline Condi-
tionals], page 125). The same caveats about argument parsing given there apply here too.

@inlineifset{var, text}

Process the Texinfo text if the flag var is defined.

@inlineifclear{var, text}

Process the Texinfo text if the flag var is not defined.

Except for the syntax, their general behavior and purposes is the same as with @ifset and
@ifclear, described in the previous section.



Chapter 16: Conditionally Visible Text 128

16.5.4 @value Example

You can use the @value command to minimize the number of places you need to change when
you record an update to a manual. See Section C.2 [GNU Sample Texts], page 220, for the full
text of an example of using this to work with Automake distributions.

This example is adapted from The GNU Make Manual.

1. Set the flags:

@set EDITION 0.35 Beta

@set VERSION 3.63 Beta

@set UPDATED 14 August 1992

@set UPDATE-MONTH August 1992

2. Write text for the @copying section (see Section 3.3.1 [@copying], page 16):

@copying

This is Edition @value{EDITION},

last updated @value{UPDATED},

of @cite{The GNU Make Manual},

for @code{make}, version @value{VERSION}.

Copyright ...

Permission is granted ...

@end copying

3. Write text for the title page, for people reading the printed manual:

@titlepage

@title GNU Make

@subtitle A Program for Directing Recompilation

@subtitle Edition @value{EDITION}, ...

@subtitle @value{UPDATE-MONTH}

@page

@insertcopying

...

@end titlepage

(On a printed cover, a date listing the month and the year looks less fussy than a date
listing the day as well as the month and year.)

4. Write text for the Top node, for people reading the Info file:

@ifnottex

@node Top

@top Make

This is Edition @value{EDITION},

last updated @value{UPDATED},

of @cite{The GNU Make Manual},

for @code{make}, version @value{VERSION}.

@end ifnottex

After you format the manual, the @value constructs have been expanded, so the output
contains text like this:

This is Edition 0.35 Beta, last updated 14 August 1992,

of `The GNU Make Manual', for `make', Version 3.63 Beta.

When you update the manual, you change only the values of the flags; you do not need to
edit the three sections.



Chapter 16: Conditionally Visible Text 129

16.6 Testing for Texinfo Commands: @ifcommanddefined,
@ifcommandnotdefined

Occasionally, you may want to arrange for your manual to test if a given Texinfo command is
available and (presumably) do some sort of fallback formatting if not. There are conditionals
@ifcommanddefined and @ifcommandnotdefined to do this. For example:

@ifcommanddefined node

Good, @samp{@@node} is defined.

@end ifcommanddefined

will output the expected ‘Good, ‘@node’ is defined.’.

This conditional will also consider any new commands defined by the document via @macro,
@alias, @definfoenclose, and @def(code)index (see Chapter 17 [Defining New Texinfo Com-
mands], page 131) to be true. Caveat: the TEX implementation reports internal TEX commands,
in addition to all the Texinfo commands, as being “defined”; the makeinfo implementation is
reliable in this regard, however.

You can check the NEWS file in the Texinfo source distribution and linked from the Texinfo
home page (http://www.gnu.org/software/texinfo) to see when a particular command was
added.

These command-checking conditionals themselves were added in Texinfo 5.0, released in
2013—decades after Texinfo’s inception. In order to test if they themselves are available, the
predefined flag txicommandconditionals can be tested, like this:

@ifset txicommandconditionals

@ifcommandnotdefined foobarnode

(Good, @samp{@@foobarnode} is not defined.)

@end ifcommandnotdefined

@end ifset

Since flags (see the previous section) were added early in the existence of Texinfo, there is
no problem with assuming they are available.

We recommend avoiding these tests whenever possible—which is usually the case. For many
software packages, it is reasonable for all developers to have a given version of Texinfo (or newer)
installed, and thus no reason to worry about older versions. (It is straightforward for anyone to
download and install the Texinfo source; it does not have any problematic dependencies.)

The issue of Texinfo versions does not generally arise for end-users. With properly distributed
packages, users need not process the Texinfo manual simply to build and install the package;
they can use preformatted Info (or other) output files. This is desirable in general, to avoid
unnecessary dependencies between packages (see Section “Releases” in GNU Coding Standards).

16.7 Conditional Nesting

Conditionals can be nested; however, the details are a little tricky. The difficulty comes with
failing conditionals, such as @ifhtml when HTML is not being produced, where the included
text is to be ignored. However, it is not to be completely ignored, since it is useful to have one
@ifset inside another, for example—that is a way to include text only if two conditions are
met. Here’s an example:

@ifset somevar

@ifset anothervar

Both somevar and anothervar are set.

@end ifset

@ifclear anothervar

Somevar is set, anothervar is not.

@end ifclear

http://www.gnu.org/software/texinfo


Chapter 16: Conditionally Visible Text 130

@end ifset

Technically, Texinfo requires that for a failing conditional, the ignored text must be properly
nested with respect to that failing conditional. Unfortunately, it’s not always feasible to check
that all conditionals are properly nested, because then the processors could have to fully interpret
the ignored text, which defeats the purpose of the command. Here’s an example illustrating these
rules:

@ifset a

@ifset b

@ifclear ok - ok, ignored

@end junky - ok, ignored

@end ifset

@c WRONG - missing @end ifset.

Finally, as mentioned above, all conditional commands must be on lines by themselves, with
no text (even spaces) before or after. Otherwise, the processors cannot reliably determine which
commands to consider for nesting purposes.



131

17 Defining New Texinfo Commands

Texinfo provides several ways to define new commands (in all cases, it’s not recommended to
try redefining existing commands):

• A Texinfo macro allows you to define a new Texinfo command as any sequence of text
and/or existing commands (including other macros). The macro can have any number of
parameters—text you supply each time you use the macro.

Incidentally, these macros have nothing to do with the @defmac command, which is for
documenting macros in the subject area of the manual (see Section 14.1 [Def Cmd Template],
page 109).

• ‘@alias’ is a convenient way to define a new name for an existing command.

• ‘@definfoenclose’ allows you to define new commands with customized output for all
non-TEX output formats.

Most generally of all (not just for defining new commands), it is possible to invoke any external
macro processor and have Texinfo recognize so-called #line directives for error reporting.

If you want to do simple text substitution, @set and @value is the simplest approach (see
Section 16.5 [@set @clear @value], page 125).

17.1 Defining Macros

You use the Texinfo @macro command to define a macro, like this:

@macro macroname{param1, param2, ...}

text ... \param1\ ...

@end macro

The parameters param1, param2, . . . correspond to arguments supplied when the macro is
subsequently used in the document (described in the next section).

For a macro to work consistently with TEX, macroname must consist entirely of letters: no
digits, hyphens, underscores, or other special characters. So, we recommend using only letters.
However, makeinfo will accept anything consisting of alphanumerics, and (except as the first
character) ‘-’. The ‘_’ character is excluded so that macros can be called inside @math without
a following space (see Section 12.7 [Inserting Math], page 97).

If a macro needs no parameters, you can define it either with an empty list (‘@macro foo

{}’) or with no braces at all (‘@macro foo’).

The definition or body of the macro can contain most Texinfo commands, including macro
invocations. However, a macro definition that defines another macro does not work in TEX due
to limitations in the design of @macro.

In the macro body, instances of a parameter name surrounded by backslashes, as in
‘\param1\’ in the example above, are replaced by the corresponding argument from the macro
invocation. You can use parameter names any number of times in the body, including zero.

To get a single ‘\’ in the macro expansion, use ‘\\’. Any other use of ‘\’ in the body yields
a warning.

The newline characters after the @macro line and before the @end macro line are ignored,
that is, not included in the macro body. All other whitespace is treated according to the usual
Texinfo rules.

To allow a macro to be used recursively, that is, in an argument to a call to itself, you must
define it with ‘@rmacro’, like this:

@rmacro rmac {arg}

a\arg\b



Chapter 17: Defining New Texinfo Commands 132

@end rmacro

...

@rmac{1@rmac{text}2}

This produces the output ‘a1atextb2b’. With ‘@macro’ instead of ‘@rmacro’, an error message
is given.

You can undefine a macro foo with @unmacro foo. It is not an error to undefine a macro
that is already undefined. For example:

@unmacro foo

17.2 Invoking Macros

After a macro is defined (see the previous section), you can invoke (use) it in your document
like this:

@macroname {arg1, arg2, ...}

and the result will be more or less as if you typed the body of macroname at that spot. For
example:

@macro foo {p, q}

Together: \p\ & \q\.

@end macro

@foo{a, b}

produces:

Together: a & b.

Thus, the arguments and parameters are separated by commas and delimited by braces;
any whitespace after (but not before) a comma is ignored. The braces are required in the
invocation even when the macro takes no arguments, consistent with other Texinfo commands.
For example:

@macro argless {}

No arguments here.

@end macro

@argless{}

produces:

No arguments here.

Passing macro arguments containing commas requires care, since commas also separate the
arguments. To include a comma character in an argument, the most reliable method is to use
the @comma{} command. For makeinfo, you can also prepend a backslash character, as in ‘\,’,
but this does not work with TEX.

It’s not always necessary to worry about commas. To facilitate use of macros, makeinfo

implements two rules for automatic quoting in some circumstances:

1. If a macro takes only one argument, all commas in its invocation are quoted by default.
For example:

@macro TRYME{text}

@strong{TRYME: \text\}

@end macro

@TRYME{A nice feature, though it can be dangerous.}

will produce the following output

TRYME: A nice feature, though it can be dangerous.

And indeed, it can. Namely, makeinfo does not control the number of arguments passed
to one-argument macros, so be careful when you invoke them.



Chapter 17: Defining New Texinfo Commands 133

2. If a macro invocation includes another command (including a recursive invocation of itself),
any commas in the nested command invocation(s) are quoted by default. For example, in

@say{@strong{Yes, I do}, person one}

the comma after ‘Yes’ is implicitly quoted. Here’s another example, with a recursive macro:

@rmacro cat{a,b}

\a\\b\

@end rmacro

@cat{@cat{foo, bar}, baz}

will produce the string ‘foobarbaz’.

3. Otherwise, a comma should be explicitly quoted, as above, for it to be treated as a part of
an argument.

The backslash itself can be quoted in macro arguments with another backslash. For example:

@macname {\\bleh}

will pass the argument ‘\bleh’ to macname.

makeinfo also recognizes ‘\{’ and ‘\}’ sequences for curly braces, but these are not recognized
by the implementation in TEX. There should, however, rarely be a need for these, as they are
only needed when a macro argument contains unbalanced braces.

If a macro is defined to take exactly one argument, it can be invoked without any braces,
taking all of the line after the macro name as the argument. For example:

@macro bar {p}

Twice: \p\ & \p\.

@end macro

@bar aah

produces:

Twice: aah & aah.

In these arguments, there is no escaping of special characters, so each ‘\’ stands for itself.

If a macro is defined to take more than one argument, but is called with only one (in braces),
the remaining arguments are set to the empty string, and no error is given. For example:

@macro addtwo {p, q}

Both: \p\\q\.

@end macro

@addtwo{a}

produces simply:

Both: a.

17.3 Macro Details and Caveats

By design, macro expansion does not happen in the following contexts in makeinfo:

• @macro and @unmacro lines;

• @if... lines, including @ifset and similar;

• @set, @clear, @value;

• @clickstyle lines;

• @end lines.

Unfortunately, TEX may do some expansion in these situations, possibly yielding errors.

Also, quite a few macro-related constructs cause problems with TEX; some of the caveats
are listed below. Thus, if you get macro-related errors when producing the printed version of



Chapter 17: Defining New Texinfo Commands 134

a manual, you might try expanding the macros with makeinfo by invoking texi2dvi with the
‘-E’ option (see Section 19.2 [Format with texi2dvi], page 143). Or, more reliably, eschew
Texinfo macros altogether and use a language designed for macro processing, such as M4 (see
Section 17.6 [External Macro Processors], page 137).

• As mentioned earlier, macro names must consist entirely of letters.

• It is not advisable to redefine any TEX primitive, plain, or Texinfo command name as a
macro. Unfortunately this is a large and open-ended set of names, and the possible resulting
errors are unpredictable.

• Arguments to macros taking more than one argument cannot cross lines.

• Macros containing a command which must be on a line by itself, such as a conditional, can-
not be invoked in the middle of a line. Similarly, macros containing line-oriented commands
or text, such as @example environments, may behave unpredictably in TEX.

• If you have problems using conditionals within a macro, an alternative is to use separate
macro definitions inside conditional blocks. For example, instead of

@macro Mac

@iftex

text for TeX output

@end iftex

@ifnottex

text for not TeX output

@end ifnottex

@end macro

you can do the following instead:

@iftex

@macro Mac

text for TeX output

@end macro

@end iftex

@ifnottex

@macro Mac

text for not TeX output

@end macro

@end ifnottex

• Texinfo commands in the expansion of a macro in the text of an index entry may end up
being typeset as literal text (including an “@” sign), instead of being interpreted with their
intended meaning.

• White space is ignored at the beginnings of lines.

• Macros can’t be reliably used in the argument to accent commands (see Section 12.4 [In-
serting Accents], page 95).

• The backslash escape for commas in macro arguments does not work; @comma{} must be
used.

• Likewise, if you want to pass an argument with the Texinfo command @, (to produce a
cedilla, see Section 12.4 [Inserting Accents], page 95), you have to use @value or another
work-around. Otherwise, the comma may be taken as separating the arguments. For
example,

@macro mactwo{argfirst, argsecond}

\argfirst\+\argsecond\.

@end macro



Chapter 17: Defining New Texinfo Commands 135

@set fc Fran@,cois

@mactwo{@value{fc},}

produces:

François+.

• Ending a macro body with ‘@c’ may cause text following the macro invocation to be ignored
as a comment in makeinfo. This is not the case when processing with TEX. This was often
done to “comment out” an unwanted newline at the end of a macro body, but this is not
necessary any more, as the final newline before ‘@end macro’ is not included in the macro
body anyway.

• In general, you can’t arbitrarily substitute a macro (or @value) call for Texinfo command
arguments, even when the text is the same. Texinfo is not M4 (or even plain TEX). It might
work with some commands, it fails with others. Best not to do it at all. For instance, this
fails:

@macro offmacro

off

@end macro

@headings @offmacro

This looks equivalent to @headings off, but for TEXnical reasons, it fails with a mysterious
error message (namely, ‘Paragraph ended before @headings was complete’).

• Macros cannot define macros in the natural way. To do this, you must use conditionals and
raw TEX. For example:

@ifnottex

@macro ctor {name, arg}

@macro \name\

something involving \arg\ somehow

@end macro

@end macro

@end ifnottex

@tex

\gdef\ctor#1{\ctorx#1,}

\gdef\ctorx#1,#2,{\def#1{something involving #2 somehow}}

@end tex

The makeinfo implementation also has the following limitations (by design):

• @verbatim and macros do not mix; for instance, you can’t start a verbatim block inside a
macro and end it outside (see Section 8.5 [@verbatim], page 66). Starting any environment
inside a macro and ending it outside may or may not work, for that matter.

• Macros that completely define macros are ok, but it’s not possible to have incompletely
nested macro definitions. That is, @macro and @end macro (likewise for @rmacro) must be
correctly paired. For example, you cannot start a macro definition within a macro, and
then end that nested definition outside the macro.

In the makeinfo implementation before Texinfo 5.0, ends of lines from expansion of a @macro

definition did not end an @-command line-delimited argument (@chapter, @center, etc.). This
is no longer the case. For example:

@macro twolines{}

aaa

bbb

@end macro

@center @twolines{}



Chapter 17: Defining New Texinfo Commands 136

In the current makeinfo, this is equivalent to:

@center aaa

bbb

with just ‘aaa’ as the argument to @center. In the earlier implementation, it would have been
parsed as this:

@center aaa bbb

17.4 ‘@alias new=existing’

The ‘@alias’ command defines a new command to be just like an existing one. This is useful
for defining additional markup names, thus preserving additional semantic information in the
input even though the output result may be the same.

Write the ‘@alias’ command on a line by itself, followed by the new command name, an
equals sign, and the existing command name. Whitespace around the equals sign is optional
and ignored if present. Thus:

@alias new = existing

For example, if your document contains citations for both books and some other media
(movies, for example), you might like to define a macro @moviecite{} that does the same thing
as an ordinary @cite{} but conveys the extra semantic information as well. You’d do this as
follows:

@alias moviecite = cite

Macros do not always have the same effect as aliases, due to vagaries of argument parsing.
Also, aliases are much simpler to define than macros. So the command is not redundant.

Unfortunately, it’s not possible to alias Texinfo environments; for example, @alias

lang=example is an error.

Aliases must not be recursive, directly or indirectly.

It is not advisable to redefine any TEX primitive, plain TEX, or Texinfo command name as
an alias. Unfortunately this is a very large set of names, and the possible resulting errors from
TEX are unpredictable.

makeinfo will accept the same identifiers for aliases as it does for macro names, that is,
alphanumerics and (except as the first character) ‘-’.

17.5 @definfoenclose: Customized Highlighting

An @definfoenclose command may be used to define a highlighting command for all the non-
TEX output formats. A command defined using @definfoenclose marks text by enclosing it in
strings that precede and follow the text. You can use this to get closer control of your output.

Presumably, if you define a command with @definfoenclose, you will create a corresponding
command for TEX, either in texinfo.tex, texinfo.cnf, or within an ‘@iftex’ or ‘@tex’ in your
document.

Write a @definfoenclose command at the beginning of a line followed by three comma-
separated arguments. The first argument to @definfoenclose is the @-command name (without
the @); the second argument is the start delimiter string; and the third argument is the end
delimiter string. The latter two arguments enclose the highlighted text in the output.

A delimiter string may contain spaces. Neither the start nor end delimiter is required. If
you do not want a start delimiter but do want an end delimiter, you must follow the command
name with two commas in a row; otherwise, the end delimiter string you intended will naturally
be (mis)interpreted as the start delimiter string.



Chapter 17: Defining New Texinfo Commands 137

If you do a @definfoenclose on the name of a predefined command (such as @emph, @strong,
@t, or @i), the enclosure definition will override the built-in definition. We don’t recommend
this.

An enclosure command defined this way takes one argument in braces, since it is intended
for new markup commands (see Chapter 7 [Marking Text], page 53).

For example, you can write:

@definfoenclose phoo,//,\\

near the beginning of a Texinfo file to define @phoo as an Info formatting command that inserts
‘//’ before and ‘\\’ after the argument to @phoo. You can then write @phoo{bar} wherever you
want ‘//bar\\’ highlighted in Info.

For TEX formatting, you could write

@iftex

@global@let@phoo=@i

@end iftex

to define @phoo as a command that causes TEX to typeset the argument to @phoo in italics.

Each definition applies to its own formatter: one for TEX, the other for everything else. The
raw TEX commands need to be in ‘@iftex’. @definfoenclose command need not be within
‘@ifinfo’, unless you want to use different definitions for different output formats.

Here is another example: write

@definfoenclose headword, , :

near the beginning of the file, to define @headword as an Info formatting command that inserts
nothing before and a colon after the argument to @headword.

‘@definfoenclose’ definitions must not be recursive, directly or indirectly.

17.6 External Macro Processors: Line Directives

Texinfo macros (and its other text substitution facilities) work fine in straightforward cases. If
your document needs unusually complex processing, however, their fragility and limitations can
be a problem. In this case, you may want to use a different macro processor altogether, such as
M4 (see M4) or CPP (see The C Preprocessor).

With one exception, Texinfo does not need to know whether its input is “original” source
or preprocessed from some other source file. Therefore, you can arrange your build system to
invoke whatever programs you like to handle macro expansion or other preprocessing needs.
Texinfo does not offer built-in support for any particular preprocessor, since no one program
seemed likely to suffice for the requirements of all documents.

The one exception is line numbers in error messages. In that case, the line number should
refer to the original source file, whatever it may be. There’s a well-known mechanism for this:
the so-called ‘#line’ directive. Texinfo supports this.

17.6.1 ‘#line’ Directive

An input line such as this:

#line 100 "foo.ptexi"

indicates that the next line was line 100 of the file foo.ptexi, and so that’s what an error
message should refer to. Both M4 (see Section “Preprocessor features” in GNU M4) and CPP
(see Section “Line Control” in The C Preprocessor, and Section “Preprocessor Output” in The
C Preprocessor) can generate such lines.

The makeinfo program recognizes these lines by default, except within @verbatim blocks
(see Section 8.5 [@verbatim], page 66). Their recognition can be turned off completely with



Chapter 17: Defining New Texinfo Commands 138

CPP_LINE_DIRECTIVES (see Section 20.6.5 [Other Customization Variables], page 168), though
there is normally no reason to do so.

For those few programs (M4, CPP, Texinfo) which need to document ‘#line’ directives and
therefore have examples which would otherwise match the pattern, the command @hashchar{}

can be used (see Section 12.1.5 [Inserting a Hashsign], page 91). The example line above looks
like this in the source for this manual:

@hashchar{}line 100 "foo.ptexi"

The @hashchar command was added to Texinfo in 2013. If you don’t want to rely on it, you
can also use @set and @value to insert the literal ‘#’:

@set hash #

@value{hash}line 1 "example.c"

Or, if suitable, a @verbatim environment can be used instead of @example. As mentioned
above, #line-recognition is disabled inside verbatim blocks.

17.6.2 ‘#line’ and TEX

As mentioned, makeinfo recognizes the ‘#line’ directives described in the previous section.
However, texinfo.tex does not and cannot. Therefore, such a line will be incorrectly typeset
verbatim if TEX sees it. The solution is to use makeinfo’s macro expansion options before
running TEX. There are three approaches:

• If you run texi2dvi or its variants (see Section 19.2 [Format with texi2dvi], page 143),
you can pass -E and texi2dvi will run makeinfo first to expand macros and eliminate
‘#line’.

• If you run makeinfo or its variants (see Chapter 20 [Generic Translator texi2any],
page 154), you can specify --no-ifinfo --iftex -E somefile.out, and then give
somefile.out to texi2dvi in a separate command.

• Or you can run makeinfo --dvi --Xopt -E. (Or --pdf instead of --dvi.) makeinfo will
then call texi2dvi -E.

One last caveat regarding use with TEX: since the #line directives are not recognized, the
line numbers emitted by the @errormsg{} command (see Section 16.1 [Conditional Commands],
page 122), or by TEX itself, are the (incorrect) line numbers from the derived file which TEX
is reading, rather than the preprocessor-specified line numbers. This is another example of
why we recommend running makeinfo for the best diagnostics (see Section 21.1.1 [makeinfo
Advantages], page 175).

17.6.3 ‘#line’ Syntax Details

Syntax details for the ‘#line’ directive: the ‘#’ character can be preceded or followed by white-
space, the word ‘line’ is optional, and the file name can be followed by a whitespace-separated
list of integers (these are so-called “flags” output by CPP in some cases). For those who like to
know the gory details, the actual (Perl) regular expression which is matched is this:

/^\s*#\s*(line)? (\d+)(( "([^"]+)")(\s+\d+)*)?\s*$/

As far as we’ve been able to tell, the trailing integer flags only occur in conjunction with a
filename, so that is reflected in the regular expression.

As an example, the following is a syntactically valid ‘#line’ directive, meaning line 1 of
/usr/include/stdio.h:

# 1 "/usr/include/stdio.h" 2 3 4

Unfortunately, the quoted filename (‘"..."’) has to be optional, because M4 (especially) can
often generate ‘#line’ directives within a single file. Since the ‘line’ is also optional, the result
is that lines might match which you wouldn’t expect, e.g.,

# 1



Chapter 17: Defining New Texinfo Commands 139

The possible solutions are described above (see Section 17.6.1 [‘#line’ Directive], page 137).



140

18 Include Files

When a Texinfo processor sees an @include command in a Texinfo file, it processes the contents
of the file named by the @include and incorporates them into the output files being created.
Include files thus let you keep a single large document as a collection of conveniently small parts.

18.1 How to Use Include Files

To include another file within a Texinfo file, write the @include command at the beginning of
a line and follow it on the same line by the name of a file to be included. For example:

@include buffers.texi

@-commands are expanded in file names. The one most likely to be useful is @value (see
Section 16.5.1 [@set @value], page 126), and even then only in complicated situations.

An included file should simply be a segment of text that you expect to be included as is into
the overall or outer Texinfo file; it should not contain the standard beginning and end parts of
a Texinfo file. In particular, you should not start an included file with a line saying ‘\input
texinfo’; if you do, that text is inserted into the output file literally. Likewise, you should not
end an included file with a @bye command; nothing after @bye is formatted.

In the long-ago past, you were required to write an @setfilename line at the beginning of
an included file, but no longer. Now, it does not matter whether you write such a line. If an
@setfilename line exists in an included file, it is ignored.

18.2 texinfo-multiple-files-update

GNU Emacs Texinfo mode provides the texinfo-multiple-files-update command. This
command creates or updates ‘Next’, ‘Previous’, and ‘Up’ pointers of included files as well as
those in the outer or overall Texinfo file, and it creates or updates a main menu in the outer
file. Depending on whether you call it with optional arguments, the command updates only the
pointers in the first @node line of the included files or all of them:

M-x texinfo-multiple-files-update

Called without any arguments:

− Create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of the first @node

line in each file included in an outer or overall Texinfo file.

− Create or update the ‘Top’ level node pointers of the outer or overall file.

− Create or update a main menu in the outer file.

C-u M-x texinfo-multiple-files-update

Called with C-u as a prefix argument:

− Create or update pointers in the first @node line in each included file.

− Create or update the ‘Top’ level node pointers of the outer file.

− Create and insert a master menu in the outer file. The master menu is made
from all the menus in all the included files.

C-u 8 M-x texinfo-multiple-files-update

Called with a numeric prefix argument, such as C-u 8:

− Create or update all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the included
files.

− Create or update all the menus of all the included files.

− Create or update the ‘Top’ level node pointers of the outer or overall file.



Chapter 18: Include Files 141

− And then create a master menu in the outer file. This is similar to invoking
texinfo-master-menu with an argument when you are working with just one
file.

Note the use of the prefix argument in interactive use: with a regular prefix argument, just
C-u, the texinfo-multiple-files-update command inserts a master menu; with a numeric
prefix argument, such as C-u 8, the command updates every pointer and menu in all the files
and then inserts a master menu.

18.3 Include Files Requirements

If you plan to use the texinfo-multiple-files-update command, the outer Texinfo file that
lists included files within it should contain nothing but the beginning and end parts of a Texinfo
file, and a number of @include commands listing the included files. It should not even include
indices, which should be listed in an included file of their own.

Moreover, each of the included files must contain exactly one highest level node (conven-
tionally, @chapter or equivalent), and this node must be the first node in the included file.
Furthermore, each of these highest level nodes in each included file must be at the same hierar-
chical level in the file structure. Usually, each is a @chapter, an @appendix, or an @unnumbered

node. Thus, normally, each included file contains one, and only one, chapter or equivalent-level
node.

The outer file should contain only one node, the ‘Top’ node. It should not contain any nodes
besides the single ‘Top’ node. The texinfo-multiple-files-update command will not process
them.

18.4 Sample File with @include

Here is an example of an outer Texinfo file with @include files within it before running
texinfo-multiple-files-update, which would insert a main or master menu:

\input texinfo @c -*-texinfo-*-

@settitle Include Example

... See Appendix C [Sample Texinfo Files], page 219, for

examples of the rest of the frontmatter ...

@ifnottex

@node Top

@top Include Example

@end ifnottex

@include foo.texinfo

@include bar.texinfo

@include concept-index.texinfo

@bye

An included file, such as foo.texinfo, might look like this:

@node First

@chapter First Chapter

Contents of first chapter ...

The full contents of concept-index.texinfo might be as simple as this:



Chapter 18: Include Files 142

@node Concept Index

@unnumbered Concept Index

@printindex cp

The outer Texinfo source file for The GNU Emacs Lisp Reference Manual is named
elisp.texi. This outer file contains a master menu with 417 entries and a list of 41 @include

files.

18.5 @verbatiminclude file: Include a File Verbatim

You can include the exact contents of a file in the document with the @verbatiminclude com-
mand:

@verbatiminclude filename

The contents of filename is printed in a verbatim environment (see Section 8.5 [@verbatim],
page 66). Generally, the file is printed exactly as it is, with all special characters and white
space retained. No indentation is added; if you want indentation, enclose the @verbatiminclude
within @example (see Section 8.4 [@example], page 65).

The name of the file is taken literally, with a single exception: @value{var} references are
expanded. This makes it possible to include files in other directories within a distribution, for
instance:

@verbatiminclude @value{top_srcdir}/NEWS

(You still have to get top_srcdir defined in the first place.)

For a method on printing the file contents in a smaller font size, see the end of the section
on @verbatim.

18.6 Evolution of Include Files

When Info was first created, it was customary to create many small Info files on one subject.
Each Info file was formatted from its own Texinfo source file. This custom meant that Emacs
did not need to make a large buffer to hold the whole of a large Info file when someone wanted
information; instead, Emacs allocated just enough memory for the small Info file that contained
the particular information sought. This way, Emacs could avoid wasting memory.

References from one file to another were made by referring to the file name as well as the
node name. (See Section 4.9.6 [Referring to Other Info Files], page 35. Also, see Section 6.4.4
[@xref with Four and Five Arguments], page 46.)

Include files were designed primarily as a way to create a single, large printed manual out of
several smaller Info files. In a printed manual, all the references were within the same document,
so TEX could automatically determine the references’ page numbers. The Info formatting com-
mands used include files only for creating joint indices; each of the individual Texinfo files had
to be formatted for Info individually. (Each, therefore, required its own @setfilename line.)

However, because large Info files are now split automatically, it is no longer necessary to keep
them small.

Nowadays, multiple Texinfo files are used mostly for large documents, such as The GNU
Emacs Lisp Reference Manual, and for projects in which several different people write different
sections of a document simultaneously.

In addition, the Info formatting commands have been extended to work with the @include

command so as to create a single large Info file that is split into smaller files if necessary. This
means that you can write menus and cross-references without naming the different Texinfo files.



143

19 Formatting and Printing Hardcopy

Running the texi2dvi or texi2pdf command is the simplest way to create printable output.
These commands are installed as part of the Texinfo package.

In more detail, three major shell commands are used to print formatted output from a Texinfo
manual: one converts the Texinfo source into something printable, a second sorts indices, and
a third actually prints the formatted document. When you use the shell commands, you can
either work directly in the operating system shell or work within a shell inside GNU Emacs (or
some other computing environment).

If you are using GNU Emacs, you can use commands provided by Texinfo mode instead of
shell commands. In addition to the three commands to format a file, sort the indices, and print
the result, Texinfo mode offers key bindings for commands to recenter the output buffer, show
the print queue, and delete a job from the print queue.

Details are in the following sections.

19.1 Use TEX

The typesetting program called TEX is used to format a Texinfo document for printable output.
TEX is a very powerful typesetting program and, when used correctly, does an exceptionally
good job.

See Section 19.16 [Obtaining TEX], page 153, for information on how to obtain TEX. It is
not included in the Texinfo package, being a vast suite of software in itself.

19.2 Format with texi2dvi

The texi2dvi program takes care of all the steps for producing a TEX DVI file from a Texinfo
document. Similarly, texi2pdf produces a PDF file.

To run texi2dvi or texi2pdf on an input file foo.texi, do this (where ‘prompt$ ’ is your
shell prompt):

prompt$ texi2dvi foo.texi

prompt$ texi2pdf foo.texi

As shown in this example, the input filenames to texi2dvi and texi2pdf must include any
extension, such as ‘.texi’. (Under MS-DOS and perhaps in other circumstances, you may need
to run ‘sh texi2dvi foo.texi’ instead of relying on the operating system to invoke the shell
on the ‘texi2dvi’ script.)

For a list of all the options, run ‘texi2dvi --help’. Some of the options are discussed below.

With the --pdf option, texi2dvi produces PDF output instead of DVI (see Section 19.15
[PDF Output], page 152), by running pdftex instead of tex. Alternatively, the command
texi2pdf is an abbreviation for running ‘texi2dvi --pdf’. The command pdftexi2dvi is also
provided as a convenience for AUC-TEX (see AUC-TEX), as it prefers to merely prepend ‘pdf’
to DVI producing tools to have PDF producing tools.

With the --dvipdf option, texi2dvi produces PDF output by running TEX and then a
DVI-to-PDF program: if the DVIPDF environment variable is set, that value is used, else the
first program extant among dvipdfmx, dvipdfm, dvipdf, dvi2pdf, dvitopdf. This method
generally supports CJK typesetting better than pdftex.

With the --ps option, texi2dvi produces PostScript instead of DVI, by running tex and
then dvips (see Dvips). (Or the value of the DVIPS environment variable, if set.)

texi2dvi can also be used to process LATEX files. Normally texi2dvi is able to guess the
input file language by its contents and file name extension; however, if it guesses wrong you can



Chapter 19: Formatting and Printing Hardcopy 144

explicitly specify the input language using --language=lang command line option, where lang
is either ‘latex’ or ‘texinfo’.

One useful option to texi2dvi is ‘--command=cmd’. This inserts cmd on a line by itself at the
start of the file in a temporary copy of the input file, before running TEX. With this, you can spec-
ify different printing formats, such as @smallbook (see Section 19.11 [@smallbook], page 151),
@afourpaper (see Section 19.12 [A4 Paper], page 151), or @pagesizes (see Section 19.13
[@pagesizes], page 151), without actually changing the document source. (You can also do
this on a site-wide basis with texinfo.cnf; see Section 19.9 [Preparing for TEX], page 149).

The option -E (equivalently, -e and --expand) does Texinfo macro expansion using makeinfo

instead of the TEX implementation (see Section 17.3 [Macro Details], page 133). Each imple-
mentation has its own limitations and advantages. If this option is used, no line in the source
file may begin with the string @c _texi2dvi or the string @c (_texi2dvi).

texi2dvi takes the --build=mode option to specify where the TEX compilation takes place,
and, as a consequence, how auxiliary files are treated. The build mode can also be set using the
environment variable TEXI2DVI_BUILD_MODE. The valid values for mode are:

‘local’ Compile in the current directory, leaving all the auxiliary files around. This is the
traditional TeX use.

‘tidy’ Compile in a local *.t2d directory, where the auxiliary files are left. Output files
are copied back to the original file.

Using the ‘tidy’ mode brings several advantages:

- the current directory is not cluttered with plethora of temporary files.

- clutter can be even further reduced using --build-dir=dir: all the *.t2d

directories are stored there.

- clutter can be reduced to zero using, e.g., --build-dir=/tmp/\$USER.t2d or
--build-dir=\$HOME/.t2d.

- the output file is updated after every successful TEX run, for sake of concurrent
visualization of the output. In a ‘local’ build the viewer stops during the whole
TEX run.

- if the compilation fails, the previous state of the output file is preserved.

- PDF and DVI compilation are kept in separate subdirectories preventing any
possibility of auxiliary file incompatibility.

On the other hand, because ‘tidy’ compilation takes place in another directory,
occasionally TEX won’t be able to find some files (e.g., when using \graphicspath):
in that case, use -I to specify the additional directories to consider.

‘clean’ Same as ‘tidy’, but remove the auxiliary directory afterwards. Every compilation
therefore requires the full cycle.

texi2dvi will use etex (or pdfetex) if it is available, because it runs faster in some cases,
and provides additional tracing information when debugging texinfo.tex. Nevertheless, this
extended version of TEX is not required, and the DVI output is identical. (These days, pdftex
and pdfetex are exactly the same, but we still run pdfetex to cater to ancient TEX installations.)

texi2dvi attempts to detect auxiliary files output by TEX, either by using the -recorder

option, or by scanning for ‘\openout’ in the log file that a run of TEX produces. You may
control how texi2dvi does this with the TEXI2DVI_USE_RECORDER environment variable. Valid
values are:

‘yes’ use the -recorder option, no checks.

‘no’ scan for ‘\openout’ in the log file, no checks.



Chapter 19: Formatting and Printing Hardcopy 145

‘yesmaybe’
check whether -recorder option is supported, and if yes use it, otherwise check for
tracing ‘\openout’ in the log file is supported, and if yes use it, else it is an error.

‘nomaybe’ same as ‘yesmaybe’, except that the ‘\openout’ trace in log file is checked first.

The default is ‘nomaybe’. This environment variable is provided for troubleshooting purposes,
and may change or disappear in the future.

19.3 Format with tex/texindex

You can do the basic formatting of a Texinfo file with the shell command tex followed by the
name of the Texinfo file. For example:

tex foo.texi

TEX will produce a DVI file as well as several auxiliary files containing information for indices,
cross-references, etc. The DVI file (for DeVice Independent file) can be printed on virtually any
device, perhaps after a further conversion (see the previous section).

The tex formatting command itself does not sort the indices; it writes an output file of
unsorted index data. To generate a printed index after running the tex command, you first
need a sorted index to work from. The texindex command sorts indices. (texi2dvi, described
in the previous section, runs tex and texindex as necessary.)

tex outputs unsorted index files under names following a standard convention: the name
of your main input file with any ‘.texi’ or similar extension replaced by the two letter index
name. For example, the raw index output files for the input file foo.texi would be, by default,
foo.cp, foo.vr, foo.fn, foo.tp, foo.pg and foo.ky. Those are exactly the arguments to give
to texindex.

Instead of specifying all the unsorted index file names explicitly, it’s typical to use ‘??’ as
shell wildcards and give the command in this form:

texindex foo.??

This command will run texindex on all the unsorted index files, including any two letter indices
that you have defined yourself using @defindex or @defcodeindex. You can safely run ‘texindex
foo.??’ even if there are files with two letter extensions that are not index files, such as ‘foo.el’.
The texindex command reports but otherwise ignores such files.

For each file specified, texindex generates a sorted index file whose name is made by append-
ing ‘s’ to the input file name; for example, foo.cps is made from foo.cp. The @printindex

command looks for a file with that name (see Section 11.5 [Printing Indices & Menus], page 86).
TEX does not read the raw index output file, and texindex does not alter it.

After you have sorted the indices, you need to rerun tex on the Texinfo file. This regenerates
the output file, this time with up-to-date index entries.

Finally, you may need to run tex one more time, to get the page numbers in the cross-
references correct.

To summarize, this is a five step process. (Alternatively, it’s a one-step process: run
texi2dvi; see the previous section.)

1. Run tex on your Texinfo file. This generates a DVI file (with undefined cross-references
and no indices), and the raw index files (with two letter extensions).

2. Run texindex on the raw index files. This creates the corresponding sorted index files
(with three letter extensions).

3. Run tex again on your Texinfo file. This regenerates the DVI file, this time with indices and
defined cross-references, but with page numbers for the cross-references from the previous
run, generally incorrect.



Chapter 19: Formatting and Printing Hardcopy 146

4. Sort the indices again, with texindex.

5. Run tex one last time. This time the correct page numbers are written for the cross-
references.

19.3.1 Formatting Partial Documents

Sometimes you may wish to print a document while you know it is incomplete, or to print
just one chapter of a document. In such a case, the usual auxiliary files that TEX creates and
warnings TEX gives about undefined cross-references are just nuisances. You can avoid them
with the @novalidate command, which you must give before any sectioning or cross-reference
commands.

Thus, the beginning of your file would look approximately like this:

\input texinfo

@novalidate

...

@novalidate also turns off validation in makeinfo, just like its --no-validate option (see
Section 20.5 [Pointer Validation], page 161).

Furthermore, you need not run texindex each time after you run tex. The tex format-
ting command simply uses whatever sorted index files happen to exist from a previous use of
texindex. If those are out of date, that is usually ok while you are creating or debugging a
document.

19.3.2 Details of texindex

In Texinfo version 6, released in 2015, the texindex program was completely reimplemented.
The principal functional difference is that index entries beginning with a left brace or right brace
(‘{’ resp. ‘}’) can work properly. For example, these simple index entries are processed correctly,
including the “index initial” shown in the index:

@cindex @{

@cindex @}

...

@printindex cp

Although not a matter of functionality, readers may be interested to know that the new
texindex is a literate program (http://en.wikipedia.org/wiki/Literate_programming)
using Texinfo for documentation and (portable) awk for code. A single source file,
texindex/ti.twjr in this case, produces the runnable program, a printable document, and an
online document.

The system is called TexiWeb Jr. and was created by Arnold Robbins, who also wrote the
new texindex. Not coincidentally, he is also the long-time maintainer of gawk (GNU Awk, see
The GNU Awk User’s Guide). The file texindex/Makefile.am shows example usage of the
system.

19.4 Print with lpr from Shell

The way to print a DVI file depends on your system installation. Two common ones are ‘dvips
foo.dvi -o’ to make a PostScript file first and then print that, and ‘lpr -d foo.dvi’ to print
a DVI file directly.

For example, the following commands will (probably) suffice to sort the indices, format, and
print this manual using the texi2dvi shell script (see Section 19.2 [Format with texi2dvi],
page 143).

texi2dvi texinfo.texi

dvips texinfo.dvi -o

lpr texinfo.ps

http://en.wikipedia.org/wiki/Literate_programming


Chapter 19: Formatting and Printing Hardcopy 147

Depending on the lpr setup on your machine, you might able to combine the last two steps
into lpr -d texinfo.dvi.

You can also generate a PDF file by running texi2pdf instead of texi2dvi; a PDF is often
directly printable. Or you can generate a PCL file by using dvilj instead of dvips, if you have
a printer that prefers that format.

lpr is a standard program on Unix systems, but it is usually absent on MS-DOS/MS-
Windows. If so, just create a PostScript or PDF or PCL file, whatever is most convenient,
and print that in the usual way for your machine (e.g., by sending to the appropriate port,
usually ‘PRN’).

19.5 Printing From an Emacs Shell

You can give formatting and printing commands from a shell within GNU Emacs, just like any
other shell command. To create a shell within Emacs, type M-x shell (see Section “Shell” in
The GNU Emacs Manual). In this shell, you can format and print the document. See Chapter 19
[Format and Print Hardcopy], page 143, for details.

You can switch to and from the shell buffer while tex is running and do other editing. If you
are formatting a long document on a slow machine, this can be very convenient.

For example, you can use texi2dvi from an Emacs shell. Here is one way to use texi2pdf

to format and print Using and Porting GNU CC from a shell within Emacs:

texi2pdf gcc.texi

lpr gcc.pdf

See the next section for more information about formatting and printing in Texinfo mode.

19.6 Formatting and Printing in Texinfo Mode

Texinfo mode provides several predefined key commands for TEX formatting and printing. These
include commands for sorting indices, looking at the printer queue, killing the formatting job,
and recentering the display of the buffer in which the operations occur.

C-c C-t C-b

M-x texinfo-tex-buffer

Run texi2dvi on the current buffer.

C-c C-t C-r

M-x texinfo-tex-region

Run TEX on the current region.

C-c C-t C-i

M-x texinfo-texindex

Sort the indices of a Texinfo file formatted with texinfo-tex-region.

C-c C-t C-p

M-x texinfo-tex-print

Print a DVI file that was made with texinfo-tex-region or texinfo-tex-buffer.

C-c C-t C-q

M-x tex-show-print-queue

Show the print queue.

C-c C-t C-d

M-x texinfo-delete-from-print-queue

Delete a job from the print queue; you will be prompted for the job number shown
by a preceding C-c C-t C-q command (texinfo-show-tex-print-queue).



Chapter 19: Formatting and Printing Hardcopy 148

C-c C-t C-k

M-x tex-kill-job

Kill the currently running TEX job started by either texinfo-tex-region or
texinfo-tex-buffer, or any other process running in the Texinfo shell buffer.

C-c C-t C-x

M-x texinfo-quit-job

Quit a TEX formatting job that has stopped because of an error by sending an x to
it. When you do this, TEX preserves a record of what it did in a .log file.

C-c C-t C-l

M-x tex-recenter-output-buffer

Redisplay the shell buffer in which the TEX printing and formatting commands are
run to show its most recent output.

Thus, the usual sequence of commands for formatting a buffer is as follows (with comments
to the right):

C-c C-t C-b Run texi2dvi on the buffer.
C-c C-t C-p Print the DVI file.
C-c C-t C-q Display the printer queue.

The Texinfo mode TEX formatting commands start a subshell in Emacs called
the *tex-shell*. The texinfo-tex-command, texinfo-texindex-command, and
tex-dvi-print-command commands are all run in this shell.

You can watch the commands operate in the ‘*tex-shell*’ buffer, and you can switch to
and from and use the ‘*tex-shell*’ buffer as you would any other shell buffer.

The formatting and print commands depend on the values of several variables. The default
values are:

Variable Default value

texinfo-texi2dvi-command "texi2dvi"

texinfo-tex-command "tex"

texinfo-texindex-command "texindex"

texinfo-delete-from-print-queue-command "lprm"

texinfo-tex-trailer "@bye"

tex-start-of-header "%**start"

tex-end-of-header "%**end"

tex-dvi-print-command "lpr -d"

tex-show-queue-command "lpq"

You can change the values of these variables with the M-x set-variable command (see
Section “Examining and Setting Variables” in The GNU Emacs Manual), or with your .emacs

initialization file (see Section “Init File” in The GNU Emacs Manual).

Beginning with version 20, GNU Emacs offers a user-friendly interface, called Customize, for
changing values of user-definable variables. See Section “Easy Customization Interface” in The
GNU Emacs Manual, for more details about this. The Texinfo variables can be found in the
‘Development/Docs/Texinfo’ group, once you invoke the M-x customize command.

19.7 Using the Local Variables List

Yet another way to apply the TEX formatting command to a Texinfo file is to put that command
in a local variables list at the end of the Texinfo file. You can then specify the tex or texi2dvi
commands as a compile-command and have Emacs run it by typing M-x compile. This creates



Chapter 19: Formatting and Printing Hardcopy 149

a special shell called the *compilation* buffer in which Emacs runs the compile command. For
example, at the end of the gdb.texi file, after the @bye, you could put the following:

Local Variables:

compile-command: "texi2dvi gdb.texi"

End:

This technique is most often used by programmers who also compile programs this way; see
Section “Compilation” in The GNU Emacs Manual.

19.8 TEX Formatting Requirements Summary

Every Texinfo file that is to be input to TEX must begin with a \input command:

\input texinfo

This instructs TEX to load the macros it needs to process a Texinfo file.

Every Texinfo file must end with a line that terminates TEX’s processing and forces out
unfinished pages:

@bye

Strictly speaking, these two lines are all a Texinfo file needs to be processed successfully by
TEX.

Usually, however, the beginning includes a @settitle command to define the title of the
printed manual, a title page, a copyright page, permissions, and a table of contents. Besides
@bye, the end of a file usually includes indices. (Not to mention that most manuals contain a
body of text as well.)

For more information, see:

• Section 3.2.4 [@settitle], page 15.

• Section 3.7.2 [@setchapternewpage], page 23.

• Appendix E [Headings], page 235.

• Section 3.4 [Titlepage & Copyright Page], page 17.

• Section 11.5 [Printing Indices & Menus], page 86.

• Section 3.5 [Contents], page 21.

19.9 Preparing for TEX

TEX needs to find the texinfo.tex file that the ‘\input texinfo’ command on the first line
reads. The texinfo.tex file tells TEX how to handle @-commands; it is included in all standard
GNU distributions. The latest version released for general use is available from the usual GNU
servers and mirrors:

http://ftp.gnu.org/gnu/texinfo/texinfo.tex

http://ftpmirror.gnu.org/texinfo/texinfo.tex

The latest development version is available from the Texinfo source repository:

http://git.savannah.gnu.org/cgit/texinfo.git/plain/doc/texinfo.tex

texinfo.tex is essentially a standalone file, so, if you need or want to try a newer version
than came with your system, it nearly always suffices to download it and put it anywhere that
TEX will find it. You can replace any existing texinfo.tex with a newer version (of course
saving the original in case of disaster).

Also, you should install epsf.tex, if it is not already installed from another distribution.
More details are at the end of the description of the @image command (see Section 10.2 [Images],
page 80).

http://ftp.gnu.org/gnu/texinfo/texinfo.tex
http://ftpmirror.gnu.org/texinfo/texinfo.tex
http://git.savannah.gnu.org/cgit/texinfo.git/plain/doc/texinfo.tex


Chapter 19: Formatting and Printing Hardcopy 150

To use quotation marks other than those used in English, you’ll need to have the European
Computer Modern fonts (e.g., ecrm1000) and (for PDF output) CM-Super fonts (see Section 12.5
[Inserting Quotation Marks], page 96).

To use the @euro command, you’ll need the ‘feym*’ fonts (e.g., feymr10). See Section 12.8.6
[@euro], page 99.

All of the above files should be installed by default in a reasonable TEX installation.

Optionally, you may create a file texinfo.cnf for site configuration. When processing a
Texinfo file, TEX looks for this file in its search path, which includes the current directory and
standard installation directories. You can use this file for local conventions. For example, if
texinfo.cnf contains the line ‘@afourpaper’ (see Section 19.12 [A4 Paper], page 151), then all
Texinfo documents will be processed with that page size in effect. If you have nothing to put in
texinfo.cnf, you do not need to create it.

You can set the TEXINPUTS environment variable to allow TEX to find texinfo.cnf. (This
also works for texinfo.tex and any other file TEX might read). For example, if you are using
a Bourne shell-compatible shell (sh, bash, ksh, . . . ), your .profile file could contain the lines:

TEXINPUTS=.:/home/me/mylib:

export TEXINPUTS

These settings would cause TEX first to look for an \input file in the current directory, indicated
by the ‘.’, then in a hypothetical user ‘me’’s mylib directory, and finally in the system directories.
(A leading, trailing, or doubled ‘:’ indicates searching the system directories at that point.)

On MS-DOS/MS-Windows, you’d do this like this (note the use of the ‘;’ character as
directory separator, instead of ‘:’):

set TEXINPUTS=.;d:/home/me/mylib;c:

It is customary for DOS/Windows users to put such commands in the autoexec.bat file, or in
the Windows registry.

19.10 Overfull “hboxes”

TEX is sometimes unable to typeset a line within the normal margins. This most often occurs
when TEX comes upon what it interprets as a long word that it cannot hyphenate, such as an
electronic mail network address or a very long identifier. When this happens, TEX prints an
error message like this:

Overfull @hbox (20.76302pt too wide)

(In TEX, lines are in “horizontal boxes”, hence the term, “hbox”. ‘@hbox’ is a TEX primitive
not used in the Texinfo language.)

TEX also provides the line number in the Texinfo source file and the text of the offending line,
which is marked at all the places that TEX considered hyphenation. See Section F.3 [Debugging
with TEX], page 240, for more information about typesetting errors.

If the Texinfo file has an overfull hbox, you can rewrite the sentence so the overfull hbox does
not occur, or you can decide to leave it. A small excursion into the right margin often does not
matter and may not even be noticeable.

If you have many overfull boxes and/or an antipathy to rewriting, you can coerce TEX into
greatly increasing the allowable interword spacing, thus (if you’re lucky) avoiding many of the
bad line breaks, like this:

@tex

\global\emergencystretch = .9\hsize

@end tex



Chapter 19: Formatting and Printing Hardcopy 151

(You should adjust the fraction as needed.) This huge value for \emergencystretch cannot be
the default, since then the typeset output would generally be of noticeably lower quality; its
default value is ‘.15\hsize’. \hsize is the TEX dimension containing the current line width.

For any overfull boxes you do have, TEX will print a large, ugly, black rectangle beside the
line that contains the overfull hbox unless told otherwise. This is so you will notice the location
of the problem if you are correcting a draft.

To prevent such a monstrosity from marring your final printout, write the following in the
beginning of the Texinfo file on a line of its own, before the @titlepage command:

@finalout

19.11 @smallbook: Printing “Small” Books

By default, TEX typesets pages for printing in an 8.5 by 11 inch format. However, you can
direct TEX to typeset a document in a 7 by 9.25 inch format that is suitable for bound books by
inserting the following command on a line by itself at the beginning of the Texinfo file, before
the title page:

@smallbook

(Since many books are about 7 by 9.25 inches, this command might better have been called the
@regularbooksize command, but it came to be called the @smallbook command by comparison
to the 8.5 by 11 inch format.)

If you write the @smallbook command between the start-of-header and end-of-header lines,
the Texinfo mode TEX region formatting command, texinfo-tex-region, will format the region
in “small” book size (see Section 3.2.2 [Start of Header], page 14).

See Section 8.15 [@small...], page 70, for information about commands that make it easier
to produce examples for a smaller manual.

See Section 19.2 [Format with texi2dvi], page 143, and Section 19.9 [Preparing for TEX],
page 149, for other ways to format with @smallbook that do not require changing the source
file.

19.12 Printing on A4 Paper

You can tell TEX to format a document for printing on European size A4 paper (or A5) with
the @afourpaper (or @afivepaper) command. Write the command on a line by itself near the
beginning of the Texinfo file, before the title page. For example, this is how you would write
the header for this manual:

\input texinfo @c -*-texinfo-*-

@c %**start of header

@settitle Texinfo

@afourpaper

@c %**end of header

See Section 19.2 [Format with texi2dvi], page 143, and Section 19.9 [Preparing for TEX],
page 149, for other ways to format for different paper sizes that do not require changing the
source file.

You may or may not prefer the formatting that results from the command @afourlatex.
There’s also @afourwide for A4 paper in wide format.

19.13 @pagesizes [width][, height]: Custom Page Sizes

You can explicitly specify the height and (optionally) width of the main text area on the page
with the @pagesizes command. Write this on a line by itself near the beginning of the Texinfo



Chapter 19: Formatting and Printing Hardcopy 152

file, before the title page. The height comes first, then the width if desired, separated by a
comma. Examples:

@pagesizes 200mm,150mm

and

@pagesizes 11.5in

This would be reasonable for printing on B5-size paper. To emphasize, this command specifies
the size of the text area, not the size of the paper (which is 250 mm by 177 mm for B5, 14 in by
8.5 in for legal).

To make more elaborate changes, such as changing any of the page margins, you must define
a new command in texinfo.tex or texinfo.cnf.

See Section 19.2 [Format with texi2dvi], page 143, and Section 19.9 [Preparing for TEX],
page 149, for other ways to specify @pagesizes that do not require changing the source file.

19.14 Magnification

You can attempt to direct TEX to typeset pages larger or smaller than usual with the \mag TEX
command. Everything that is typeset is scaled proportionally larger or smaller. (\mag stands
for “magnification”.) This is not a Texinfo @-command, but is a raw TEX command that is
prefixed with a backslash. You have to write this command between @tex and @end tex (see
Section 16.3 [Raw Formatter Commands], page 123).

Follow the \mag command with an ‘=’ and then a number that is 1000 times the magnification
you desire. For example, to print pages at 1.2 normal size, write the following near the beginning
of the Texinfo file, before the title page:

@tex

\global\mag=1200

@end tex

With some printing technologies, you can print normal-sized copies that look better than
usual by giving a larger-than-normal master to your print shop. They do the reduction, thus
effectively increasing the resolution.

Depending on your system, DVI files prepared with a nonstandard-\mag may not print or
may print only with certain magnifications. Be prepared to experiment.

19.15 PDF Output

The simplest way to generate PDF output from Texinfo source is to run the convenience script
texi2pdf (or pdftexi2dvi); this executes the texi2dvi script with the --pdf option (see
Section 19.2 [Format with texi2dvi], page 143). If for some reason you want to process the
document by hand, you can run the pdftex program instead of plain tex. That is, run ‘pdftex
foo.texi’ instead of ‘tex foo.texi’.

PDF stands for ‘Portable Document Format’. It was invented by Adobe Systems some years
ago for document interchange, based on their PostScript language. Related links:

• GNU GV, a Ghostscript-based PDF reader (http://www.gnu.org/software/gv/). (It can
also preview PostScript documents.)

• xpdf, a freely available standalone PDF reader (http://www.foolabs.com/xpdf/) for the
X window system.

• PDF at Wikipedia (https://en.wikipedia.org/wiki/Portable_Document_Format).

At present, Texinfo does not provide ‘@ifpdf’ or ‘@pdf’ commands as for the other output
formats, since PDF documents contain many internal low-level offsets and cross-references that
would be hard or impossible to specify at the Texinfo source level.

http://www.gnu.org/software/gv/
http://www.foolabs.com/xpdf/
https://en.wikipedia.org/wiki/Portable_Document_Format


Chapter 19: Formatting and Printing Hardcopy 153

PDF files require dedicated software to be displayed, unlike the plain ASCII formats (Info,
HTML) that Texinfo supports. They also tend to be much larger than the DVI files output
by TEX by default. Nevertheless, a PDF file does define an actual typeset document in a self-
contained file, notably including all the fonts that are used, so it has its place.

19.16 Obtaining TEX

TEX is a document formatter that is used by the FSF for its documentation. It is the easiest
way to get printed output (e.g., PDF and PostScript) for Texinfo manuals. TeX is freely redis-
tributable, and you can get it over the Internet or on physical media. See http://tug.org/

texlive.

http://tug.org/texlive
http://tug.org/texlive


154

20 texi2any: The Generic Translator for Texinfo

texi2any is the generic translator for Texinfo that can produce different output formats and is
highly customizable. It supports these formats:

Info (by default, or with --info),
HTML (with --html),
plain text (with --plaintext),
Docbook (with --docbook),
Texinfo XML (with --xml).

makeinfo is an alias for texi2any. By default, both texi2any and makeinfo generate Info
output; indeed, there are no differences in behavior based on the name.

Beside these default formats, command line options to texi2any can change many aspects
of the output. Beyond that, initialization files provide even more control over the final output—
nearly anything not specified in the Texinfo input file. Initialization files are written in Perl,
like the main program, and anything which can be specified on the command line can also be
specified within a initialization file.

The rest of this chapter goes into the details.

20.1 texi2any: A Texinfo Reference Implementation

Above, we called texi2any “the” translator for Texinfo instead of just “a” translator, even
though (of course) it’s technically and legally possible for other implementations to be written.
The reason is that alternative implementations are very likely to have subtle, or not-so-subtle,
differences in behavior, and thus Texinfo documents would become dependent on the processor.
Therefore, it is important to have a reference implementation that defines parts of the language
not fully specified by the manual (often intentionally so). It is equally important to have
consistent command-line options and other behavior for all processors.

For this reason, the once-independent texi2html Perl Texinfo processor was made com-
patible with the C implementation of makeinfo, to avoid continuing with two different imple-
mentations (see Section 1.6 [History], page 6). The current implementation, texi2any, serves
as the reference implementation. It inherited the design of customization and other features
from texi2html (for more on texi2html compatibility, see Section 20.9 [texi2html], page 173).
However, texi2any is a full reimplementation: it constructs a tree-based representation of the
input document for all back-ends to work from.

Extensive tests of the language were developed at the same time as texi2any; we plead with
anyone thinking of writing a program to parse Texinfo input to at least make use of these tests.

The texi2html wrapper script (see Section 20.9 [texi2html], page 173) provides a very
simple example of calling texi2any from a shell script; it’s in util/texi2html in the Texinfo
sources. More consequentially, texi-elements-by-size is an example Perl script using the
Texinfo::Parser module interface; it’s also in the util source directory. (Its functionality
may also be useful to authors; see [texi-elements-by-size], page 218.)

With the release of texi2any as the reference implementation, development of both the C
implementation of makeinfo and texi2html has been halted. Going forward, we ask authors of
Texinfo documents to use only texi2any.

20.2 Invoking texi2any/makeinfo from a Shell

To process a Texinfo file, invoke texi2any or makeinfo (the two names are synonyms for the
same program; we’ll use the names interchangeably) followed by the name of the Texinfo file.



Chapter 20: texi2any: The Generic Translator for Texinfo 155

Also select the format you want to output with the appropriate command line option (default
is Info). Thus, to create the Info file for Bison, type the following to the shell:

texi2any --info bison.texinfo

You can specify more than one input file name; each is processed in turn. If an input file
name is ‘-’, standard input is read.

The texi2any program accepts many options. Perhaps the most basic are those that change
the output format. By default, texi2any outputs Info.

Each command line option is either a long name preceded by ‘--’ or a single letter preceded
by ‘-’. You can use abbreviations for the long option names as long as they are unique.

For example, you could use the following shell command to create an Info file for
bison.texinfo in which lines are filled to only 68 columns:

texi2any --fill-column=68 bison.texinfo

You can write two or more options in sequence, like this:

texi2any --no-split --fill-column=70 ...

(This would keep the Info file together as one possibly very long file and would also set the fill
column to 70.)

The options are (approximately in alphabetical order):

--commands-in-node-names

This option now does nothing, but remains for compatibility. (It used to ensure that
@-commands in node names were expanded throughout the document, especially
@value. This is now done by default.)

--conf-dir=path

Prepend path to the directory search list for finding customization files that may be
loaded with --init-file (see below). The path value can be a single directory, or
a list of several directories separated by the usual path separator character (‘:’ on
Unix-like systems, ‘;’ on Windows).

--css-include=file

When producing HTML, literally include the contents of file, which should contain
W3C cascading style sheets specifications, in the ‘<style>’ block of the HTML
output. If file is ‘-’, read standard input. See Section 22.3 [HTML CSS], page 185.

--css-ref=url

When producing HTML, add a ‘<link>’ tag to the output which references a cas-
cading style sheet at url. This allows using standalone style sheets.

-D var

-D 'var value'

Cause the Texinfo variable var to be defined. This is equivalent to @set var in the
Texinfo file (see Section 16.5 [@set @clear @value], page 125).

The argument to the option is always one word to the shell; if it contains internal
whitespace, the first word is taken as the variable name and the remainder as the
value. For example, -D 'myvar someval' is equivalent to @set myvar someval.

--disable-encoding

--enable-encoding

By default, or with --enable-encoding, output accented and special
characters in Info and plain text output based on ‘@documentencoding’. With
--disable-encoding, 7-bit ASCII transliterations are output. See Section 15.2
[@documentencoding], page 120, and Section 12.4 [Inserting Accents], page 95.



Chapter 20: texi2any: The Generic Translator for Texinfo 156

--docbook

Generate Docbook output (rather than Info).

--document-language=lang

Use lang to translate Texinfo keywords which end up in the output document. The
default is the locale specified by the @documentlanguage command if there is one,
otherwise English (see Section 15.1 [@documentlanguage], page 120).

--dvi Generate a TeX DVI file using texi2dvi, rather than Info (see Section 20.4
[texi2any Printed Output], page 161).

--dvipdf Generate a PDF file using texi2dvi --dvipdf, rather than Info (see Section 20.4
[texi2any Printed Output], page 161).

--error-limit=limit

-e limit Report LIMIT errors before aborting (on the assumption that continuing would be
useless); default 100.

--fill-column=width

-f width Specify the maximum number of columns in a line; this is the right-hand edge of a
line. Paragraphs that are filled will be filled to this width. (Filling is the process
of breaking up and connecting lines so that lines are the same length as or shorter
than the number specified as the fill column. Lines are broken between words.) The
default value is 72.

--footnote-style=style

-s style Set the footnote style to style: either ‘end’ for the end node style (the default)
or ‘separate’ for the separate node style. The value set by this option overrides
the value set in a Texinfo file by a @footnotestyle command (see Section 10.3.2
[Footnote Styles], page 82).

When the footnote style is ‘separate’, makeinfo makes a new node containing the
footnotes found in the current node. When the footnote style is ‘end’, makeinfo
places the footnote references at the end of the current node.

In HTML, when the footnote style is ‘end’, or if the output is not split, footnotes
are put at the end of the output. If set to ‘separate’, and the output is split, they
are placed in a separate file.

--force

-F Ordinarily, if the input file has errors, the output files are not created. With this
option, they are preserved.

--help

-h Print a message with available options and basic usage, then exit successfully.

--html Generate HTML output (rather than Info). By default, the HTML output is split
into one output file per Texinfo source node, and the split output is written into a
subdirectory based on the name of the top-level Info file. See Chapter 22 [Generating
HTML], page 184.

-I path Append path to the directory search list for finding files that are included using
the @include command. By default, texi2any searches only the current directory.
If path is not given, the current directory is appended. The path value can be a
single directory or a list of several directories separated by the usual path separator
character (‘:’ on Unix-like systems, ‘;’ on Windows).



Chapter 20: texi2any: The Generic Translator for Texinfo 157

--ifdocbook

--ifhtml

--ifinfo

--ifplaintext

--iftex

--ifxml For the given format, process ‘@ifformat’ and ‘@format’ commands, and do not
process ‘@ifnotformat’, regardless of the format being output. For instance, if
--iftex is given, then ‘@iftex’ and ‘@tex’ blocks will be read, and ‘@ifnottex’
blocks will be ignored.

--info Generate Info output. By default, if the output file contains more than about
300,000 bytes, it is split into shorter subfiles of about that size. The name of
the output file and any subfiles is determined by @setfilename (see Section 3.2.3
[@setfilename], page 15). See Section 21.1.5 [Tag and Split Files], page 177.

--init-file=file

Load file as code to modify the behavior and output of the generated manual. It is
customary to use the .pm or the .init extensions for these customization files, but
that is not enforced; the file name can be anything. The --conf-dir option (see
above) can be used to add to the list of directories in which these customization files
are searched for.

--internal-links=file

In HTML mode, output a tab-separated file containing three columns: the internal
link to an indexed item or item in the table of contents, the name of the index (or
table of contents) in which it occurs, and the term which was indexed or entered.
The items are in the natural sorting order for the given element. This dump can be
useful for post-processors.

--macro-expand=file

-E file Output the Texinfo source, with all Texinfo macros expanded, to file. Normally, the
result of macro expansion is used internally by makeinfo and then discarded.

--no-headers

Do not include menus or node separator lines in the output.

When generating Info, this is the same as using --plaintext, resulting in a simple
plain text file. Furthermore, @setfilename is ignored, and output is to standard
output unless overridden with -o. (This behavior is for backward compatibility.)

When generating HTML, and output is split, also output navigation links only at
the beginning of each file. If output is not split, do not include navigation links at
the top of each node at all. See Chapter 22 [Generating HTML], page 184.

--no-ifdocbook

--no-ifhtml

--no-ifinfo

--no-ifplaintext

--no-iftex

--no-ifxml

For the given format, do not process ‘@ifformat’ and ‘@format’ commands, and
do process ‘@ifnotformat’, regardless of the format being output. For instance,
if --no-ifhtml is given, then ‘@ifhtml’ and ‘@html’ blocks will not be read, and
‘@ifnothtml’ blocks will be.



Chapter 20: texi2any: The Generic Translator for Texinfo 158

--no-node-files

--node-files

When generating HTML, create redirection files for anchors and any nodes not
already output with the file name corresponding to the node name (see Section 22.4.2
[HTML Xref Node Name Expansion], page 188). This makes it possible for section-
and chapter-level cross-manual references to succeed (see Section 22.4.6 [HTML Xref
Configuration], page 191).

If the output is split, this is enabled by default. If the output is not split, --node-
files enables the creation of the redirection files, in addition to the monolithic
main output file. --no-node-files suppresses the creation of redirection files in
any case. This option has no effect with any output format other than HTML. See
Chapter 22 [Generating HTML], page 184.

--no-number-footnotes

Suppress automatic footnote numbering. By default, footnotes are numbered se-
quentially within a node, i.e., the current footnote number is reset to 1 at the start
of each node.

--no-number-sections

--number-sections

With --number_sections (the default), output chapter, section, and appendix
numbers as in printed manuals. This works only with hierarchically-structured
manuals. You should specify --no-number-sections if your manual is not nor-
mally structured.

--no-pointer-validate

--no-validate

Suppress the pointer-validation phase of makeinfo—a dangerous thing to do. This
can also be done with the @novalidate command (see Section 19.1 [Use TEX],
page 143). Normally, consistency checks are made to ensure that cross-references
can be resolved, etc. See Section 20.5 [Pointer Validation], page 161.

--no-warn

Suppress warning messages (but not error messages).

--output=file

-o file Specify that the output should be directed to file. This overrides any file name
specified in a @setfilename command found in the Texinfo source. If neither
@setfilename nor this option are specified, the input file name is used to determine
the output name. See Section 3.2.3 [@setfilename], page 15.

If file is ‘-’, output goes to standard output and ‘--no-split’ is implied.

If file is a directory or ends with a ‘/’ the usual rules are used to determine the
output file name (namely, use @setfilename or the input file name) but the files
are written to the file directory. For example, ‘makeinfo -o bar/ foo.texi’, with
or without --no-split, will write bar/foo.info, and possibly other files, under
bar/.

When generating HTML and output is split, file is used as the name for the directory
into which all files are written. For example, ‘makeinfo -o bar --html foo.texi’
will write bar/index.html, among other files.

--output-indent=val

This option now does nothing, but remains for compatibility. (It used to alter
indentation in XML/Docbook output.)

-P path Prepend path to the directory search list for @include. If path is not given, the
current directory is prepended. See ‘-I’ above.



Chapter 20: texi2any: The Generic Translator for Texinfo 159

--paragraph-indent=indent

-p indent Set the paragraph indentation style to indent. The value set by this option overrides
the value set in a Texinfo file by an @paragraphindent command (see Section 3.7.4
[@paragraphindent], page 25). The value of indent is interpreted as follows:

‘asis’ Preserve any existing indentation (or lack thereof) at the beginnings of
paragraphs.

‘0’ or ‘none’
Delete any existing indentation.

num Indent each paragraph by num spaces.

The default is to indent by two spaces, except for paragraphs following a section
heading, which are not indented.

--pdf Generate a PDF file using texi2dvi --pdf, rather than Info (see Section 20.4
[texi2any Printed Output], page 161).

--plaintext

Output a plain text file (rather than Info): do not include menus or node separator
lines in the output. This results in a straightforward plain text file that you can
(for example) send in email without complications, or include in a distribution (for
example, an INSTALL file).

With this option, @setfilename is ignored and the output goes to standard output
by default; this can be overridden with -o.

--ps Generate a PostScript file using texi2dvi --ps, rather than Info (see Section 20.4
[texi2any Printed Output], page 161).

--set-customization-variable var=value

-c var=value

Set the customization variable var to value. The = is optional, but both var and value
must be quoted to the shell as necessary so the result is a single word. Many aspects
of texi2any behavior and output may be controlled by customization variables,
beyond what can be set in the document by @-commands and with other command
line switches. See Section 20.6 [Customization Variables], page 162.

--split=how

--no-split

When generating Info, by default large output files are split into smaller subfiles,
of approximately 300k bytes. When generating HTML, by default each output file
contains one node (see Chapter 22 [Generating HTML], page 184). --no-split

suppresses this splitting of the output.

Alternatively, --split=how may be used to specify at which level the HTML output
should be split. The possible values for how are:

‘chapter’ The output is split at @chapter and other sectioning @-commands at
this level (@appendix, etc.).

‘section’ The output is split at @section and similar.

‘node’ The output is split at every node. This is the default.

Plain text output can be split similarly to HTML. This may be useful for extracting
sections from a Texinfo document and making them available as separate files.

--split-size=num

Keep Info files to at most num characters if possible; default is 300,000. (However,
a single node will never be split across Info files.)



Chapter 20: texi2any: The Generic Translator for Texinfo 160

--transliterate-file-names

Enable transliteration of 8-bit characters in node names for the purpose of file name
creation. See Section 22.4.4 [HTML Xref 8-bit Character Expansion], page 190.

-U var Cause var to be undefined. This is equivalent to @clear var in the Texinfo file (see
Section 16.5 [@set @clear @value], page 125).

--verbose

Cause makeinfo to display messages saying what it is doing. Normally, makeinfo
only outputs messages if there are errors or warnings.

--version

-V Print the version number, then exit successfully.

--Xopt str

Pass str (a single shell word) to texi2dvi; may be repeated (see Section 20.4
[texi2any Printed Output], page 161).

--xml Generate Texinfo XML output (rather than Info).

20.3 Environment Variables Recognized by texi2any

makeinfo also reads the environment variable TEXINFO_OUTPUT_FORMAT to determine the output
format, if not overridden by a command line option. The value should be one of:

docbook dvi dvipdf html info pdf plaintext ps xml

If not set or otherwise specified, Info output is the default.

The customization variable of the same name is also read; if set, that overrides an environment
variable setting, but not a command-line option. See Section 20.6.2 [Customization Variables
and Options], page 162.

You can control texi2any’s use of Perl extension modules by setting the TEXINFO_XS envi-
ronment variable. These modules are compiled native code that the interpreted Perl code can
use. Ideally, these extension modules should just work, and the only noticable difference they
should make is that texi2any finishes running sooner. However, you can use this environment
variable for the purposes of troubleshooting: for example, if you have problems with the output
of texi2any varying depending on whether the extension modules are in use.

The following values of TEXINFO_XS are recognized by texi2any:

‘default’ The default behavior. Try to load extension modules, and silently fall back to the
interpreted Perl implementations if this fails.

‘warn’ Try to load extension modules, and if this fails, give a warning message before falling
back to the interpreted Perl implementations.

‘debug’ Try to load extension modules, printing many messages while doing so.

‘omit’ Do not use extension modules.

Set TEXINFO_XS_PARSER to ‘1’ to enable the use of the native code implementation of the
parser module. This is the part of texi2any that converts Texinfo input into an internal tree
format used for further processing into output formats. This is not enabled by default due
to the greater complexity of this module compared with the other modules that have a native
code implementation, and the lack of confidence we have that the native code implementation
matches the Perl code in all significant aspects. Despite the lack of maturity of this module
in terms of development and testing, it may be useful for decreasing texi2any run times when
working on Texinfo documentation files. Note that some error and warning messages will not
be translated from English if this module is used.



Chapter 20: texi2any: The Generic Translator for Texinfo 161

20.4 texi2any Printed Output

To justify the name Texinfo-to-any, texi2any has basic support for creating printed output in
the various formats: TEX DVI, PDF, and PostScript. This is done via the simple method of
executing the texi2dvi program when those output formats are requested, after checking the
validity of the input to give users the benefit of texi2any’s error checking. If you don’t want
such error checking, perhaps because your manual plays advanced TEX tricks together with
texinfo.tex, just invoke texi2dvi directly.

The output format options for this are --dvi, --dvipdf, --pdf, and --ps. See Section 19.2
[Format with texi2dvi], page 143, for more details on these options and general texi2dvi

operation. In addition, the --verbose, --silent, and --quiet options are passed on if specified;
the -I and -o options are likewise passed on with their arguments, and --debug without its
argument.

The only option remaining that is related to the texi2dvi invocation is --Xopt. Here, just
the argument is passed on and multiple --Xopt options accumulate. This provides a way to
construct an arbitrary command line for texi2dvi. For example, running

texi2any --Xopt -t --Xopt @a4paper --pdf foo.texi

is equivalent to running

texi2dvi -t @a4paper --pdf foo.texi

except for the validity check.

Although one might wish that other options to texi2any would take effect, they don’t. For
example, running ‘texi2any --no-number-sections --dvi foo.texi’ still results in a DVI file
with numbered sections. (Perhaps this could be improved in the future, if requests are received.)

The actual name of the command that is invoked is specified by the TEXI2DVI customization
variable (see Section 20.6.5 [Other Customization Variables], page 168). As you might guess,
the default is ‘texi2dvi’.

texi2any itself does not generate any normal output when it invokes texi2dvi, only diag-
nostic messages.

20.5 Pointer Validation

If you do not suppress pointer validation with the ‘--no-validate’ option or the @novalidate

command in the source file (see Section 19.1 [Use TEX], page 143), makeinfo will check the
validity of the Texinfo file.

Most validation checks are different depending on whether node pointers are explicitly or
implicitly determined. With explicit node pointers, here is the list of what is checked:

1. If a ‘Next’, ‘Previous’, or ‘Up’ node reference is a reference to a node in the current file and
is not an external reference such as to (dir), then the referenced node must exist.

2. Every node except the ‘Top’ node must have an ‘Up’ pointer.

3. The node referenced by an ‘Up’ pointer must itself reference the current node through a
menu item, unless the node referenced by ‘Up’ has the form ‘(file)’.

With implicit node pointers, the above error cannot occur, as such. (Which is a major
reason why we recommend using this feature of makeinfo, and not specifying any node pointers
yourself.)

Instead, makeinfo checks that the tree constructed from the document’s menus matches the
tree constructed from the sectioning commands. For example, if a chapter-level menu mentions
nodes n1 and n2, in that order, nodes n1 and n2 must be associated with @section commands
in the chapter.

Finally, with both explicit and implicit node pointers, makeinfo checks that every node
except the ‘Top’ node is referenced in a menu.



Chapter 20: texi2any: The Generic Translator for Texinfo 162

20.6 Customization Variables

Warning: These customization variable names and meanings may change in any
Texinfo release. We always try to avoid incompatible changes, but we cannot abso-
lutely promise, since needs change over time.

Many aspects of the behavior and output of texi2any may be modified by modifying so-called
customization variables. These fall into a few general categories:

• Those associated with @-commands; for example, @documentlanguage.

• Those associated with command-line options; for example, the customization variable SPLIT
is associated with the --split command-line option, and TEXINFO_OUTPUT_FORMAT allows
specifying the output format.

• Those associated with customizing the HTML output.

• Other ad hoc variables.

Customization variables may set on the command line using --set-customization-

variable 'var value' (quoting the variable/value pair to the shell) or --set-customization-
variable var=value (using =). A special value is ‘undef’, which sets the variable to this
special “undefined” Perl value.

The sections below give the details for each of these.

20.6.1 Customization Variables for @-Commands

Each of the following @-commands has an associated customization variable with the same name
(minus the leading @):

@allowcodebreaks @clickstyle

@codequotebacktick @codequoteundirected

@contents @deftypefnnewline

@documentdescription @documentencoding @documentlanguage

@exampleindent @firstparagraphindent

@footnotestyle @frenchspacing

@kbdinputstyle @novalidate

@paragraphindent @setfilename

@shortcontents @urefbreakstyle

@validatemenus @xrefautomaticsectiontitle

Setting such a customization variable to a value ‘foo’ is similar to executing @cmd foo.
It is not exactly the same, though, since any side effects of parsing the Texinfo source are
not redone. Also, some variables do not take Texinfo code when generating particular for-
mats, but an argument that is already formatted. This is the case, for example, for HTML for
documentdescription.

Note that if texi2any is invoked to process the file with TEX (e.g., with the --pdf option),
then these customization variables may not be passed on to TEX.

20.6.2 Customization Variables and Options

The following table gives the customization variables associated with some command line op-
tions. See Section 20.2 [Invoking texi2any], page 154, for the meaning of the options.

Option Variable
--enable-encoding ENABLE_ENCODING

--document-language documentlanguage

--error-limit ERROR_LIMIT

--fill-column FILLCOLUMN

--footnote-style footnotestyle

--force FORCE



Chapter 20: texi2any: The Generic Translator for Texinfo 163

--internal-links INTERNAL_LINKS

--macro-expand MACRO_EXPAND

--headers HEADERS, SHOW_MENU
--no-warn NO_WARN

--no-validate novalidate

--number-footnotes NUMBER_FOOTNOTES

--number-sections NUMBER_SECTIONS

--node-files NODE_FILES

--output OUTFILE, SUBDIR
--paragraph-indent paragraphindent

--silent SILENT

--split SPLIT

--split-size SPLIT_SIZE

--transliterate-file-names TRANSLITERATE_FILE_NAMES

--verbose VERBOSE

Setting such a customization variable to a value ‘foo’ is essentially the same as specifying
the --opt=foo if the option takes an argument, or --opt if not.

In addition, the customization variable TEXINFO_OUTPUT_FORMAT allows specifying what
makeinfo outputs, either one of the usual output formats that can be specified with options, or
various other forms:

‘docbook’
‘dvi’
‘dvipdf’
‘html’
‘info’
‘pdf’
‘plaintext’
‘ps’
‘xml’ These correspond to the command-line options (and TEXINFO_OUTPUT_FORMAT envi-

ronment variable values) of the same name. See Section 20.2 [Invoking texi2any],
page 154.

‘debugtree’
Instead of generating a regular output format, output a text representation of the
tree obtained by parsing the input texinfo document.

‘parse’ Do only Texinfo source parsing; there is no output.

‘plaintexinfo’
Output the Texinfo source with all the macros, @include and @value{} expanded.
This is similar to setting --macro-expand, but instead of being output in addition
to the normal conversion, output of Texinfo is the main output.

‘rawtext’ Output raw text, with minimal formatting. For example, footnotes are ignored and
there is no paragraph filling. This is used by the parser for file names and copyright
text in HTML comments, for example.

‘structure’
Do only Texinfo source parsing and determination of the document structure; there
is no output.

‘texinfosxml’
Output the document in TexinfoSXML representation, a syntax for writing XML
data using Lisp S-expressions.



Chapter 20: texi2any: The Generic Translator for Texinfo 164

‘textcontent’
Output the text content only, stripped of commands; this is useful for spell checking
or word counting, for example. The trivial detexinfo script setting this is in the
util directory of the Texinfo source as an example. It’s one line:

exec texi2any -c TEXINPUT_OUTPUT_FORMAT=textcontent "$@"

20.6.3 HTML Customization Variables

This table gives the customization variables which apply to HTML output only. A few other
customization variable apply to both HTML and other output formats; see Section 20.6.5 [Other
Customization Variables], page 168.

AVOID_MENU_REDUNDANCY

If set, and the menu entry and menu description are the same, then do not print
the menu description; default false.

AFTER_BODY_OPEN

If set, the corresponding text will appear at the beginning of each HTML file; default
unset.

AFTER_ABOUT

For HTML, when an About-element is output. If set, the corresponding text will
appear at the end of the About element; default unset.

AFTER_OVERVIEW

AFTER_TOC_LINES

If set, the corresponding text is output after the short table of contents for AFTER_

OVERVIEW and after the table of contents for AFTER_TOC_LINES; otherwise, a default
string is used. At the time of writing, a </div> element is closed.

In general, you should set BEFORE_OVERVIEW if AFTER_OVERVIEW is set, and you
should set BEFORE_TOC_LINES if AFTER_TOC_LINES is set.

BASEFILENAME_LENGTH

The maximum length of the base filenames; default 245. Changing this would make
cross-manual references to such long node names invalid (see Section 22.4.1 [HTML
Xref Link Basics], page 187).

BEFORE_OVERVIEW

BEFORE_TOC_LINES

If set, the corresponding text is output before the short table of contents for BEFORE_
OVERVIEW and before the table of contents for BEFORE_TOC_LINES, otherwise a de-
fault string is used. At the time of writing, a <div ...> element is opened.

In general you should set AFTER_OVERVIEW if BEFORE_OVERVIEW is set, and you
should set AFTER_TOC_LINES if BEFORE_TOC_LINES is set.

BIG_RULE Rule used after and before the top element and before special elements, but not for
footers and headers; default <hr>.

BODYTEXT The text appearing in <body>. By default, sets the HTML lang attribute to the
document language (see Section 15.1 [@documentlanguage], page 120).

CASE_INSENSITIVE_FILENAMES

Construct output file names as if the filesystem were case insensitive (see Section 22.2
[HTML Splitting], page 185); default false.

CHAPTER_HEADER_LEVEL

Header formatting level used for chapter level sectioning commands; default ‘2’.



Chapter 20: texi2any: The Generic Translator for Texinfo 165

CHECK_HTMLXREF

Check that manuals which are the target of external cross-references (see
Section 6.4.4 [Four and Five Arguments], page 46) are present in htmlxref.cnf

(see Section 22.4.6 [HTML Xref Configuration], page 191); default false.

COMPLEX_FORMAT_IN_TABLE

If set, use tables for indentation of complex formats; default false.

CSS_LINES

CSS output, automatically determined by default (see Section 22.3 [HTML CSS],
page 185).

DATE_IN_HEADER

Put the document generation date in the header; off by default.

DEF_TABLE

If set, a <table> construction for @deffn and similar @-commands is used (looking
more like the TEX output), instead of definition lists; default false.

DEFAULT_RULE

Rule used between element, except before and after the top element, and before
special elements, and for footers and headers; default <hr>.

DO_ABOUT If set to 0 never do an About special element; if set to 1 always do an About special
element; default 0.

EXTERNAL_DIR

Base directory for external manuals; default none. It is better to use the general
external cross-reference mechanism (see Section 22.4.6 [HTML Xref Configuration],
page 191) than this variable.

EXTRA_HEAD

Additional text appearing within <head>; default unset.

FOOTNOTE_END_HEADER_LEVEL

Header formatting level used for the footnotes header with the ‘end’ footnotestyle;
default ‘4’. See Section 10.3.2 [Footnote Styles], page 82.

FOOTNOTE_SEPARATE_HEADER_LEVEL

Header formatting level used for the footnotes header with the ‘separate’ foot-
notestyle; default ‘4’. See Section 10.3.2 [Footnote Styles], page 82.

FRAMES If set, a file describing the frame layout is generated, together with a file with the
short table of contents; default false.

FRAMESET_DOCTYPE

Same as DOCTYPE, but for the file containing the frame description.

HEADER_IN_TABLE

Use tables for header formatting rather than a simple <div> element; default false.

ICONS Use icons for the navigation panel; default false.

IMAGE_LINK_PREFIX

If set, the associated value is prepended to the image file links; default unset.

INLINE_CONTENTS

If set, output the contents where the @contents and similar @-commands are lo-
cated; default true. This is ignored if @set*contentsaftertitlepage is set (see
Section 3.5 [Contents], page 21).



Chapter 20: texi2any: The Generic Translator for Texinfo 166

INLINE_CSS_STYLE

Put CSS directly in HTML elements rather than at the beginning of the output;
default false.

KEEP_TOP_EXTERNAL_REF

If set, do not ignore ‘Top’ as the first argument for an external ref to a manual, as
is done by default. See Section 6.5 [Referring to a Manual as a Whole], page 47.

MAX_HEADER_LEVEL

Maximum header formatting level used (higher header formatting level numbers
correspond to lower sectioning levels); default ‘4’.

MENU_SYMBOL

Symbol used in front of menu entries when node names are used for menu entries
formatting; default ‘&bull;’.

MONOLITHIC

Output only one file including the table of contents. Set by default, but only relevant
when the output is not split.

NO_CSS Do not use CSS; default false. See Section 22.3 [HTML CSS], page 185.

PRE_ABOUT

Used when an About element is output. If set to a text string, this text will appear
at the beginning of the About element. If set to a reference on a subroutine, the
result of the subroutine call will appear at the beginning of the About element. If
not set (the default), default text is used.

PRE_BODY_CLOSE

If set, the given text will appear at the footer of each HTML file; default unset.

PROGRAM_NAME_IN_FOOTER

If set, output the program name and miscellaneous related information in the page
footers; default false.

SECTION_NAME_IN_TITLE

If set, when output is split, use the argument of the chapter structuring command
(e.g., @chapter or @section) in the <title> instead of the argument to @node.

SHOW_TITLE

If set, output the title at the beginning of the document; default true.

SIMPLE_MENU

If set, use a simple preformatted style for the menu, instead of breaking down the
different parts of the menu; default false. See Section 4.9.4 [Menu Parts], page 35.

TOC_LINKS

If set, links from headings to toc entries are created; default false.

TOP_FILE This file name may be used for the top-level file. The extension is set appropriately,
if necessary. This is used to override the default, and is, in general, only taken into
account when output is split, and for HTML.

TOP_NODE_FILE_TARGET

File name used for the Top node in cross-references; default is index.html.

TOP_NODE_UP_URL

A url used for Top node up references; the default is undef, in that case no Top node
Up reference is generated. For more about the Top node pointers, see Section 4.5
[First Node], page 30. For overriding the Up pointer name in cas TOP_NODE_UP_URL



Chapter 20: texi2any: The Generic Translator for Texinfo 167

is set and for other formats, see TOP_NODE_UP in Section 20.6.5 [Other Customization
Variables], page 168.

USE_ACCESSKEY

Use accesskey in cross-references; default true.

USE_ISO Use entities for doubled single-quote characters (see Section 12.5 [Inserting Quota-
tion Marks], page 96), and ‘---’ and ‘--’ (see Section 2.1 [Conventions], page 8);
default true.

USE_LINKS

Generate <link> elements in the HTML <head> output; default true.

USE_REL_REV

Use rel in cross-references; default true.

VERTICAL_HEAD_NAVIGATION

If set, a vertical navigation panel is used; default false.

WORDS_IN_PAGE

When output is split by nodes, specifies the approximate minimum page length at
which a navigation panel is placed at the bottom of a page. To avoid ever having the
navigation buttons at the bottom of a page, set this to a sufficiently large number.
The default is 300.

XREF_USE_FLOAT_LABEL

If set, for the float name in cross-references, use the float label instead of the type
followed by the float number (see Section 10.1.1 [@float], page 78). The default is
off.

XREF_USE_NODE_NAME_ARG

Only relevant for cross-reference commands with no cross reference name (second
argument). If set to 1, use the node name (first) argument in cross-reference @-
commands for the text displayed as the hyperlink. If set to 0, use the node name
if USE_NODES is set, otherwise the section name. If set to ‘undef’, use the first
argument in preformatted environments, otherwise use the node name or section
name depending on USE_NODES. The default is ‘undef’.

20.6.4 latex2html Customization Variables

This table lists the customization variables which can be used when latex2html is being used.

L2H For HTML. If set, latex2html is used to convert @math and @tex sections; default
false. Best used with --iftex.

L2H_CLEAN

(Relevant only if L2H is set.) If set, the intermediate files generated in relation with
latex2html are removed; default true.

L2H_FILE (Relevant only if L2H is set.) If set, the given file is used as latex2html’s init file;
default unset.

L2H_HTML_VERSION

(Relevant only if L2H is set.) The HTML version used in the latex2html call;
default unset.

L2H_L2H (Relevant only if L2H is set.) The program invoked as latex2html; default is
latex2html.

L2H_SKIP (Relevant only if L2H is set.) If set to a true value, the actual call to latex2html

is skipped; previously generated content is reused instead. If set to 0, the cache is



Chapter 20: texi2any: The Generic Translator for Texinfo 168

not used at all. If set to ‘undef’, the cache is used for as many TEX fragments as
possible and for any remaining the command is run. The default is ‘undef’.

L2H_TMP (Relevant only if L2H is set.) Set the directory used for temporary files. None
of the file name components in this directory name may start with ‘.’; otherwise,
latex2html will fail (because of dvips). The default is the empty string, which
means the current directory.

20.6.5 Other Customization Variables

This table gives the remaining customization variables, which apply to multiple formats, or
affect global behavior, or otherwise don’t fit into the categories of the previous sections.

CLOSE_QUOTE_SYMBOL

When a closing quote is needed, use this character; default &rsquo; in HTML,
&#8217; in Docbook. The default for Info is the same as OPEN_QUOTE_SYMBOL (see
below).

CPP_LINE_DIRECTIVES

Recognize #line directives in a “preprocessing” pass (see Section 17.6 [External
Macro Processors], page 137); on by default.

DEBUG If set, debugging output is generated; default is off (zero).

DOCTYPE For Docbook, HTML, XML. Specifies the SystemLiteral, the entity’s system iden-
tifier. This is a URI which may be used to retrieve the entity, and identifies the
canonical DTD for the document. The default value is different for each of HTML,
Docbook and Texinfo XML.

DUMP_TEXI

For debugging. If set, no conversion is done, only parsing and macro expansion.
If the option --macro-expand is set, the Texinfo source is also expanded to the
corresponding file. Default false.

DUMP_TREE

For debugging. If set, the tree constructed upon parsing a Texinfo document is
output to standard error; default false.

ENABLE_ENCODING_USE_ENTITY

For HTML, XML. If --enable-encoding is set, and there is an entity corresponding
with the letter or the symbol being output, prefer the entity. Set by default for
HTML, but not XML.

EXTERNAL_CROSSREF_SPLIT

For cross-references to other manuals, this determines if the other manual is consid-
ered to be split or monolithic. By default, it is set based on the value of SPLIT. See
Section 22.4 [HTML Xref], page 187, and see Section 22.4.6 [HTML Xref Configu-
ration], page 191.

EXTENSION

The extension added to the output file name. The default is different for each output
format.

IGNORE_BEFORE_SETFILENAME

If set, begin outputting at @setfilename, if @setfilename is present; default true.

IGNORE_SPACE_AFTER_BRACED_COMMAND_NAME

If set, spaces are ignored after an @-command that takes braces. Default true,
matching the TEX behavior.



Chapter 20: texi2any: The Generic Translator for Texinfo 169

INDEX_ENTRY_COLON

Symbol used between the index entry and the associated node or section; default
‘:’.

INDEX_SPECIAL_CHARS_WARNING

If set, warn about ‘:’ in index entry, as it leads to invalid entries in index menus in
output Info files. For Info and plaintext only.

INFO_SPECIAL_CHARS_QUOTE

If set, whenever there are problematic characters for Info output in places such as
node names or menu items, surround the part of the construct where they appear
with quoting characters, as described in Appendix G [Info Format Specification],
page 246. See Section 4.4 [Node Line Requirements], page 29.

INFO_SPECIAL_CHARS_WARNING

If set, warn about problematic constructs for Info output (such as the string ‘::’)
in node names, menu items, and cross-references; default true. Do not warn about
index entries, since parsing problems there don’t prevent navigation; readers can
still relatively easily find their way to the node in question.

MAX_MACRO_CALL_NESTING

The maximal number of recursive calls of @-commands defined through @rmacro;
default 100000. The purpose of this variable is to avoid infinite recursions.

MENU_ENTRY_COLON

Symbol used between the menu entry and the description; default empty.

NO_USE_SETFILENAME

If set, do not use @setfilename to set the document name; instead, base the output
document name only on the input file name. The default is false.

NODE_NAME_IN_INDEX

If set, use node names in index entries, otherwise prefer section names; default true.

NODE_NAME_IN_MENU

If set, use node names in menu entries, otherwise prefer section names; default true.

OPEN_QUOTE_SYMBOL

When an opening quote is needed, e.g., for ‘@samp’ output, use the specified char-
acter; default &lsquo; for HTML, &#8216; for Docbook. For Info, the default de-
pends on the enabled document encoding (see Section 15.2 [@documentencoding],
page 120); if no document encoding is set, or the encoding is US-ASCII, etc., ‘'’
is used. This character usually appears as an undirected single quote on modern
systems. If the document encoding is Unicode, the Info output uses a Unicode left
quote.

OUTPUT_ENCODING_NAME

Normalized encoding name used for output files. Should be a usable charset name
in HTML, typically one of the preferred IANA encoding names. By default, if an
input encoding is set (typically through @documentencoding), this information is
used to set the output encoding name. If no input encoding is specified, the default
output encoding name may be set by the output format. In particular, the XML-
based formats use utf-8 for OUTPUT_ENCODING_NAME if the encoding is not otherwise
specified. See Section 15.2 [@documentencoding], page 120.

OVERVIEW_LINK_TO_TOC

If set, the cross-references in the Overview link to the corresponding Table of Con-
tents entries; default true.



Chapter 20: texi2any: The Generic Translator for Texinfo 170

PACKAGE

PACKAGE_VERSION

PACKAGE_AND_VERSION

PACKAGE_URL

PACKAGE_NAME

The implementation’s short package name, package version, package name and ver-
sion concatenated, package url, and full package name, respectively. By default,
these variables are all set through Autoconf, Automake, and configure.

PREFIX The output file prefix, which is prepended to some output file names. By default
it is set by @setfilename or from the input file (see Section 3.2.3 [@setfilename],
page 15). How this value is used depends on the value of other customization
variables or command line options, such as whether the output is split. The default
is unset.

PROGRAM Name of the program used. By default, it is set to the name of the program launched,
with a trailing ‘.pl’ removed.

SHOW_MENU

If set, Texinfo menus are output. By default, it is set unless generating Docbook or
if --no-headers is specified.

SORT_ELEMENT_COUNT

If set, the name of a file to which a list of elements (nodes or sections, depend-
ing on the output format) is dumped, sorted by the number of lines they con-
tain after removal of @-commands; default unset. This is used by the program
texi-elements-by-size in the util/ directory of the Texinfo source distribution
(see [texi-elements-by-size], page 218).

SORT_ELEMENT_COUNT_WORDS

When dumping the elements-by-size file (see preceding item), use word counts in-
stead of line counts; default false.

TEST If set to true, some variables which are normally dynamically generated anew for
each run (date, program name, version) are set to fixed and given values. This is
useful to compare the output to a reference file, as is done for the tests. The default
is false.

TEXI2DVI Name of the command used to produce PostScript, PDF, and DVI; default
‘texi2dvi’. See Section 20.4 [texi2any Printed Output], page 161.

TEXI2HTML

Generate HTML and try to be as compatible as possible with texi2html; default
false.

TEXINFO_DTD_VERSION

For XML. Version of the DTD used in the XML output preamble. The default is
set based on a variable in configure.ac.

TEXTCONTENT_COMMENT

For stripped text content output (i.e., when TEXINFO_OUTPUT_FORMAT is set to
textcontent). If set, also output comments. Default false.

TOP_NODE_UP

Up node for the Top node; default ‘(dir)’. This node name is supposed to be already
formatted for the output format. In HTML can be used in attribute, so should
not contain any element. Used for HTML output only if TOP_NODE_UP_URL is set
to override the url, see TOP_NODE_UP_URL in Section 20.6.3 [HTML Customization
Variables], page 164.



Chapter 20: texi2any: The Generic Translator for Texinfo 171

TREE_TRANSFORMATIONS

The associated value is a comma separated list of transformations that can be ap-
plied to the Texinfo tree prior to outputting the result. If more than one is specified,
the ordering is irrelevant; each is always applied at the necessary point during pro-
cessing.

The only one executed by default is ‘move_index_entries_after_items’ for HTML
and Docbook output. Here’s an example of updating the master menu in a docu-
ment:

makeinfo \

-c TREE_TRANSFORMATIONS=regenerate_master_menu \

-c PLAINTEXINFO=1 \

mydoc.texi \

-o /tmp/out

(Caveat: Since PLAINTEXINFO output does expand Texinfo macros and conditionals,
it’s necessary to remove any such differences before installing the updates in the
original document. This will be remedied in a future release.)

The following transformations are currently supported (many are used in the
pod2texi utility distributed with Texinfo; see Section 20.8 [Invoking pod2texi],
page 173):

‘complete_tree_nodes_menus’
Add menu entries or whole menus for nodes associated with sections of
any level, based on the sectioning tree.

‘fill_gaps_in_sectioning’
Adds empty @unnumbered... sections in a tree to fill gaps in section-
ing. For example, an @unnumberedsec will be inserted if a @chapter is
followed by a @subsection.

‘insert_nodes_for_sectioning_commands’
Insert nodes for sectioning commands lacking a corresponding node.

‘move_index_entries_after_items’
In @enumerate and @itemize, move index entries appearing just before
an @item to just after the @item. Comment lines between index en-
tries are moved too. As mentioned, this is always done for HTML and
Docbook output.

‘regenerate_master_menu’
Update the Top node master menu, either replacing the (first)
@detailmenu in the Top node menu, or creating it at the end of the
Top node menu.

‘simple_menu’
Mostly the same as SIMPLE_MENU: use a simple preformatted style for
the menu. It differs from setting SIMPLE_MENU in that SIMPLE_MENU

only has an effect in HTML output.

USE_NODES

Preferentially use nodes to decide where elements are separated. If set to false,
preferentially use sectioning to decide where elements are separated. The default is
true.

USE_NODE_TARGET

If set, use the node associated with a section for the section target in cross-references;
default true.



Chapter 20: texi2any: The Generic Translator for Texinfo 172

USE_NUMERIC_ENTITY

For HTML and XML. If set, use numeric entities instead of ASCII characters when
there is no named entity. By default, set to true for HTML.

USE_UP_NODE_FOR_ELEMENT_UP

Fill in up sectioning direction with node direction when there is no sectioning up
direction. In practice this can only happen when there is no @top section. Not set
by default.

USE_SETFILENAME_EXTENSION

Default is on for Info, off for other output. If set, use exactly what @setfilename

gives for the output file name, including the extension. You should not need to
explicitly set this variable.

USE_TITLEPAGE_FOR_TITLE

Use the full @titlepage as the title, not a simple title string; default false.

USE_UNIDECODE

If set to false, do not use the Text::Unidecode Perl module to transliterate more
characters; default true.

20.7 Internationalization of Document Strings

texi2any writes fixed strings into the output document at various places: cross-references, page
footers, the help page, alternate text for images, and so on. The string chosen depends on
the value of the documentlanguage at the time of the string being output (see Section 15.1
[@documentlanguage], page 120, for the Texinfo command interface).

The Gettext framework is used for those strings (see Gettext). The libintl-perl package
is used as the gettext implementation; more specifically, the pure Perl implementation is used,
so Texinfo can support consistent behavior across all platforms and installations, which would
not otherwise be possible. libintl-perl is included in the Texinfo distribution and always
installed, to ensure that it is available if needed. It is also possible to use the system gettext

(the choice can be made at build-time).

The Gettext domain ‘texinfo_document’ is used for the strings. Translated strings are
written as Texinfo, and may include @-commands. In translated strings, the varying parts of
the string are not usually denoted by %s and the like, but by ‘{arg_name}’. (This convention is
common for gettext in Perl and is fully supported in GNU Gettext; see Section “Perl Format
Strings” in GNU Gettext.) For example, in the following, ‘{section}’ will be replaced by the
section name:

see {section}

These Perl-style brace format strings are used for two reasons: first, changing the order of
printf arguments is only available since Perl 5.8.0; second, and more importantly, the order of
arguments is unpredictable, since @-command expansion may lead to different orders depending
on the output format.

The expansion of a translation string is done like this:

1. First, the string is translated. The locale is @documentlanguage.@documentencoding.

If the @documentlanguage has the form ‘ll_CC’, that is tried first, and then just ‘ll’. If
that does not exist, and the encoding is not us-ascii, then us-ascii is tried.

The idea is that if there is a us-ascii encoding, it means that all the characters in the
charset may be expressed as @-commands. For example, there is a fr.us-ascii locale
that can accommodate any encoding, since all the Latin 1 characters have associated @-
commands. On the other hand, Japanese has only a translation ja.utf-8, since there are
no @-commands for Japanese characters.



Chapter 20: texi2any: The Generic Translator for Texinfo 173

2. Next, the string is expanded as Texinfo, and converted. The arguments are substituted; for
example, ‘{arg_name}’ is replaced by the corresponding actual argument.

In the following example, ‘{date}’, ‘{program_homepage}’ and ‘{program}’ are the argu-
ments of the string. Since they are used in @uref, their order is not predictable. ‘{date}’,
‘{program_homepage}’ and ‘{program}’ are substituted after the expansion:

Generated on @emph{{date}} using

@uref{{program_homepage}, @emph{{program}}}.

This approach is admittedly a bit complicated. Its usefulness is that it supports having
translations available in different encodings for encodings which can be covered by @-commands,
and also specifying how the formatting for some commands is done, independently of the output
format—yet still be language-dependent. For example, the ‘@pxref’ translation string can be
like this:

see {node_file_href} section `{section}\' in @cite{{book}}

which allows for specifying a string independently of the output format, while nevertheless with
rich formatting it may be translated appropriately in many languages.

20.8 Invoking pod2texi: Convert POD to Texinfo

The pod2texi program translates Perl pod documentation file(s) to Texinfo. There are two
basic modes of operation: generating a standalone manual from each input pod, or (if --base-
level=1 or higher is given) generating Texinfo subfiles suitable for use with @include.

Although ordinarily this documentation in the Texinfo manual would be the best place to
look, in this case we have documented all the options and examples in the pod2texi program
itself, since it may be useful outside of the rest of Texinfo. Thus, please see the output of
pod2texi --help, the version on the web at http://www.gnu.org/software/texinfo/

manual/pod2texi.html, etc.

For an example of using pod2texi to make Texinfo out of the Perl documentation it-
self, see contrib/perldoc-all (http://svn.savannah.gnu.org/viewvc/trunk/contrib/
perldoc-all/?root=texinfo) in the Texinfo source distribution (the output is available at
http://www.gnu.org/software/perl/manual).

20.9 texi2html: Ancestor of texi2any

Conceptually, the texi2html program is the parent of today’s texi2any program. texi2html

was developed independently, originally by Lionel Cons in 1998; at the time, makeinfo could
not generate HTML. Many other people contributed to texi2html over the years.

The present texi2any uses little of the actual code of texi2html, and has quite a different
basic approach to the implementation (namely, parsing the Texinfo document into a tree), but
still, there is a family resemblance.

By design, texi2any supports nearly all the features of texi2html in some way. However,
we did not attempt to maintain strict compatibility, so no texi2html executable is installed by
the Texinfo package. An approximation can be run with an invocation like this (available as
util/texi2html in the Texinfo source):

texi2any --set-customization-variable TEXI2HTML=1 ...

but, to emphasize, this is not a drop-in replacement for the previous texi2html. Here are the
biggest differences:

• Most blatantly, the command line options of texi2html are now customization variables,
for the most part. A table of approximate equivalents is given below.

• The program-level customization API is very different in texi2any.

http://www.gnu.org/software/texinfo/manual/pod2texi.html
http://www.gnu.org/software/texinfo/manual/pod2texi.html
http://svn.savannah.gnu.org/viewvc/trunk/contrib/perldoc-all/?root=texinfo
http://svn.savannah.gnu.org/viewvc/trunk/contrib/perldoc-all/?root=texinfo
http://www.gnu.org/software/perl/manual


Chapter 20: texi2any: The Generic Translator for Texinfo 174

• Indices cannot be split.

• Translated strings cannot be customized; we hope to introduce this feature in texi2any in
the future.

Aside from the last, we do not intend to reimplement these differences. Therefore, the route
forward for authors is alter manuals and build processes as necessary to use the new features
and methods of texi2any. The texi2html maintainers (one of whom is the principal author of
texi2any) do not intend to make further releases.

Here is the table showing texi2html options and corresponding texi2any customization
variables.

--toc-links TOC_LINKS

--short-ext SHORTEXTN

--prefix PREFIX

--short-ref SHORT_REF

--idx-sum IDX_SUMMARY

--def-table DEF_TABLE

--ignore-preamble-text IGNORE_PREAMBLE_TEXT

--html-xref-prefix EXTERNAL_DIR

--l2h L2H

--l2h-l2h L2H_L2H

--l2h-skip L2H_SKIP

--l2h-tmp L2H_TMP

--l2h-file L2H_FILE

--l2h-clean L2H_CLEAN

--use-nodes USE_NODES

--monolithic MONOLITHIC

--top-file TOP_FILE

--toc-file TOC_FILE

--frames FRAMES

--menu SHOW_MENU

--debug DEBUG

--doctype DOCTYPE

--frameset-doctype FRAMESET_DOCTYPE

--test TEST

Finally, any texi2html users seeking more detailed information can check the draft file
doc/texi2oldapi.texi in the Texinfo source repository. It consists mainly of very rough notes,
but may still be useful to some.



175

21 Creating and Installing Info Files

This chapter describes how to create and install Info files. See Section 1.3 [Info Files], page 4,
for general information about the file format itself.

21.1 Creating an Info File

makeinfo is a program that converts a Texinfo file into an Info file, HTML file, or plain text.
texinfo-format-region and texinfo-format-buffer are GNU Emacs functions that convert
Texinfo to Info.

For information on installing the Info file in the Info system, see Section 21.2 [Installing an
Info File], page 178.

21.1.1 makeinfo Advantages

The makeinfo utility creates an Info file from a Texinfo source providing better error messages
than either of the Emacs formatting commands. We recommend it. The makeinfo program is
independent of Emacs. You can run makeinfo in any of three ways: from an operating system
shell, from a shell inside Emacs, or by typing the C-c C-m C-r or the C-c C-m C-b command in
Texinfo mode in Emacs.

The texinfo-format-region and the texinfo-format-buffer commands may be useful if
you cannot run makeinfo.

21.1.2 Running makeinfo Within Emacs

You can run makeinfo in GNU Emacs Texinfo mode by using either the makeinfo-region or
the makeinfo-buffer commands. In Texinfo mode, the commands are bound to C-c C-m C-r

and C-c C-m C-b by default.

C-c C-m C-r

M-x makeinfo-region

Format the current region for Info.

C-c C-m C-b

M-x makeinfo-buffer

Format the current buffer for Info.

When you invoke makeinfo-region the output goes to a temporary buffer. When you
invoke makeinfo-buffer output goes to the file set with @setfilename (see Section 3.2.3
[@setfilename], page 15).

The Emacs makeinfo-region and makeinfo-buffer commands run the makeinfo program
in a temporary shell buffer. If makeinfo finds any errors, Emacs displays the error messages in
the temporary buffer.

You can parse the error messages by typing C-x ` (next-error). This causes Emacs to go
to and position the cursor on the line in the Texinfo source that makeinfo thinks caused the
error. See Section “Running make or Compilers Generally” in The GNU Emacs Manual, for
more information about using the next-error command.

In addition, you can kill the shell in which the makeinfo command is running or make the
shell buffer display its most recent output.

C-c C-m C-k

M-x makeinfo-kill-job

Kill the current running makeinfo job (from makeinfo-region or
makeinfo-buffer).



Chapter 21: Creating and Installing Info Files 176

C-c C-m C-l

M-x makeinfo-recenter-output-buffer

Redisplay the makeinfo shell buffer to display its most recent output.

(Note that the parallel commands for killing and recentering a TEX job are C-c C-t C-k and
C-c C-t C-l. See Section 19.6 [Texinfo Mode Printing], page 147.)

You can specify options for makeinfo by setting the makeinfo-options variable with either
the M-x customize or the M-x set-variable command, or by setting the variable in your .emacs
initialization file.

For example, you could write the following in your .emacs file:

(setq makeinfo-options

"--paragraph-indent=0 --no-split

--fill-column=70 --verbose")

For more information, see [makeinfo Options], page 155, as well as “Easy Customization Inter-
face,” “Examining and Setting Variables,” and “Init File” in The GNU Emacs Manual.

21.1.3 The texinfo-format... Commands

In GNU Emacs in Texinfo mode, you can format part or all of a Texinfo file with the
texinfo-format-region command. This formats the current region and displays the formatted
text in a temporary buffer called ‘*Info Region*’.

Similarly, you can format a buffer with the texinfo-format-buffer command. This com-
mand creates a new buffer and generates the Info file in it. Typing C-x C-s will save the Info
file under the name specified by the @setfilename line which must be near the beginning of the
Texinfo file.

C-c C-e C-r

texinfo-format-region

Format the current region for Info.

C-c C-e C-b

texinfo-format-buffer

Format the current buffer for Info.

The texinfo-format-region and texinfo-format-buffer commands provide you with
some error checking, and other functions can provide you with further help in finding formatting
errors. These procedures are described in an appendix; see Appendix F [Catching Mistakes],
page 239. However, the makeinfo program provides better error checking (see Section 21.1.2
[makeinfo in Emacs], page 175).

A peculiarity of the texinfo-format-buffer and texinfo-format-region commands is
that they do not indent (nor fill) paragraphs that contain @w or @* commands.

21.1.4 Batch Formatting

You can format Texinfo files for Info using batch-texinfo-format and Emacs batch mode. You
can run Emacs in batch mode from any shell, including a shell inside of Emacs. (See Section
“Initial Options” in The GNU Emacs Manual.)

Here is a shell command to format all the files that end in .texinfo in the current directory:

emacs -batch -funcall batch-texinfo-format *.texinfo

Emacs processes all the files listed on the command line, even if an error occurs while attempting
to format some of them.

Run batch-texinfo-format only with Emacs in batch mode as shown; it is not interactive.
It kills the batch mode Emacs on completion.



Chapter 21: Creating and Installing Info Files 177

batch-texinfo-format is convenient if you lack makeinfo and want to format several Tex-
info files at once. When you use Batch mode, you create a new Emacs process. This frees your
current Emacs, so you can continue working in it. (When you run texinfo-format-region

or texinfo-format-buffer, you cannot use that Emacs for anything else until the command
finishes.)

21.1.5 Tag Files and Split Files

If a Texinfo file has more than 30,000 bytes, texinfo-format-buffer automatically creates a
tag table for its Info file; makeinfo always creates a tag table. With a tag table, Info can jump
to new nodes more quickly than it can otherwise.

In addition, if the Texinfo file contains more than about 300,000 bytes, texinfo-format-
buffer and makeinfo split the large Info file into shorter indirect subfiles of about 300,000 bytes
each. Big files are split into smaller files so that Emacs does not need to make a large buffer to
hold the whole of a large Info file; instead, Emacs allocates just enough memory for the small,
split-off file that is needed at the time. This way, Emacs avoids wasting memory when you run
Info. (Before splitting was implemented, Info files were always kept short and include files were
designed as a way to create a single, large printed manual out of the smaller Info files. See
Chapter 18 [Include Files], page 140, for more information. Include files are still used for very
large documents, such as The Emacs Lisp Reference Manual, in which each chapter is a separate
file.)

When a file is split, Info itself makes use of a shortened version of the original file that
contains just the tag table and references to the files that were split off. The split-off files are
called indirect files.

The split-off files have names that are created by appending ‘-1’, ‘-2’, ‘-3’ and so on to the
file name specified by the @setfilename command. The shortened version of the original file
continues to have the name specified by @setfilename.

At one stage in writing this document, for example, the Info file was saved as the file
test-texinfo and that file looked like this:

Info file: test-texinfo, -*-Text-*-

produced by texinfo-format-buffer

from file: new-texinfo-manual.texinfo

^_

Indirect:

test-texinfo-1: 102

test-texinfo-2: 50422

test-texinfo-3: 101300

^_^L

Tag table:

(Indirect)

Node: overview^?104

Node: info file^?1271

Node: printed manual^?4853

Node: conventions^?6855

...

(But test-texinfo had far more nodes than are shown here.) Each of the split-off, indirect
files, test-texinfo-1, test-texinfo-2, and test-texinfo-3, is listed in this file after the line
that says ‘Indirect:’. The tag table is listed after the line that says ‘Tag table:’.

In the list of indirect files, the number following the file name records the cumulative number
of bytes in the preceding indirect files, not counting the file list itself, the tag table, or any



Chapter 21: Creating and Installing Info Files 178

permissions text in the first file. In the tag table, the number following the node name records
the location of the beginning of the node, in bytes from the beginning of the (unsplit) output.

If you are using texinfo-format-buffer to create Info files, you may want to run the
Info-validate command. (The makeinfo command does such a good job on its own, you
do not need Info-validate.) However, you cannot run the M-x Info-validate node-checking
command on indirect files. For information on how to prevent files from being split and how to
validate the structure of the nodes, see Section F.6.1 [Using Info-validate], page 243.

21.2 Installing an Info File

Info files are usually kept in the info directory. You can read Info files using the standalone
Info program or the Info reader built into Emacs. (See Info, for an introduction to Info.)

21.2.1 The Directory File dir

For Info to work, the info directory must contain a file that serves as a top level directory for
the Info system. By convention, this file is called dir. (You can find the location of this file
within Emacs by typing C-h i to enter Info and then typing C-x C-f to see the pathname to
the info directory.)

The dir file is itself an Info file. It contains the top level menu for all the Info files in the
system. The menu looks like this:

* Menu:

* Info: (info). Documentation browsing system.

* Emacs: (emacs). The extensible, self-documenting

text editor.

* Texinfo: (texinfo). With one source file, make

either a printed manual using

@TeX{} or an Info file.

...

Each of these menu entries points to the ‘Top’ node of the Info file that is named in paren-
theses. (The menu entry does not need to specify the ‘Top’ node, since Info goes to the ‘Top’
node if no node name is mentioned. See Section 4.9.6 [Nodes in Other Info Files], page 35.)

Thus, the ‘Info’ entry points to the ‘Top’ node of the info file and the ‘Emacs’ entry points
to the ‘Top’ node of the emacs file.

In each of the Info files, the ‘Up’ pointer of the ‘Top’ node refers back to the dir file. For
example, the line for the ‘Top’ node of the Emacs manual looks like this in Info:

File: emacs Node: Top, Up: (DIR), Next: Distrib

In this case, the dir file name is written in uppercase letters—it can be written in either upper-
or lowercase. This is not true in general, it is a special case for dir.

21.2.2 Listing a New Info File

To add a new Info file to your system, you must write a menu entry to add to the menu in the
dir file in the info directory. For example, if you were adding documentation for GDB, you
would write the following new entry:

* GDB: (gdb). The source-level C debugger.

The first part of the menu entry is the menu entry name, followed by a colon. The second part is
the name of the Info file, in parentheses, followed by a period. The third part is the description.

The name of an Info file often has a .info extension. Thus, the Info file for GDB might be
called either gdb or gdb.info. The Info reader programs automatically try the file name both



Chapter 21: Creating and Installing Info Files 179

with and without .info1; so it is better to avoid clutter and not to write ‘.info’ explicitly in
the menu entry. For example, the GDB menu entry should use just ‘gdb’ for the file name, not
‘gdb.info’.

21.2.3 Info Files in Other Directories

If an Info file is not in the info directory, there are three ways to specify its location:

1. Write the pathname in the dir file as the second part of the menu.

2. Specify the Info directory name in the INFOPATH environment variable in your .profile or
.cshrc initialization file. (Only you and others who set this environment variable will be
able to find Info files whose location is specified this way.)

3. If you are using Emacs, list the name of the file in a second dir file, in its directory; and
then add the name of that directory to the Info-directory-list variable in your personal
or site initialization file.

This variable tells Emacs where to look for dir files (the files must be named dir). Emacs
merges the files named dir from each of the listed directories. (In Emacs version 18, you
can set the Info-directory variable to the name of only one directory.)

For example, to reach a test file in the /home/bob/info directory, you could add an entry
like this to the menu in the standard dir file:

* Test: (/home/bob/info/info-test). Bob's own test file.

In this case, the absolute file name of the info-test file is written as the second part of the
menu entry.

If you don’t want to edit the system dir file, you can tell Info where to look by setting the
INFOPATH environment variable in your shell startup file. This works with both the Emacs and
standalone Info readers.

Specifically, if you use a Bourne-compatible shell such as sh or bash for your shell command
interpreter, you set the INFOPATH environment variable in the .profile initialization file; but
if you use csh or tcsh, you set the variable in the .cshrc initialization file. On MS-DOS/MS-
Windows systems, you must set INFOPATH in your autoexec.bat file or in the registry. Each
type of shell uses a different syntax.

• In a .cshrc file, you could set the INFOPATH variable as follows:
setenv INFOPATH .:~/info:/usr/local/emacs/info

• In a .profile file, you would achieve the same effect by writing:
INFOPATH=.:$HOME/info:/usr/local/emacs/info

export INFOPATH

• In a autoexec.bat file, you write this command (note the use of ‘;’ as the directory sepa-
rator, and a different syntax for using values of other environment variables):

set INFOPATH=.;%HOME%/info;c:/usr/local/emacs/info

The ‘.’ indicates the current directory as usual. Emacs uses the INFOPATH environment variable
to initialize the value of Emacs’s own Info-directory-list variable. The standalone Info
reader merges any files named dir in any directory listed in the INFOPATH variable into a single
menu presented to you in the node called ‘(dir)Top’.

However you set INFOPATH, if its last character is a colon (on MS-DOS/MS-Windows systems,
use a semicolon instead), this is replaced by the default (compiled-in) path. This gives you a
way to augment the default path with new directories without having to list all the standard
places. For example (using sh syntax):

INFOPATH=/home/bob/info:

1 On MS-DOS/MS-Windows systems, Info will try the .inf extension as well.



Chapter 21: Creating and Installing Info Files 180

export INFOPATH

will search /home/bob/info first, then the standard directories. Leading or doubled colons are
not treated specially.

When you create your own dir file for use with Info-directory-list or INFOPATH, it’s
easiest to start by copying an existing dir file and replace all the text after the ‘* Menu:’ with
your desired entries. That way, the punctuation and special CTRL-_ characters that Info needs
will be present.

As one final alternative, which works only with Emacs Info, you can change the
Info-directory-list variable. For example:

(add-hook 'Info-mode-hook '(lambda ()

(add-to-list 'Info-directory-list

(expand-file-name "~/info"))))

21.2.4 Installing Info Directory Files

When you install an Info file onto your system, you can use the program install-info to
update the Info directory file dir. Normally the makefile for the package runs install-info,
just after copying the Info file into its proper installed location.

In order for the Info file to work with install-info, you include the commands
@dircategory and @direntry. . .@end direntry in the Texinfo source file. Use @direntry to
specify the menu entries to add to the Info directory file, and use @dircategory to specify
which part of the Info directory to put it in. Here is how these commands are used in this
manual:

@dircategory Texinfo documentation system

@direntry

* Texinfo: (texinfo). The GNU documentation format.

* install-info: (texinfo)Invoking install-info. ...

...

@end direntry

Here’s what this produces in the Info file:
INFO-DIR-SECTION Texinfo documentation system

START-INFO-DIR-ENTRY

* Texinfo: (texinfo). The GNU documentation format.

* install-info: (texinfo)Invoking install-info. ...

...

END-INFO-DIR-ENTRY

The install-info program sees these lines in the Info file, and that is how it knows what to
do.

Always use the @direntry and @dircategory commands near the beginning of the Texinfo
input, before the first @node command. If you use them later on in the input, install-info
will not notice them.

install-info will automatically reformat the description of the menu entries it is adding.
As a matter of convention, the description of the main entry (above, ‘The GNU documentation

format’) should start at column 32, starting at zero (as in what-cursor-position in Emacs).
This will make it align with most others. Description for individual utilities best start in column
48, where possible. For more information about formatting see the ‘--calign’, ‘--align’, and
‘--max-width’ options in Section 21.2.5 [Invoking install-info], page 181.

If you use @dircategory more than once in the Texinfo source, each usage specifies the
‘current’ category; any subsequent @direntry commands will add to that category.

When choosing a category name for the @dircategory command, we recommend consult-
ing the Free Software Directory (http://www.gnu.org/directory). If your program is not
listed there, or listed incorrectly or incompletely, please report the situation to the directory
maintainers (http://directory.fsf.org) so that the category names can be kept in sync.

http://www.gnu.org/directory
http://directory.fsf.org


Chapter 21: Creating and Installing Info Files 181

Here are a few examples (see the util/dir-example file in the Texinfo distribution for large
sample dir file):

Emacs
Localization
Printing
Software development
Software libraries
Text creation and manipulation

Each ‘Invoking’ node for every program installed should have a corresponding @direntry.
This lets users easily find the documentation for the different programs they can run, as with
the traditional man system.

21.2.5 Invoking install-info

install-info inserts menu entries from an Info file into the top-level dir file in the Info system
(see the previous sections for an explanation of how the dir file works). install-info also
removes menu entries from the dir file. It’s most often run as part of software installation, or
when constructing a dir file for all manuals on a system. Synopsis:

install-info [option...] [info-file [dir-file]]

If info-file or dir-file are not specified, the options (described below) that define them must
be. There are no compile-time defaults, and standard input is never used. install-info can
read only one Info file and write only one dir file per invocation.

If dir-file (however specified) does not exist, install-info creates it if possible (with no
entries).

If any input file is compressed with gzip (see Gzip), install-info automatically uncom-
presses it for reading. And if dir-file is compressed, install-info also automatically leaves it
compressed after writing any changes. If dir-file itself does not exist, install-info tries to
open dir-file.gz, dir-file.xz, dir-file.bz2, dir-file.lz, and dir-file.lzma, in that
order.

Options:

--add-once

Specifies that the entry or entries will only be put into a single section.

--align=column

Specifies the column that the second and subsequent lines of menu entry’s description
will be formatted to begin at. The default for this option is ‘35’. It is used in
conjunction with the ‘--max-width’ option. column starts counting at 1.

--append-new-sections

Instead of alphabetizing new sections, place them at the end of the DIR file.

--calign=column

Specifies the column that the first line of menu entry’s description will be formatted
to begin at. The default for this option is ‘33’. It is used in conjunction with the
‘--max-width’ option. When the name of the menu entry exceeds this column,
entry’s description will start on the following line. column starts counting at 1.

--debug Report what is being done.

--delete Delete the entries in info-file from dir-file. The file name in the entry in dir-file
must be info-file (except for an optional ‘.info’ in either one). Don’t insert any
new entries. Any empty sections that result from the removal are also removed.



Chapter 21: Creating and Installing Info Files 182

--description=text

Specify the explanatory portion of the menu entry. If you don’t specify a description
(either via ‘--entry’, ‘--item’ or this option), the description is taken from the Info
file itself.

--dir-file=name

Specify file name of the Info directory file. This is equivalent to using the dir-file
argument.

--dry-run

Same as ‘--test’.

--entry=text

Insert text as an Info directory entry; text should have the form of an Info menu
item line plus zero or more extra lines starting with whitespace. If you specify
more than one entry, they are all added. If you don’t specify any entries, they are
determined from information in the Info file itself.

--help Display a usage message with basic usage and all available options, then exit suc-
cessfully.

--info-file=file

Specify Info file to install in the directory. This is equivalent to using the info-file
argument.

--info-dir=dir

Specify the directory where the directory file dir resides. Equivalent to
‘--dir-file=dir/dir’.

--infodir=dir

Same as ‘--info-dir’.

--item=text

Same as ‘--entry=text’. An Info directory entry is actually a menu item.

--keep-old

Do not replace pre-existing menu entries. When ‘--remove’ is specified, this option
means that empty sections are not removed.

--max-width=column

Specifies the column that the menu entry’s description will be word-wrapped at.
column starts counting at 1.

--maxwidth=column

Same as ‘--max-width’.

--menuentry=text

Same as ‘--name’.

--name=text

Specify the name portion of the menu entry. If the text does not start with an
asterisk ‘*’, it is presumed to be the text after the ‘*’ and before the parentheses
that specify the Info file. Otherwise text is taken verbatim, and is taken as defining
the text up to and including the first period (a space is appended if necessary). If
you don’t specify the name (either via ‘--entry’, ‘--item’ or this option), it is taken
from the Info file itself. If the Info does not contain the name, the basename of the
Info file is used.

--no-indent

Suppress formatting of new entries into the dir file.



Chapter 21: Creating and Installing Info Files 183

--quiet

--silent Suppress warnings, etc., for silent operation.

--remove Same as ‘--delete’.

--remove-exactly

Also like ‘--delete’, but only entries if the Info file name matches exactly; .info
and/or .gz suffixes are not ignored.

--section=sec

Put this file’s entries in section sec of the directory. If you specify more than one
section, all the entries are added in each of the sections. If you don’t specify any
sections, they are determined from information in the Info file itself. If the Info file
doesn’t specify a section, the menu entries are put into the Miscellaneous section.

--section regex sec

Same as ‘--regex=regex --section=sec --add-once’.

install-info tries to detect when this alternate syntax is used, but does not always
guess correctly. Here is the heuristic that install-info uses:

1. If the second argument to --section starts with a hyphen, the original syntax
is presumed.

2. If the second argument to --section is a file that can be opened, the original
syntax is presumed.

3. Otherwise the alternate syntax is used.

When the heuristic fails because your section title starts with a hyphen, or it
happens to be a filename that can be opened, the syntax should be changed to
‘--regex=regex --section=sec --add-once’.

--regex=regex

Put this file’s entries into any section that matches regex. If more than one section
matches, all of the entries are added in each of the sections. Specify regex using
basic regular expression syntax, more or less as used with grep, for example.

--test Suppress updating of the directory file.

--version

Display version information and exit successfully.



184

22 Generating HTML

makeinfo generates Info output by default, but given the --html option, it will generate HTML,
for web browsers and other programs. This chapter gives some details on such HTML output.

makeinfo has many user-definable customization variables with which you can influence the
HTML output. See Section 20.6 [Customization Variables], page 162.

makeinfo can also produce output in XML and Docbook formats, but we do not as yet
describe these in detail. See Section 1.2 [Output Formats], page 3, for a brief overview of all the
output formats.

22.1 HTML Translation

First, the HTML generated by makeinfo is standard HTML 4. When first written, it also tried
to be compatible with earlier standards (e.g., HTML 2.0, RFC-1866).

Please report output from an error-free run of makeinfo which has practical browser porta-
bility problems as a bug (see Section 1.1 [Reporting Bugs], page 2).

Some known exceptions to HTML 3.2 (using ‘--init-file=html32.pm’ produced strict
HTML 3.2 output, but this has not been tested lately; see Section 20.2 [Invoking texi2any],
page 154):

1. HTML 3.2 tables are generated for the @multitable command (see Section 9.5 [Multi-
column Tables], page 76), but they should degrade reasonably in browsers without table
support.

2. The HTML 4 ‘id’ attribute is used.

3. The HTML 4 ‘lang’ attribute on the ‘<html>’ attribute is used.

4. Entities that are not in the HTML 3.2 standard are also used.

5. CSS is used (see Section 22.3 [HTML CSS], page 185).

6. Some HTML 4 elements are used: span, thead, abbr, acronym.

To achieve maximum portability and accessibility among browsers (both graphical and text-
based), systems, and users, the HTML output is intentionally quite plain and generic. It has
always been our goal for users to be able to customize the output to their wishes via CSS (see
Section 22.3 [HTML CSS], page 185) or other means (see Section 20.6 [Customization Variables],
page 162). If you cannot accomplish a reasonable customization, feel free to report that.

However, we do not wish to depart from our basic goal of widest readability for the core
output. For example, using fancy CSS may make it possible for the HTML output to more
closely resemble the TEX output in some details, but this result is not even close to being worth
the ensuing difficulties.

It is also intentionally not our goal, and not even possible, to pass through every conceivable
validation test without any diagnostics. Different validation tests have different goals, often
about pedantic enforcement of some standard or another. Our overriding goal is to help users,
not blindly comply with standards.

To repeat what was said at the top: please report output from an error-free run of makeinfo
which has practical browser portability problems as a bug (see Section 1.1 [Reporting Bugs],
page 2).

A few other general points about the HTML output follow.

Navigation bar: By default, a navigation bar is inserted at the start of each node, analogous
to Info output. If the ‘--no-headers’ option is used, the navigation bar is only inserted at the
beginning of split files. Header <link> elements in split output can support Info-like navigation
with browsers like Lynx and Emacs W3 which implement this HTML 1.0 feature.



Chapter 22: Generating HTML 185

Footnotes: for HTML, when the footnote style is ‘end’, or if the output is not split, footnotes
are put at the end of the output. If the footnote style is set to ‘separate’, and the output is
split, they are placed in a separate file. See Section 10.3.2 [Footnote Styles], page 82.

Raw HTML: makeinfo will include segments of Texinfo source between @ifhtml and @end

ifhtml in the HTML output (but not any of the other conditionals, by default). Source between
@html and @end html is passed without change to the output (i.e., suppressing the normal
escaping of input ‘<’, ‘>’ and ‘&’ characters which have special significance in HTML). See
Section 16.1 [Conditional Commands], page 122.

22.2 HTML Splitting

When splitting output at nodes (which is the default), makeinfo writes HTML output into
(basically) one output file per Texinfo source @node.

Each output file name is the node name with spaces replaced by ‘-’’s and special characters
changed to ‘_’ followed by their code point in hex (see Section 22.4 [HTML Xref], page 187).
This is to make it portable and easy to use as a filename. In the unusual case of two different
nodes having the same name after this treatment, they are written consecutively to the same
file, with HTML anchors so each can be referred to independently.

If makeinfo is run on a system which does not distinguish case in file names, nodes which
are the same except for case (e.g., ‘index’ and ‘Index’) will also be folded into the same output
file with anchors. You can also pretend to be on a case insensitive filesystem by setting the
customization variable CASE_INSENSITIVE_FILENAMES.

It is also possible to split at chapters or sections with --split (see Section 20.2 [Invoking
texi2any], page 154). In that case, the file names are constructed after the name of the node
associated with the relevant sectioning command. Also, unless --no-node-files is specified,
a redirection file is output for every node in order to more reliably support cross-references to
that manual (see Section 22.4 [HTML Xref], page 187).

When splitting, the HTML output files are written into a subdirectory, with the name chosen
as follows:

1. makeinfo first tries the subdirectory with the base name from @setfilename (that is, any
extension is removed). For example, HTML output for @setfilename gcc.info would be
written into a subdirectory named ‘gcc/’.

2. If that directory cannot be created for any reason, then makeinfo tries appending ‘.html’
to the directory name. For example, output for @setfilename texinfo would be written
to ‘texinfo.html/’.

3. If the ‘name.html’ directory can’t be created either, makeinfo gives up.

In any case, the top-level output file within the directory is always named ‘index.html’.

Monolithic output (--no-split) is named according to @setfilename (with any ‘.info’
extension is replaced with ‘.html’), --output (the argument is used literally), or based on the
input file name as a last resort (see Section 3.2.3 [@setfilename], page 15).

22.3 HTML CSS

Cascading Style Sheets (CSS for short) is an Internet standard for influencing the display of
HTML documents: see http://www.w3.org/Style/CSS/.

By default, makeinfo includes a few simple CSS commands to better implement the appear-
ance of some Texinfo environments. Here are two of them, as an example:

pre.display { font-family:inherit }

pre.smalldisplay { font-family:inherit; font-size:smaller }

http://www.w3.org/Style/CSS/


Chapter 22: Generating HTML 186

A full explanation of CSS is (far) beyond this manual; please see the reference above. In
brief, however, the above tells the web browser to use a ‘smaller’ font size for @smalldisplay

text, and to use the same font as the main document for both @smalldisplay and @display.
By default, the HTML ‘<pre>’ command uses a monospaced font.

You can influence the CSS in the HTML output with two makeinfo options: --css-

include=file and --css-ref=url.

The option --css-ref=url adds to each output HTML file a ‘<link>’ tag referencing
a CSS at the given url. This allows using external style sheets. You may find the file
texi2html/examples/texinfo-bright-colors.css useful for visualizing the CSS elements in
Texinfo output.

The option --css-include=file includes the contents file in the HTML output, as you
might expect. However, the details are somewhat tricky, as described in the following, to provide
maximum flexibility.

The CSS file may begin with so-called ‘@import’ directives, which link to external CSS
specifications for browsers to use when interpreting the document. Again, a full description is
beyond our scope here, but we’ll describe how they work syntactically, so we can explain how
makeinfo handles them.

There can be more than one ‘@import’, but they have to come first in the file, with only white-
space and comments interspersed, no normal definitions. (Technical exception: a ‘@charset’
directive may precede the ‘@import’’s. This does not alter makeinfo’s behavior, it just copies
the ‘@charset’ if present.) Comments in CSS files are delimited by ‘/* ... */’, as in C. An
‘@import’ directive must be in one of these two forms:

@import url(http://example.org/foo.css);

@import "http://example.net/bar.css";

As far as makeinfo is concerned, the crucial characters are the ‘@’ at the beginning and
the semicolon terminating the directive. When reading the CSS file, it simply copies any such
‘@’-directive into the output, as follows:

• If file contains only normal CSS declarations, it is included after makeinfo’s default CSS,
thus overriding it.

• If file begins with ‘@import’ specifications (see below), then the ‘import’’s are included first
(they have to come first, according to the standard), and then makeinfo’s default CSS is
included. If you need to override makeinfo’s defaults from an ‘@import’, you can do so
with the ‘! important’ CSS construct, as in:

pre.smallexample { font-size: inherit ! important }

• If file contains both ‘@import’ and inline CSS specifications, the ‘@import’’s are included
first, then makeinfo’s defaults, and lastly the inline CSS from file.

• Any @-directive other than ‘@import’ and ‘@charset’ is treated as a CSS declaration,
meaning makeinfo includes its default CSS and then the rest of the file.

If the CSS file is malformed or erroneous, makeinfo’s output is unspecified. makeinfo does
not try to interpret the meaning of the CSS file in any way; it just looks for the special ‘@’ and
‘;’ characters and blindly copies the text into the output. Comments in the CSS file may or
may not be included in the output.

In addition to the possibilities offered by CSS, makeinfo has many user-definable customiza-
tion variables with which you can influence the HTML output. See Section 20.6 [Customization
Variables], page 162.



Chapter 22: Generating HTML 187

22.4 HTML Cross-references

Cross-references between Texinfo manuals in HTML format become, in the end, a standard
HTML <a> link, but the details are unfortunately complex. This section describes the algorithm
used in detail, so that Texinfo can cooperate with other programs, such as texi2html, by writing
mutually compatible HTML files.

This algorithm may or may not be used for links within HTML output for a Texinfo file.
Since no issues of compatibility arise in such cases, we do not need to specify this.

We try to support references to such “external” manuals in both monolithic and split forms.
A monolithic (mono) manual is entirely contained in one file, and a split manual has a file for
each node. (See Section 22.2 [HTML Splitting], page 185.)

The algorithm was primarily devised by Patrice Dumas in 2003–04.

22.4.1 HTML Cross-reference Link Basics

For our purposes, an HTML link consists of four components: a host name, a directory part, a
file part, and a target part. We always assume the http protocol. For example:

http://host/dir/file.html#target

The information to construct a link comes from the node name and manual name in the
cross-reference command in the Texinfo source (see Chapter 6 [Cross References], page 43), and
from external information (see Section 22.4.6 [HTML Xref Configuration], page 191).

We now consider each part in turn.

The host is hardwired to be the local host. This could either be the literal string ‘localhost’,
or, according to the rules for HTML links, the ‘http://localhost/’ could be omitted entirely.

The dir and file parts are more complicated, and depend on the relative split/mono nature
of both the manual being processed and the manual that the cross-reference refers to. The
underlying idea is that there is one directory for Texinfo manuals in HTML, and a given manual
is either available as a monolithic file manual.html, or a split subdirectory manual/*.html.
Here are the cases:

• If the present manual is split, and the referent manual is also split, the directory is
‘../referent/’ and the file is the expanded node name (described later).

• If the present manual is split, and the referent manual is mono, the directory is ‘../’ and
the file is referent.html.

• If the present manual is mono, and the referent manual is split, the directory is referent/
and the file is the expanded node name.

• If the present manual is mono, and the referent manual is also mono, the directory is ./

(or just the empty string), and the file is referent.html.

Another rule, that only holds for filenames, is that base filenames are truncated to 245
characters, to allow for an extension to be appended and still comply with the 255-character
limit which is common to many filesystems. Although technically this can be changed with the
BASEFILENAME_LENGTH customization variable (see Section 20.6.5 [Other Customization Vari-
ables], page 168), doing so would make cross-manual references to such nodes invalid.

Any directory part in the filename argument of the source cross reference command is ignored.
Thus, @xref{,,,../foo} and @xref{,,,foo} both use ‘foo’ as the manual name. This is
because any such attempted hardwiring of the directory is very unlikely to be useful for both
Info and HTML output.

Finally, the target part is always the expanded node name.

Whether the present manual is split or mono is determined by user option; makeinfo defaults
to split, with the --no-split option overriding this.



Chapter 22: Generating HTML 188

Whether the referent manual is split or mono, however, is another bit of the external infor-
mation (see Section 22.4.6 [HTML Xref Configuration], page 191). By default, makeinfo uses
the same form of the referent manual as the present manual.

Thus, there can be a mismatch between the format of the referent manual that the generating
software assumes, and the format it’s actually present in. See Section 22.4.5 [HTML Xref
Mismatch], page 191.

22.4.2 HTML Cross-reference Node Name Expansion

As mentioned in the previous section, the key part of the HTML cross reference algorithm is the
conversion of node names in the Texinfo source into strings suitable for XHTML identifiers and
filenames. The restrictions are similar for each: plain ASCII letters, numbers, and the ‘-’ and
‘_’ characters are all that can be used. (Although HTML anchors can contain most characters,
XHTML is more restrictive.)

Cross-references in Texinfo can refer either to nodes or anchors (see Section 6.8 [@anchor],
page 49). However, anchors are treated identically to nodes in this context, so we’ll continue to
say “node” names for simplicity.

A special exception: the Top node (see Section 3.6 [The Top Node], page 21) is always
mapped to the file index.html, to match web server software. However, the HTML target is
‘Top’. Thus (in the split case):

@xref{Top,,, emacs, The GNU Emacs Manual}.

⇒ <a href="emacs/index.html#Top">

1. The standard ASCII letters (a-z and A-Z) are not modified. All other characters may be
changed as specified below.

2. The standard ASCII numbers (0-9) are not modified except when a number is the first
character of the node name. In that case, see below.

3. Multiple consecutive space, tab and newline characters are transformed into just one space.
(It’s not possible to have newlines in node names with the current implementation, but we
specify it anyway, just in case.)

4. Leading and trailing spaces are removed.

5. After the above has been applied, each remaining space character is converted into a ‘-’
character.

6. Other ASCII 7-bit characters are transformed into ‘_00xx’, where xx is the ASCII character
code in (lowercase) hexadecimal. This includes ‘_’, which is mapped to ‘_005f’.

7. If the node name does not begin with a letter, the literal string ‘g_t’ is prefixed to the result.
(Due to the rules above, that string can never occur otherwise; it is an arbitrary choice,
standing for “GNU Texinfo”.) This is necessary because XHTML requires that identifiers
begin with a letter.

For example:

@node A node --- with _'%

⇒ A-node-_002d_002d_002d-with-_005f_0027_0025

Example translations of common characters:

• ‘_’ ⇒ ‘_005f’

• ‘-’ ⇒ ‘_002d’

• ‘A node’ ⇒ ‘A-node’

On case-folding computer systems, nodes differing only by case will be mapped to the same
file. In particular, as mentioned above, Top always maps to the file index.html. Thus, on
a case-folding system, Top and a node named ‘Index’ will both be written to index.html.



Chapter 22: Generating HTML 189

Fortunately, the targets serve to distinguish these cases, since HTML target names are always
case-sensitive, independent of operating system.

22.4.3 HTML Cross-reference Command Expansion

Node names may contain @-commands (see Section 4.4 [Node Line Requirements], page 29).
This section describes how they are handled.

First, comments are removed.

Next, any @value commands (see Section 16.5.1 [@set @value], page 126) and macro invo-
cations (see Section 17.2 [Invoking Macros], page 132) are fully expanded.

Then, for the following commands, the command name and braces are removed, and the text
of the argument is recursively transformed:

@asis @b @cite @code @command @dfn @dmn @dotless

@emph @env @file @i @indicateurl @kbd @key

@samp @sansserif @sc @slanted @strong @sub @sup

@t @U @var @verb @w

For @sc, any letters are capitalized.

In addition, the following commands are replaced by constant text, as shown below. If any
of these commands have non-empty arguments, as in @TeX{bad}, it is an error, and the result
is unspecified. In this table, ‘(space)’ means a space character and ‘(nothing)’ means the empty
string. The notation ‘U+hhhh’ means Unicode code point hhhh (in hex, as usual).

There are further transformations of many of these expansions to yield the final file or other
target name, such as space characters to ‘-’, etc., according to the other rules.

@(newline) (space)
@(space) (space)
@(tab) (space)
@! ‘!’
@* (space)
@- (nothing)
@. ‘.’
@: (nothing)
@? ‘?’
@@ ‘@’
@{ ‘{’
@} ‘}’
@LaTeX ‘LaTeX’
@TeX ‘TeX’
@arrow U+2192
@bullet U+2022
@comma ‘,’
@copyright U+00A9
@dots U+2026
@enddots ‘...’
@equiv U+2261
@error ‘error-->’
@euro U+20AC
@exclamdown U+00A1
@expansion U+21A6
@geq U+2265
@leq U+2264
@minus U+2212



Chapter 22: Generating HTML 190

@ordf U+00AA
@ordm U+00BA
@point U+2605
@pounds U+00A3
@print U+22A3
@questiondown U+00BF
@registeredsymbol U+00AE
@result U+21D2
@textdegree U+00B0
@tie (space)

Quotation mark @-commands (@quotedblright{} and the like), are likewise replaced by
their Unicode values. Normal quotation characters (e.g., ASCII ‘ and ’) are not altered. See
Section 12.5 [Inserting Quotation Marks], page 96.

Any @acronym, @abbr, @email, and @image commands are replaced by their first argu-
ment. (For these commands, all subsequent arguments are optional, and ignored here.) See
Section 7.1.14 [@acronym], page 59, and Section 7.1.16 [@email], page 60, and Section 10.2
[Images], page 80.

Accents are handled according to the next section.

Any other command is an error, and the result is unspecified.

22.4.4 HTML Cross-reference 8-bit Character Expansion

Usually, characters other than plain 7-bit ASCII are transformed into the corresponding Unicode
code point(s) in Normalization Form C, which uses precomposed characters where available.
(This is the normalization form recommended by the W3C and other bodies.) This holds when
that code point is 0xffff or less, as it almost always is.

These will then be further transformed by the rules above into the string ‘_hhhh’, where hhhh
is the code point in hex.

For example, combining this rule and the previous section:

@node @b{A} @TeX{} @u{B} @point{}@enddots{}

⇒ A-TeX-B_0306-_2605_002e_002e_002e

Notice: 1) @enddots expands to three periods which in turn expands to three ‘_002e’’s;
2) @u{B} is a ‘B’ with a breve accent, which does not exist as a pre-accented Unicode character,
therefore expands to ‘B_0306’ (B with combining breve).

When the Unicode code point is above 0xffff, the transformation is ‘__xxxxxx’, that is, two
leading underscores followed by six hex digits. Since Unicode has declared that their highest
code point is 0x10ffff, this is sufficient. (We felt it was better to define this extra escape than
to always use six hex digits, since the first two would nearly always be zeros.)

This method works fine if the node name consists mostly of ASCII characters and contains
only few 8-bit ones. But if the document is written in a language whose script is not based on
the Latin alphabet (for example, Ukrainian), it will create file names consisting almost entirely
of ‘_xxxx’ notations, which is inconvenient and all but unreadable. To handle such cases,
makeinfo offers the --transliterate-file-names command line option. This option enables
transliteration of node names into ASCII characters for the purposes of file name creation and
referencing. The transliteration is based on phonetic principles, which makes the generated file
names more easily understanable.

For the definition of Unicode Normalization Form C, see Unicode report UAX#15, http://
www.unicode.org/reports/tr15/. Many related documents and implementations are available
elsewhere on the web.

http://www.unicode.org/reports/tr15/
http://www.unicode.org/reports/tr15/


Chapter 22: Generating HTML 191

22.4.5 HTML Cross-reference Mismatch

As mentioned earlier (see Section 22.4.1 [HTML Xref Link Basics], page 187), the generating
software may need to guess whether a given manual being cross referenced is available in split
or monolithic form—and, inevitably, it might guess wrong. However, when the referent manual
is generated, it is possible to handle at least some mismatches.

In the case where we assume the referent is split, but it is actually available in mono, the
only recourse would be to generate a manual/ subdirectory full of HTML files which redirect
back to the monolithic manual.html. Since this is essentially the same as a split manual in the
first place, it’s not very appealing.

On the other hand, in the case where we assume the referent is mono, but it is actually
available in split, it is possible to use JavaScript to redirect from the putatively monolithic
manual.html to the different manual/node.html files. Here’s an example:

function redirect() {

switch (location.hash) {

case "#Node1":

location.replace("manual/Node1.html#Node1"); break;

case "#Node2" :

location.replace("manual/Node2.html#Node2"); break;

...

default:;

}

}

Then, in the <body> tag of manual.html:

<body onLoad="redirect();">

Once again, this is something the software which generated the referent manual has to do
in advance, it’s not something the software generating the cross-reference in the present manual
can control.

22.4.6 HTML Cross-reference Configuration: htmlxref.cnf

makeinfo reads a file named htmlxref.cnf to gather information for cross-references to other
manuals in HTML output. It is looked for in the following directories:

./ (the current directory)

./.texinfo/

(under the current directory)

~/.texinfo/

(where ~ is the current user’s home directory)

sysconfdir/texinfo/

(where sysconfdir is the system configuration directory specified at compile-time,
e.g., /usr/local/etc)

datadir/texinfo/

(likewise specified at compile time, e.g., /usr/local/share)

All files found are used, with earlier entries overriding later ones. The Texinfo distribution
includes a default file which handles many GNU manuals; it is installed in the last of the above
directories, i.e., datadir/texinfo/htmlxref.cnf.

The file is line-oriented. Lines consisting only of whitespace are ignored. Comments are
indicated with a ‘#’ at the beginning of a line, optionally preceded by whitespace. Since ‘#’ can
occur in urls (like almost any character), it does not otherwise start a comment.



Chapter 22: Generating HTML 192

Each non-blank non-comment line must be either a variable assignment or manual informa-
tion.

A variable assignment line looks like this:

varname = varvalue

Whitespace around the ‘=’ is optional and ignored. The varname should consist of letters;
case is significant. The varvalue is an arbitrary string, continuing to the end of the line. Variables
are then referenced with ‘${varname}’; variable references can occur in the varvalue.

A manual information line looks like this:

manual keyword urlprefix

with manual the short identifier for a manual, keyword being one of: mono, node, section,
chapter, and urlprefix described below. Variable references can occur only in the urlprefix. For
example (used in the canonical htmlxref.cnf):

G = http://www.gnu.org

GS = ${G}/software

hello mono ${GS}/hello/manual/hello.html

hello chapter ${GS}/hello/manual/html_chapter/

hello section ${GS}/hello/manual/html_section/

hello node ${GS}/hello/manual/html_node/

If the keyword is mono, urlprefix gives the host, directory, and file name for manual as one
monolithic file.

If the keyword is node, section, or chapter, urlprefix gives the host and directory for manual
split into nodes, sections, or chapters, respectively.

When available, makeinfo will use the “corresponding” value for cross-references between
manuals. That is, when generating monolithic output (--no-split), the mono url will be used,
when generating output that is split by node, the node url will be used, etc. However, if a
manual is not available in that form, anything that is available can be used. Here is the search
order for each style:

node ⇒ node, section, chapter, mono

section ⇒ section, chapter, node, mono

chapter ⇒ chapter, section, node, mono

mono ⇒ mono, chapter, section, node

These section- and chapter-level cross-manual references can succeed only when the target
manual was created using --node-files; this is the default for split output.

If you have additions or corrections to the htmlxref.cnf distributed with Texinfo, please
email bug-texinfo@gnu.org as usual. You can get the latest version from http://ftpmirror.

gnu.org/texinfo/htmlxref.cnf.

mailto:bug-texinfo@gnu.org
http://ftpmirror.gnu.org/texinfo/htmlxref.cnf
http://ftpmirror.gnu.org/texinfo/htmlxref.cnf


193

Appendix A @-Command Details

Here are the details of @-commands: information about their syntax, a list of commands, and
information about where commands can appear.

A.1 @-Command Syntax

Texinfo has the following types of @-command:

1. Brace commands
These commands start with @ followed by a letter or a word, followed by an ar-
gument within braces. For example, the command @dfn indicates the introductory
or defining use of a term; it is used as follows: ‘In Texinfo, @@-commands are

@dfn{mark-up} commands.’

2. Line commands
These commands occupy an entire line. The line starts with @, followed by the
name of the command (a word); for example, @center or @cindex. If no argument
is needed, the word is followed by the end of the line. If there is an argument, it is
separated from the command name by a space. Braces are not used.

3. Block commands
These commands are written at the start of a line, with general text on following
lines, terminated by a matching @end command on a line of its own. For example,
@example, then the lines of a coding example, then @end example. Some of these
block commands take arguments as line commands do; for example, @enumerate A

opening an environment terminated by @end enumerate. Here ‘A’ is the argument.

4. Symbol insertion commands with no arguments
These commands start with @ followed by a word followed by a left and right-
brace. These commands insert special symbols in the document; they do not take
arguments. Some examples: @dots{} ⇒ ‘...’, @equiv{} ⇒ ‘≡ ’, @TeX{} ⇒ ‘TEX’,
and @bullet{} ⇒ ‘•’.

5. Non-alphabetic commands
The names of commands in all of the above categories consist of alphabetic char-
acters, almost entirely in lower-case. Unlike those, the non-alphabetic commands
commands consist of an @ followed by a punctuation mark or other character that
is not part of the Latin alphabet. Non-alphabetic commands are almost always part
of text within a paragraph. The non-alphabetic commands include @@, @{, @}, @.,
@SPACE, and most of the accent commands.

6. Miscellaneous commands
There are a handful of commands that don’t fit into any of the above categories;
for example, the obsolete command @refill, which is always used at the end of
a paragraph immediately following the final period or other punctuation character.
@refill takes no argument and does not require braces. Likewise, @tab used in a
@multitable block does not take arguments, and is not followed by braces.

Thus, the alphabetic commands fall into classes that have different argument syntaxes. You
cannot tell to which class a command belongs by the appearance of its name, but you can tell by
the command’s meaning: if the command stands for a glyph, it is in class 4 and does not require
an argument; if it makes sense to use the command among other text as part of a paragraph,
the command is in class 1 and must be followed by an argument in braces. The non-alphabetic
commands, such as @:, are exceptions to the rule; they do not need braces.

The purpose of having different syntax for commands is to make Texinfo files easier to read,
and also to help the GNU Emacs paragraph and filling commands work properly.



Appendix A: @-Command Details 194

A.2 @-Command List

Here is an alphabetical list of the @-commands in Texinfo. Square brackets, [ ], indicate
optional arguments; an ellipsis, ‘...’, indicates repeated text.

@whitespace

An @ followed by a space, tab, or newline produces a normal, stretchable, interword
space. See Section 12.3.1 [Multiple Spaces], page 93.

@! Produce an exclamation point that ends a sentence (usually after an end-of-sentence
capital letter). See Section 12.3.3 [Ending a Sentence], page 94.

@"

@' Generate an umlaut or acute accent, respectively, over the next character, as in ö
and ó. See Section 12.4 [Inserting Accents], page 95.

@&

@ampchar{}

Generate an ampersand. See Section 12.1.6 [Inserting an Ampersand], page 91.

@* Force a line break. See Section 13.2 [Line Breaks], page 105.

@,{c} Generate a cedilla accent under c, as in ç. See Section 12.4 [Inserting Accents],
page 95.

@- Insert a discretionary hyphenation point. See Section 13.3 [@- @hyphenation],
page 106.

@. Produce a period that ends a sentence (usually after an end-of-sentence capital
letter). See Section 12.3.3 [Ending a Sentence], page 94.

@/ Produces no output, but allows a line break. See Section 13.2 [Line Breaks],
page 105.

@: Tell TEX to refrain from inserting extra whitespace after an immediately preceding
period, question mark, exclamation mark, or colon, as TEX normally would. See
Section 12.3.2 [Not Ending a Sentence], page 93.

@= Generate a macron (bar) accent over the next character, as in ō. See Section 12.4
[Inserting Accents], page 95.

@? Produce a question mark that ends a sentence (usually after an end-of-sentence
capital letter). See Section 12.3.3 [Ending a Sentence], page 94.

@@

@atchar{}

Insert an at sign, ‘@’. See Section 12.1.1 [Inserting an Atsign], page 90.

@\

@backslashchar{}

Insert a backslash, ‘\’; @backslashchar{} works anywhere, while @\ works only
inside @math. See Section 12.1.4 [Inserting a Backslash], page 91, and Section 12.7
[Inserting Math], page 97.

@^

@` Generate a circumflex (hat) or grave accent, respectively, over the next character,
as in ô and è. See Section 12.4 [Inserting Accents], page 95.

@{

@lbracechar{}

Insert a left brace, ‘{’. See Section 12.1.2 [Inserting Braces], page 90.



Appendix A: @-Command Details 195

@}

@rbracechar{}

Insert a right brace, ‘}’. See Section 12.1.2 [Inserting Braces], page 90.

@~ Generate a tilde accent over the next character, as in ~N. See Section 12.4 [Inserting
Accents], page 95.

@AA{}

@aa{} Generate the uppercase and lowercase Scandinavian A-ring letters, respectively: Å,
å. See Section 12.4 [Inserting Accents], page 95.

@abbr{abbreviation}

Indicate a general abbreviation, such as ‘Comput.’. See Section 7.1.13 [@abbr],
page 59.

@acronym{acronym}

Indicate an acronym in all capital letters, such as ‘NASA’. See Section 7.1.14
[@acronym], page 59.

@AE{}

@ae{} Generate the uppercase and lowercase AE ligatures, respectively: Æ, æ. See
Section 12.4 [Inserting Accents], page 95.

@afivepaper

Change page dimensions for the A5 paper size. See Section 19.12 [A4 Paper],
page 151.

@afourlatex

@afourpaper

@afourwide

Change page dimensions for the A4 paper size. See Section 19.12 [A4 Paper],
page 151.

@alias new=existing

Make the command ‘@new’ a synonym for the existing command ‘@existing’. See
Section 17.4 [@alias], page 136.

@allowcodebreaks true-false

Control breaking at ‘-’ and ‘_’ in TEX. See Section 13.4 [@allowcodebreaks],
page 106.

@anchor{name}

Define name as the current location for use as a cross-reference target. See
Section 6.8 [@anchor], page 49.

@appendix title

Begin an appendix. The title appears in the table of contents. In Info, the title is
underlined with asterisks. See Section 5.4 [@unnumbered @appendix], page 38.

@appendixsec title

@appendixsection title

Begin an appendix section within an appendix. The section title appears in the table
of contents. In Info, the title is underlined with equal signs. @appendixsection is
a longer spelling of the @appendixsec command. See Section 5.7 [@unnumberedsec
@appendixsec @heading], page 39.

@appendixsubsec title

Begin an appendix subsection. The title appears in the table of contents. In
Info, the title is underlined with hyphens. See Section 5.9 [@unnumberedsubsec
@appendixsubsec @subheading], page 40.



Appendix A: @-Command Details 196

@appendixsubsubsec title

Begin an appendix subsubsection. The title appears in the table of contents. In Info,
the title is underlined with periods. See Section 5.10 [@subsubsection], page 40.

@arrow{} Generate a right arrow glyph: ‘→’. Used by default for @click. See Section 12.9.8
[Click Sequences], page 103.

@asis Used following @table, @ftable, and @vtable to print the table’s first column
without highlighting (“as is”). See [@asis], page 74.

@author author

Typeset author flushleft and underline it. See Section 3.4.3 [@title @subtitle

@author], page 19.

@b{text} Set text in a bold font. No effect in Info. See Section 7.2.3 [Fonts], page 61.

@bullet{}

Generate a large round dot, • (‘*’ in Info). Often used with @table. See
Section 12.8.5 [@bullet], page 99.

@bye Stop formatting a file. The formatters do not see anything in the input file following
@bye. See Section 3.8 [Ending a File], page 26.

@c comment

Begin a comment in Texinfo. The rest of the line does not appear in any output.
A synonym for @comment. DEL also starts a comment. See Section 2.2 [Comments],
page 9.

@caption Define the full caption for a @float. See Section 10.1.2 [@caption @shortcaption],
page 79.

@cartouche

Highlight an example or quotation by drawing a box with rounded corners around
it. Pair with @end cartouche. No effect in Info. See Section 8.14 [@cartouche],
page 70.

@center line-of-text

Center the line of text following the command. See Section 3.4.2 [@titlefont
@center @sp], page 18.

@centerchap line-of-text

Like @chapter, but centers the chapter title. See Section 5.3 [@chapter], page 38.

@chapheading title

Print an unnumbered chapter-like heading, but omit from the table of contents.
In Info, the title is underlined with asterisks. See Section 5.5 [@majorheading
@chapheading], page 39.

@chapter title

Begin a numbered chapter. The chapter title appears in the table of contents. In
Info, the title is underlined with asterisks. See Section 5.3 [@chapter], page 38.

@cindex entry

Add entry to the index of concepts. See Section 11.4 [Defining the Entries of an
Index], page 86.

@cite{reference}

Highlight the name of a book or other reference that has no companion Info file.
See Section 6.11 [@cite], page 52.



Appendix A: @-Command Details 197

@clear flag

Unset flag, preventing the Texinfo formatting commands from formatting text be-
tween subsequent pairs of @ifset flag and @end ifset commands, and preventing
@value{flag} from expanding to the value to which flag is set. See Section 16.5
[@set @clear @value], page 125.

@click{} Represent a single “click” in a GUI. Used within @clicksequence. See
Section 12.9.8 [Click Sequences], page 103.

@clicksequence{action @click{} action}

Represent a sequence of clicks in a GUI. See Section 12.9.8 [Click Sequences],
page 103.

@clickstyle @cmd

Execute @cmd for each @click; the default is @arrow. The usual following empty
braces on @cmd are omitted. See Section 12.9.8 [Click Sequences], page 103.

@code{sample-code}

Indicate an expression, a syntactically complete token of a program, or a program
name. Unquoted in Info output. See Section 7.1.2 [@code], page 54.

@codequotebacktick on-off

@codequoteundirected on-off

Control output of ` and ' in code examples. See Section 12.2 [Inserting Quote
Characters], page 92.

@comma{} Insert a comma ‘,’ character; only needed when a literal comma would be taken as
an argument separator. See Section 12.1.3 [Inserting a Comma], page 90.

@command{command-name}

Indicate a command name, such as ls. See Section 7.1.10 [@command], page 58.

@comment comment

Begin a comment in Texinfo. The rest of the line does not appear in any output. A
synonym for @c. See Section 2.2 [Comments], page 9.

@contents

Print a complete table of contents. Has no effect in Info, which uses menus instead.
See Section 3.5 [Generating a Table of Contents], page 21.

@copying Specify copyright holders and copying conditions for the document. Pair with @end

copying. See Section 3.3.1 [@copying], page 16.

@copyright{}

Generate the copyright symbol c©. See Section 12.8.2 [@copyright], page 99.

@defcodeindex index-name

Define a new index and its indexing command. Print entries in an @code font. See
Section 11.7 [Defining New Indices], page 88.

@defcv category class name

@defcvx category class name

Format a description for a variable associated with a class in object-oriented pro-
gramming. Takes three arguments: the category of thing being defined, the class to
which it belongs, and its name. See Chapter 14 [Definition Commands], page 109.

@deffn category name arguments...

@deffnx category name arguments...

Format a description for a function, interactive command, or similar entity that
may take arguments. @deffn takes as arguments the category of entity being de-



Appendix A: @-Command Details 198

scribed, the name of this particular entity, and its arguments, if any. See Chapter 14
[Definition Commands], page 109.

@defindex index-name

Define a new index and its indexing command. Print entries in a roman font. See
Section 11.7 [Defining New Indices], page 88.

@definfoenclose newcmd, before, after

Must be used within @ifinfo; create a new command @newcmd for Info that marks
text by enclosing it in strings that precede and follow the text. See Section 17.5
[@definfoenclose], page 136.

@defivar class instance-variable-name

@defivarx class instance-variable-name

Format a description for an instance variable in object-oriented programming. The
command is equivalent to ‘@defcv {Instance Variable} ...’. See Chapter 14
[Definition Commands], page 109.

@defmac macroname arguments...

@defmacx macroname arguments...

Format a description for a macro; equivalent to ‘@deffn Macro ...’. See Chapter 14
[Definition Commands], page 109.

@defmethod class method-name arguments...

@defmethodx class method-name arguments...

Format a description for a method in object-oriented programming; equivalent to
‘@defop Method ...’. See Chapter 14 [Definition Commands], page 109.

@defop category class name arguments...

@defopx category class name arguments...

Format a description for an operation in object-oriented programming. @defop

takes as arguments the name of the category of operation, the name of the opera-
tion’s class, the name of the operation, and its arguments, if any. See Chapter 14
[Definition Commands], page 109, and Section 14.5.6 [Abstract Objects], page 116.

@defopt option-name

@defoptx option-name

Format a description for a user option; equivalent to ‘@defvr {User Option} ...’.
See Chapter 14 [Definition Commands], page 109.

@defspec special-form-name arguments...

@defspecx special-form-name arguments...

Format a description for a special form; equivalent to ‘@deffn {Special Form} ...’.
See Chapter 14 [Definition Commands], page 109.

@deftp category name-of-type attributes...

@deftpx category name-of-type attributes...

Format a description for a data type; its arguments are the category, the name of
the type (e.g., ‘int’) , and then the names of attributes of objects of that type.
See Chapter 14 [Definition Commands], page 109, and Section 14.5.5 [Data Types],
page 115.

@deftypecv category class data-type name

@deftypecvx category class data-type name

Format a description for a typed class variable in object-oriented programming. See
Chapter 14 [Definition Commands], page 109, and Section 14.5.6 [Abstract Objects],
page 116.



Appendix A: @-Command Details 199

@deftypefn category data-type name arguments...

@deftypefnx category data-type name arguments...

Format a description for a function or similar entity that may take arguments and
that is typed. @deftypefn takes as arguments the category of entity being described,
the type, the name of the entity, and its arguments, if any. See Chapter 14 [Definition
Commands], page 109.

@deftypefnnewline on-off

Specifies whether return types for @deftypefn and similar are printed on lines
by themselves; default is off. See Section 14.5.3 [Functions in Typed Languages],
page 113.

@deftypefun data-type function-name arguments...

@deftypefunx data-type function-name arguments...

Format a description for a function in a typed language. The command is equivalent
to ‘@deftypefn Function ...’. See Chapter 14 [Definition Commands], page 109.

@deftypeivar class data-type variable-name

@deftypeivarx class data-type variable-name

Format a description for a typed instance variable in object-oriented programming.
See Chapter 14 [Definition Commands], page 109, and Section 14.5.6 [Abstract
Objects], page 116.

@deftypemethod class data-type method-name arguments...

@deftypemethodx class data-type method-name arguments...

Format a description for a typed method in object-oriented programming. See
Chapter 14 [Definition Commands], page 109.

@deftypeop category class data-type name arguments...

@deftypeopx category class data-type name arguments...

Format a description for a typed operation in object-oriented programming. See
Chapter 14 [Definition Commands], page 109, and Section 14.5.6 [Abstract Objects],
page 116.

@deftypevar data-type variable-name

@deftypevarx data-type variable-name

Format a description for a variable in a typed language. The command is equivalent
to ‘@deftypevr Variable ...’. See Chapter 14 [Definition Commands], page 109.

@deftypevr category data-type name

@deftypevrx category data-type name

Format a description for something like a variable in a typed language—an entity
that records a value. Takes as arguments the category of entity being described, the
type, and the name of the entity. See Chapter 14 [Definition Commands], page 109.

@defun function-name arguments...

@defunx function-name arguments...

Format a description for a function; equivalent to ‘@deffn Function ...’. See
Chapter 14 [Definition Commands], page 109.

@defvar variable-name

@defvarx variable-name

Format a description for a variable; equivalent to ‘@defvr Variable ...’. See
Chapter 14 [Definition Commands], page 109.



Appendix A: @-Command Details 200

@defvr category name

@defvrx category name

Format a description for any kind of variable. @defvr takes as arguments the cate-
gory of the entity and the name of the entity. See Chapter 14 [Definition Commands],
page 109.

@detailmenu

Mark the (optional) detailed node listing in a master menu. See Section 3.6.2 [Master
Menu Parts], page 22.

@dfn{term}

Indicate the introductory or defining use of a term. See Section 7.1.12 [@dfn],
page 58.

@DH{}

@dh{} Generate the uppercase and lowercase Icelandic letter eth, respectively: Ð, ð. See
Section 12.4 [Inserting Accents], page 95.

@dircategory dirpart

Specify a part of the Info directory menu where this file’s entry should go. See
Section 21.2.4 [Installing Dir Entries], page 180.

@direntry

Begin the Info directory menu entry for this file. Pair with @end direntry. See
Section 21.2.4 [Installing Dir Entries], page 180.

@display Begin a kind of example. Like @example (indent text, do not fill), but do not select
a new font. Pair with @end display. See Section 8.7 [@display], page 67.

@dmn{dimension}

Format a unit of measure, as in 12 pt. Causes TEX to insert a thin space before
dimension. No effect in Info. See Section 12.3.5 [@dmn], page 95.

@docbook Enter Docbook completely. Pair with @end docbook. See Section 16.3 [Raw For-
matter Commands], page 123.

@documentdescription

Set the document description text, included in the HTML output. Pair with @end

documentdescription. See Section 3.7.1 [@documentdescription], page 23.

@documentencoding enc

Declare the input encoding to be enc. See Section 15.2 [@documentencoding],
page 120.

@documentlanguage CC

Declare the document language as the two-character ISO-639 abbreviation CC. See
Section 15.1 [@documentlanguage], page 120.

@dotaccent{c}

Generate a dot accent over the character c, as in ȯ. See Section 12.4 [Inserting
Accents], page 95.

@dotless{i-or-j}

Generate dotless i (‘ı’) and dotless j (‘ȷ’). See Section 12.4 [Inserting Accents],
page 95.

@dots{} Generate an ellipsis, ‘...’. See Section 12.8.4 [@dots], page 99.

@email{address[, displayed-text]}

Indicate an electronic mail address. See Section 7.1.16 [@email], page 60.



Appendix A: @-Command Details 201

@emph{text}

Emphasize text, by using italics where possible, and enclosing in asterisks in Info.
See Section 7.2 [Emphasizing Text], page 60.

@end environment

Ends environment, as in ‘@end example’. See [@-commands], page 8.

@enddots{}

Generate an end-of-sentence ellipsis, like this: . . . See Section 12.8.4 [@dots],
page 99.

@enumerate [number-or-letter]

Begin a numbered list, using @item for each entry. Optionally, start list with
number-or-letter. Pair with @end enumerate. See Section 9.3 [@enumerate],
page 73.

@env{environment-variable}

Indicate an environment variable name, such as PATH. See Section 7.1.8 [@env],
page 58.

@equiv{} Indicate to the reader the exact equivalence of two forms with a glyph: ‘≡ ’. See
Section 12.9.6 [@equiv], page 102.

@error{} Indicate to the reader with a glyph that the following text is an error message:
‘ error ’. See Section 12.9.5 [@error], page 102.

@errormsg{msg}

Report msg as an error to standard error, and exit unsuccessfully. Texinfo com-
mands within msg are expanded to plain text. See Chapter 16 [Conditionals],
page 122, and Section 17.6 [External Macro Processors], page 137.

@euro{} Generate the Euro currency sign. See Section 12.8.6 [@euro], page 99.

@evenfooting [left] @| [center] @| [right]

@evenheading [left] @| [center] @| [right]

Specify page footings resp. headings for even-numbered (left-hand) pages. See
Section E.4 [How to Make Your Own Headings], page 236.

@everyfooting [left] @| [center] @| [right]

@everyheading [left] @| [center] @| [right]

Specify page footings resp. headings for every page. Not relevant to Info. See
Section E.4 [How to Make Your Own Headings], page 236.

@example Begin an example. Indent text, do not fill, and select fixed-width font. Pair with
@end example. See Section 8.4 [@example], page 65.

@exampleindent indent

Indent example-like environments by indent number of spaces (perhaps 0). See
Section 3.7.6 [@exampleindent], page 26.

@exclamdown{}

Generate an upside-down exclamation point. See Section 12.4 [Inserting Accents],
page 95.

@exdent line-of-text

Remove any indentation a line might have. See Section 8.9 [@exdent], page 67.

@expansion{}

Indicate the result of a macro expansion to the reader with a special glyph: ‘ 7→’.
See Section 12.9.3 [@expansion], page 101.



Appendix A: @-Command Details 202

@file{filename}

Highlight the name of a file, buffer, node, directory, etc. See Section 7.1.9 [@file],
page 58.

@finalout

Prevent TEX from printing large black warning rectangles beside over-wide lines.
See Section 19.10 [Overfull hboxes], page 150.

@findex entry

Add entry to the index of functions. See Section 11.4 [Defining the Entries of an
Index], page 86.

@firstparagraphindent word

Control indentation of the first paragraph after section headers according to word,
one of ‘none’ or ‘insert’. See Section 3.7.5 [@firstparagraphindent], page 25.

@float Environment to define floating material. Pair with @end float. See Section 10.1
[Floats], page 78.

@flushleft

@flushright

Do not fill text; left (right) justify every line while leaving the right (left) end ragged.
Leave font as is. Pair with @end flushleft (@end flushright). See Section 8.10
[@flushleft @flushright], page 68.

@fonttextsize 10-11

Change the size of the main body font in the TEX output. See Section 7.2.3 [Fonts],
page 61.

@footnote{text-of-footnote}

Enter a footnote. Footnote text is printed at the bottom of the page by TEX;
Info may format in either ‘End’ node or ‘Separate’ node style. See Section 10.3
[Footnotes], page 82.

@footnotestyle style

Specify an Info file’s footnote style, either ‘end’ for the end node style or ‘separate’
for the separate node style. See Section 10.3 [Footnotes], page 82.

@format Begin a kind of example. Like @display, but do not indent. Pair with @end format.
See Section 8.4 [@example], page 65.

@frenchspacing on-off

Control spacing after punctuation. See Section 12.3.4 [@frenchspacing], page 94.

@ftable formatting-command

Begin a two-column table, using @item for each entry. Automatically enter each of
the items in the first column into the index of functions. Pair with @end ftable.
The same as @table, except for indexing. See Section 9.4.2 [@ftable @vtable],
page 75.

@geq{} Generate a greater-than-or-equal sign, ‘≥’. See Section 12.8.10 [@geq @leq],
page 100.

@group Disallow page breaks within following text. Pair with @end group. Ignored in Info.
See Section 13.9 [@group], page 107.



Appendix A: @-Command Details 203

@guillemetleft{}

@guillemetright{}

@guillemotleft{}

@guillemotright{}

@guilsinglleft{}

@guilsinglright{}

Double and single angle quotation marks: « » ‹ ›. @guillemotleft and
@guillemotright are synonyms for @guillemetleft and @guillemetright. See
Section 12.5 [Inserting Quotation Marks], page 96.

@H{c} Generate the long Hungarian umlaut accent over c, as in ő.

@hashchar{}

Insert a hash ‘#’ character; only needed when a literal hash would introduce #line

directive. See Section 12.1.5 [Inserting a Hashsign], page 91, and Section 17.6 [Ex-
ternal Macro Processors], page 137.

@heading title

Print an unnumbered section-like heading, but omit from the table of contents.
In Info, the title is underlined with equal signs. See Section 5.7 [@unnumberedsec
@appendixsec @heading], page 39.

@headings on-off-single-double

Turn page headings on or off, and/or specify single-sided or double-sided page head-
ings for printing. See Section 3.7.3 [@headings], page 24.

@headitem

Begin a heading row in a multitable. See Section 9.5.2 [Multitable Rows], page 76.

@headitemfont{text}

Set text in the font used for multitable heading rows; mostly useful in multitable
templates. See Section 9.5.2 [Multitable Rows], page 76.

@html Enter HTML completely. Pair with @end html. See Section 16.3 [Raw Formatter
Commands], page 123.

@hyphenation{hy-phen-a-ted words}

Explicitly define hyphenation points. See Section 13.3 [@- @hyphenation], page 106.

@i{text} Set text in an italic font. No effect in Info. See Section 7.2.3 [Fonts], page 61.

@ifclear txivar

If the Texinfo variable txivar is not set, format the following text. Pair with @end

ifclear. See Section 16.5 [@set @clear @value], page 125.

@ifcommanddefined txicmd

@ifcommandnotdefined txicmd

If the Texinfo code ‘@txicmd’ is (not) defined, format the follow text. Pair with
the corresponding @end ifcommand.... See Section 16.6 [Testing for Texinfo Com-
mands], page 129.

@ifdocbook

@ifhtml

@ifinfo Begin text that will appear only in the given output format. @ifinfo output appears
in both Info and (for historical compatibility) plain text output. Pair with @end

ifdocbook resp. @end ifhtml resp. @end ifinfo. See Chapter 16 [Conditionals],
page 122.



Appendix A: @-Command Details 204

@ifnotdocbook

@ifnothtml

@ifnotplaintext

@ifnottex

@ifnotxml

Begin text to be ignored in one output format but not the others. @ifnothtml text
is omitted from HTML output, etc. Pair with the corresponding @end ifnotformat.
See Chapter 16 [Conditionals], page 122.

@ifnotinfo

Begin text to appear in output other than Info and (for historical compatibility)
plain text. Pair with @end ifnotinfo. See Chapter 16 [Conditionals], page 122.

@ifplaintext

Begin text that will appear only in the plain text output. Pair with @end

ifplaintext. See Chapter 16 [Conditionals], page 122.

@ifset txivar

If the Texinfo variable txivar is set, format the following text. Pair with @end ifset.
See Section 16.5 [@set @clear @value], page 125.

@iftex Begin text to appear only in the TEX output. Pair with @end iftex. See Chapter 16
[Conditionally Visible Text], page 122.

@ifxml Begin text that will appear only in the XML output. Pair with @end ifxml. See
Chapter 16 [Conditionals], page 122.

@ignore Begin text that will not appear in any output. Pair with @end ignore. See
Section 2.2 [Comments and Ignored Text], page 9.

@image{filename, [width], [height], [alt], [ext]}

Include graphics image in external filename scaled to the given width and/or height,
using alt text and looking for ‘filename.ext’ in HTML. See Section 10.2 [Images],
page 80.

@include filename

Read the contents of Texinfo source file filename. See Chapter 18 [Include Files],
page 140.

@indent Insert paragraph indentation. See Section 8.13 [@indent], page 69.

@indentedblock

Indent a block of arbitary text on the left. Pair with @end indentedblock. See
Section 8.3 [@indentedblock], page 65.

@indicateurl{indicateurl}

Indicate text that is a uniform resource locator for the World Wide Web. See
Section 7.1.15 [@indicateurl], page 60.

@inforef{node-name, [entry-name], info-file-name}

Make a cross-reference to an Info file for which there is no printed manual. See
Section 6.9 [@inforef], page 49.

@inlinefmt{fmt, text}

Insert text only if the output format is fmt. See Section 16.4 [Inline Conditionals],
page 125.

@inlinefmtifelse{fmt, text, else-text}

Insert text if the output format is fmt, else else-text.



Appendix A: @-Command Details 205

@inlineifclear{var, text}

@inlineifset{var, text}

Insert text only if the Texinfo variable var is (not) set.

@inlineraw{fmt, raw-text}

Insert text as in a raw conditional, only if the output format is fmt.

\input macro-definitions-file

Use the specified macro definitions file. This command is used only in the first line
of a Texinfo file to cause TEX to make use of the texinfo macro definitions file. The
\ in \input is used instead of an @ because TEX does not recognize @ until after it
has read the definitions file. See Section 3.2 [Texinfo File Header], page 14.

@insertcopying

Insert the text previously defined with the @copying environment. See Section 3.3.2
[@insertcopying], page 17.

@item Indicate the beginning of a marked paragraph for @itemize and @enumerate; in-
dicate the beginning of the text of a first column entry for @table, @ftable, and
@vtable. See Chapter 9 [Lists and Tables], page 71.

@itemize mark-generating-character-or-command

Begin an unordered list: indented paragraphs with a mark, such as @bullet, in-
side the left margin at the beginning of each item. Pair with @end itemize. See
Section 9.2 [@itemize], page 71.

@itemx Like @item but do not generate extra vertical space above the item text. Thus,
when several items have the same description, use @item for the first and @itemx

for the others. See Section 9.4.3 [@itemx], page 75.

@kbd{keyboard-characters}

Indicate characters of input to be typed by users. See Section 7.1.3 [@kbd], page 55.

@kbdinputstyle style

Specify when @kbd should use a font distinct from @code according to style: code,
distinct, example. See Section 7.1.3 [@kbd], page 55.

@key{key-name}

Indicate the name of a key on a keyboard. See Section 7.1.4 [@key], page 55.

@kindex entry

Add entry to the index of keys. See Section 11.4 [Defining the Entries of an Index],
page 86.

@L{}

@l{} Generate the uppercase and lowercase Polish suppressed-L letters, respectively:  L,
 l.

@LaTeX{} Generate the LATEX logo. See Section 12.8.1 [@TeX @LaTeX], page 98.

@leq{} Generate a less-than-or-equal sign, ‘≤’. See Section 12.8.10 [@geq @leq], page 100.

@lisp Begin an example of Lisp code. Indent text, do not fill, and select fixed-width font.
Pair with @end lisp. See Section 8.6 [@lisp], page 66.

@listoffloats

Produce a table-of-contents-like listing of @floats. See Section 10.1.3
[@listoffloats], page 79.

@lowersections

Change subsequent chapters to sections, sections to subsections, and so on. See
Section 5.12 [@raisesections and @lowersections], page 42.



Appendix A: @-Command Details 206

@macro macroname {params}

Define a new Texinfo command @macroname{params}. Pair with @end macro. See
Section 17.1 [Defining Macros], page 131.

@majorheading title

Print an unnumbered chapter-like heading, but omit from the table of contents.
This generates more vertical whitespace before the heading than the @chapheading

command. See Section 5.5 [@majorheading @chapheading], page 39.

@math{mathematical-expression}

Format a mathematical expression. See Section 12.7 [Inserting Math], page 97.

@menu Mark the beginning of a menu of nodes. No effect in a printed manual. Pair with
@end menu. See Section 4.9 [Menus], page 33.

@minus{} Generate a minus sign, ‘−’. See Section 12.8.9 [@minus], page 100.

@multitable column-width-spec

Begin a multi-column table. Begin each row with @item or @headitem, and separate
columns with @tab. Pair with @end multitable. See Section 9.5.1 [Multitable
Column Widths], page 76.

@need n Start a new page in a printed manual if fewer than n mils (thousandths of an inch)
remain on the current page. See Section 13.10 [@need], page 108.

@node name, next, previous, up

Begin a new node. See Section 4.3 [Writing a Node], page 28.

@noindent

Prevent text from being indented as if it were a new paragraph. See Section 8.12
[@noindent], page 69.

@novalidate

Suppress validation of node references and omit creation of auxiliary files with TEX.
Use before any sectioning or cross-reference commands. See Section 20.5 [Pointer
Validation], page 161.

@O{}

@o{} Generate the uppercase and lowercase O-with-slash letters, respectively: Ø, ø.

@oddfooting [left] @| [center] @| [right]

@oddheading [left] @| [center] @| [right]

Specify page footings resp. headings for odd-numbered (right-hand) pages. See
Section E.4 [How to Make Your Own Headings], page 236.

@OE{}

@oe{} Generate the uppercase and lowercase OE ligatures, respectively: Œ, œ. See
Section 12.4 [Inserting Accents], page 95.

@ogonek{c}

Generate an ogonek diacritic under the next character, as in ą. See Section 12.4
[Inserting Accents], page 95.

@option{option-name}

Indicate a command-line option, such as -l or --help. See Section 7.1.11 [@option],
page 58.

@ordf{}

@ordm{} Generate the feminine and masculine Spanish ordinals, respectively: a, o. See
Section 12.4 [Inserting Accents], page 95.



Appendix A: @-Command Details 207

@page Start a new page in a printed manual. No effect in Info. See Section 13.8 [@page],
page 107.

@pagesizes [width][, height]

Change page dimensions. See [pagesizes], page 151.

@paragraphindent indent

Indent paragraphs by indent number of spaces (perhaps 0); preserve source file
indentation if indent is asis. See Section 3.7.4 [@paragraphindent], page 25.

@part title

Begin a group of chapters or appendixes; included in the tables of contents and
produces a page of its own in printed output. See Section 5.11 [@part], page 41.

@pindex entry

Add entry to the index of programs. See Section 11.4 [Defining the Entries of an
Index], page 86.

@point{} Indicate the position of point in a buffer to the reader with a glyph: ‘?’. See
Section 12.9.7 [@point], page 102.

@pounds{}

Generate the pounds sterling currency sign. See Section 12.8.7 [@pounds], page 99.

@print{} Indicate printed output to the reader with a glyph: ‘ a ’. See Section 12.9.4 [@print],
page 101.

@printindex index-name

Generate the alphabetized index for index-name (using two columns in a printed
manual). See Section 11.5 [Printing Indices & Menus], page 86.

@pxref{node, [entry], [node-title], [info-file], [manual]}

Make a reference that starts with a lowercase ‘see’ in a printed manual. Use within
parentheses only. Only the first argument is mandatory. See Section 6.7 [@pxref],
page 48.

@questiondown{}

Generate an upside-down question mark. See Section 12.4 [Inserting Accents],
page 95.

@quotation

Narrow the margins to indicate text that is quoted from another work. Takes
optional argument specifying prefix text, e.g., an author name. Pair with @end

quotation. See Section 8.2 [@quotation], page 64.

@quotedblleft{}

@quotedblright{}

@quoteleft{}

@quoteright{}

@quotedblbase{}

@quotesinglbase{}

Produce various quotation marks: “ ” ‘ ’ „ ‚. See Section 12.5 [Inserting Quotation
Marks], page 96.

@r{text} Set text in the regular roman font. No effect in Info. See Section 7.2.3 [Fonts],
page 61.

@raggedright

Fill text; left justify every line while leaving the right end ragged. Leave font as is.
Pair with @end raggedright. No effect in Info. See Section 8.11 [@raggedright],
page 68.



Appendix A: @-Command Details 208

@raisesections

Change subsequent sections to chapters, subsections to sections, and so on. See
Section 5.12 [Raise/lower sections], page 42.

@ref{node, [entry], [node-title], [info-file], [manual]}

Make a plain reference that does not start with any special text. Follow command
with a punctuation mark. Only the first argument is mandatory. See Section 6.6
[@ref], page 48.

@refill This command used to refill and indent the paragraph after all the other processing
has been done. It is no longer needed, since all formatters now automatically refill
as needed, but you may still see it in the source to some manuals, as it does no
harm.

@registeredsymbol{}

Generate the legal symbol R©. See Section 12.8.3 [@registeredsymbol], page 99.

@result{}

Indicate the result of an expression to the reader with a special glyph: ‘⇒’. See
Section 12.9.2 [@result], page 101.

@ringaccent{c}

Generate a ring accent over the next character, as in o̊. See Section 12.4 [Inserting
Accents], page 95.

@samp{text}

Indicate a literal example of a sequence of characters, in general. Quoted in Info
output. See Section 7.1.5 [@samp], page 56.

@sansserif{text}

Set text in a sans serif font if possible. No effect in Info. See Section 7.2.3 [Fonts],
page 61.

@sc{text}

Set text in a small caps font in printed output, and uppercase in Info. See
Section 7.2.2 [Smallcaps], page 61.

@section title

Begin a section within a chapter. The section title appears in the table of contents.
In Info, the title is underlined with equal signs. Within @chapter and @appendix,
the section title is numbered; within @unnumbered, the section is unnumbered. See
Section 5.6 [@section], page 39.

@set txivar [string]

Define the Texinfo variable txivar, optionally to the value string. See Section 16.5
[@set @clear @value], page 125.

@setchapternewpage on-off-odd

Specify whether chapters start on new pages, and if so, whether on odd-numbered
(right-hand) new pages. See Section 3.7.2 [@setchapternewpage], page 23.

@setfilename info-file-name

Provide a name to be used for the output files. This command is ignored for TEX
formatting. See Section 3.2.3 [@setfilename], page 15.

@settitle title

Specify the title for page headers in a printed manual, and the default document
title for HTML ‘<head>’. See Section 3.2.4 [@settitle], page 15.



Appendix A: @-Command Details 209

@shortcaption

Define the short caption for a @float. See Section 10.1.2 [@caption
@shortcaption], page 79.

@shortcontents

Print a short table of contents, with chapter-level entries only. Not relevant to Info,
which uses menus rather than tables of contents. See Section 3.5 [Generating a
Table of Contents], page 21.

@shorttitlepage title

Generate a minimal title page. See Section 3.4.1 [@titlepage], page 17.

@slanted{text}

Set text in a slanted font if possible. No effect in Info. See Section 7.2.3 [Fonts],
page 61.

@smallbook

Cause TEX to produce a printed manual in a 7 by 9.25 inch format rather than the
regular 8.5 by 11 inch format. See Section 19.11 [@smallbook], page 151. Also, see
Section 8.15 [@small...], page 70.

@smalldisplay

Begin a kind of example. Like @display, but use a smaller font size where possible.
Pair with @end smalldisplay. See Section 8.15 [@small...], page 70.

@smallexample

Begin an example. Like @example, but use a smaller font size where possible. Pair
with @end smallexample. See Section 8.15 [@small...], page 70.

@smallformat

Begin a kind of example. Like @format, but use a smaller font size where possible.
Pair with @end smallformat. See Section 8.15 [@small...], page 70.

@smallindentedblock

Like @indentedblock, but use a smaller font size where possible. Pair with @end

smallindentedblock. See Section 8.15 [@small...], page 70.

@smalllisp

Begin an example of Lisp code. Same as @smallexample. Pair with @end

smalllisp. See Section 8.15 [@small...], page 70.

@smallquotation

Like @quotation, but use a smaller font size where possible. Pair with @end

smallquotation. See Section 8.15 [@small...], page 70.

@sortas {key}

Used in the arguments to index commands to give a string by which the index entry
should be sorted. See Section 11.2 [Indexing Commands], page 84.

@sp n Skip n blank lines. See Section 13.7 [@sp], page 107.

@ss{} Generate the German sharp-S es-zet letter, ß. See Section 12.4 [Inserting Accents],
page 95.

@strong {text}

Emphasize text more strongly than @emph, by using boldface where possible; en-
closed in asterisks in Info. See [Emphasizing Text], page 61.

@sub {text}

Set text as a subscript. See Section 12.6 [Inserting Subscripts and Superscripts],
page 97.



Appendix A: @-Command Details 210

@subheading title

Print an unnumbered subsection-like heading, but omit from the table of contents
of a printed manual. In Info, the title is underlined with hyphens. See Section 5.9
[@unnumberedsubsec @appendixsubsec @subheading], page 40.

@subsection title

Begin a subsection within a section. The subsection title appears in the table of
contents. In Info, the title is underlined with hyphens. Same context-dependent
numbering as @section. See Section 5.8 [@subsection], page 40.

@subsubheading title

Print an unnumbered subsubsection-like heading, but omit from the table of contents
of a printed manual. In Info, the title is underlined with periods. See Section 5.10
[@subsubsection], page 40.

@subsubsection title

Begin a subsubsection within a subsection. The subsubsection title appears in the
table of contents. In Info, the title is underlined with periods. Same context-
dependent numbering as @section. See Section 5.10 [@subsubsection], page 40.

@subtitle title

In a printed manual, set a subtitle in a normal sized font flush to the right-hand side
of the page. Not relevant to Info, which does not have title pages. See Section 3.4.3
[@title @subtitle @author], page 19.

@summarycontents

Print a short table of contents. Synonym for @shortcontents. See Section 3.5
[Generating a Table of Contents], page 21.

@sup {text}

Set text as a superscript. See Section 12.6 [Inserting Subscripts and Superscripts],
page 97.

@syncodeindex from-index to-index

Merge the index named in the first argument into the index named in the second
argument, formatting the entries from the first index with @code. See Section 11.6
[Combining Indices], page 87.

@synindex from-index to-index

Merge the index named in the first argument into the index named in the second ar-
gument. Do not change the font of from-index entries. See Section 11.6 [Combining
Indices], page 87.

@t{text} Set text in a fixed-width, typewriter-like font. No effect in Info. See Section 7.2.3
[Fonts], page 61.

@tab Separate columns in a row of a multitable. See Section 9.5.2 [Multitable Rows],
page 76.

@table formatting-command

Begin a two-column table (description list), using @item for each entry. Write each
first column entry on the same line as @item. First column entries are printed in the
font resulting from formatting-command. Pair with @end table. See Section 9.4
[Making a Two-column Table], page 74. Also see Section 9.4.2 [@ftable @vtable],
page 75, and Section 9.4.3 [@itemx], page 75.

@TeX{} Generate the TEX logo. See Section 12.8.1 [@TeX @LaTeX], page 98.

@tex Enter TEX completely. Pair with @end tex. See Section 16.3 [Raw Formatter Com-
mands], page 123.



Appendix A: @-Command Details 211

@textdegree{}

Generate the degree symbol. See Section 12.8.8 [@textdegree], page 100.

@thischapter

@thischaptername

@thischapternum

@thisfile

@thispage

@thistitle

Only allowed in a heading or footing. Stands for, respectively, the number and name
of the current chapter (in the format ‘Chapter 1: Title’), the current chapter name
only, the current chapter number only, the filename, the current page number, and
the title of the document, respectively. See Section E.4 [How to Make Your Own
Headings], page 236.

@TH{}

@th{} Generate the uppercase and lowercase Icelandic letter thorn, respectively: Þ, þ. See
Section 12.4 [Inserting Accents], page 95.

@tie{} Generate a normal interword space at which a line break is not allowed. See
Section 13.6 [@tie], page 107.

@tieaccent{cc}

Generate a tie-after accent over the next two characters cc, as in ‘�oo’. See
Section 12.4 [Inserting Accents], page 95.

@tindex entry

Add entry to the index of data types. See Section 11.4 [Defining the Entries of an
Index], page 86.

@title title

In a printed manual, set a title flush to the left-hand side of the page in a larger
than normal font and underline it with a black rule. Not relevant to Info, which
does not have title pages. See Section 3.4.3 [@title @subtitle @author], page 19.

@titlefont{text}

In a printed manual, print text in a larger than normal font. See Section 3.4.2
[@titlefont @center @sp], page 18.

@titlepage

Begin the title page. Write the command on a line of its own, paired with @end

titlepage. Nothing between @titlepage and @end titlepage appears in Info.
See Section 3.4.1 [@titlepage], page 17.

@today{} Insert the current date, in ‘1 Jan 1900’ style. See Section E.4 [How to Make Your
Own Headings], page 236.

@top title

Mark the topmost @node in the file, which must be defined on the line immediately
preceding the @top command. The title is formatted as a chapter-level heading.
The entire top node, including the @node and @top lines, are normally enclosed
with @ifnottex ... @end ifnottex. In TEX and texinfo-format-buffer, the
@top command is merely a synonym for @unnumbered. See Section 4.8 [makeinfo
Pointer Creation], page 33.

@U{hex} Output a representation of Unicode character U+hex. See Section 12.10 [Inserting
Unicode], page 103.



Appendix A: @-Command Details 212

@u{c}

@ubaraccent{c}

@udotaccent{c}

Generate a breve, underbar, or underdot accent, respectively, over or under the
character c, as in ŏ, o

¯
, o. . See Section 12.4 [Inserting Accents], page 95.

@unmacro macroname

Undefine the macro @macroname if it has been defined. See Section 17.1 [Defining
Macros], page 131.

@unnumbered title

Begin a chapter that appears without chapter numbers of any kind. The title appears
in the table of contents. In Info, the title is underlined with asterisks. See Section 5.4
[@unnumbered @appendix], page 38.

@unnumberedsec title

Begin a section that appears without section numbers of any kind. The title appears
in the table of contents of a printed manual. In Info, the title is underlined with
equal signs. See Section 5.7 [@unnumberedsec @appendixsec @heading], page 39.

@unnumberedsubsec title

Begin an unnumbered subsection. The title appears in the table of contents. In
Info, the title is underlined with hyphens. See Section 5.9 [@unnumberedsubsec
@appendixsubsec @subheading], page 40.

@unnumberedsubsubsec title

Begin an unnumbered subsubsection. The title appears in the table of contents.
In Info, the title is underlined with periods. See Section 5.10 [@subsubsection],
page 40.

@uref{url[, displayed-text][, replacement}

@url{url[, displayed-text][, replacement}

Define a cross-reference to an external uniform resource locator, e.g., for the World
Wide Web. See Section 6.10 [@url], page 50.

@urefbreakstyle style

Specify how @uref/@url should break at special characters: after, before, none.
See Section 6.10 [@url], page 50.

@v{c} Generate check accent over the character c, as in ǒ. See Section 12.4 [Inserting
Accents], page 95.

@validatemenus on-off

Control whether menus can be automatically generated. See Section 4.9.1 [Writing
a Menu], page 33.

@value{txivar}

Insert the value, if any, of the Texinfo variable txivar, previously defined by @set.
See Section 16.5 [@set @clear @value], page 125.

@var{metasyntactic-variable}

Highlight a metasyntactic variable, which is something that stands for another piece
of text. See Section 7.1.7 [@var], page 57.

@verb{delim literal delim}

Output literal, delimited by the single character delim, exactly as is (in the fixed-
width font), including any whitespace or Texinfo special characters. See Section 7.1.6
[@verb], page 57.



Appendix A: @-Command Details 213

@verbatim

Output the text of the environment exactly as is (in the fixed-width font). Pair with
@end verbatim. See Section 8.5 [@verbatim], page 66.

@verbatiminclude filename

Output the contents of filename exactly as is (in the fixed-width font). See
Section 18.5 [@verbatiminclude], page 142.

@vindex entry

Add entry to the index of variables. See Section 11.4 [Defining the Entries of an
Index], page 86.

@vskip amount

In a printed manual, insert whitespace so as to push text on the remainder of the
page towards the bottom of the page. Used in formatting the copyright page with
the argument ‘0pt plus 1filll’. (Note spelling of ‘filll’.) @vskip may be used
only in contexts ignored for Info. See Section 3.4.4 [Copyright], page 20.

@vtable formatting-command

Begin a two-column table, using @item for each entry. Automatically enter each of
the items in the first column into the index of variables. Pair with @end vtable.
The same as @table, except for indexing. See Section 9.4.2 [@ftable @vtable],
page 75.

@w{text} Disallow line breaks within text. See Section 13.5 [@w], page 106.

@xml Enter XML completely. Pair with @end xml. See Section 16.3 [Raw Formatter
Commands], page 123.

@xref{node, [entry], [node-title], [info-file], [manual]}

Make a reference that starts with ‘See’ in a printed manual. Follow command with
a punctuation mark. Only the first argument is mandatory. See Section 6.4 [@xref],
page 45.

@xrefautomaticsectiontitle on-off

By default, use the section title instead of the node name in cross references. See
Section 6.4.3 [Three Arguments], page 45.

A.3 @-Command Contexts

Here we describe approximately which @-commands can be used in which contexts. It not ex-
haustive or meant to be a complete reference. Discrepancies between the information here and
the makeinfo or TEX implementations are most likely to be resolved in favor of the implemen-
tation.

By general text below, we mean anything except sectioning and other such outer-level doc-
ument commands, such as @section, @node, and @setfilename.

@c, @comment and @if ... @end if conditional commands may appear anywhere (except the
conditionals must still be on lines by themselves). @caption may only appear in @float but
may contain general text. @footnote content likewise.

@-commands with braces marking text (such as @strong, @sc, @asis) may contain raw
formatter commands such as @html but no other block commands (other commands terminated
by @end) and may not be split across paragraphs, but may otherwise contain general text.

In addition to the block command restriction, on @center, @exdent and @item in @table

lines, @-commands that makes only sense in a paragraph are not accepted, such as @indent.

In addition to the above, sectioning commands cannot contain @anchor, @footnote or @verb.



Appendix A: @-Command Details 214

In addition to the above, remaining commands (@node, @anchor, @printindex, @ref, @math,
@cindex, @url, @image, and so on) cannot contain cross-reference commands (@ref, @xref,
@pxref and @inforef). In one last addition, @shortcaption may only appear inside @float.

For precise and complete information, we suggest looking into the test suite in the sources,
which exhaustively tries combinations.

A.4 Obsolete @-Commands

Here are Texinfo @-commands which are obsolete or have been removed completely. This section
is for historical purposes.

@setcontentsaftertitlepage

In the past, the contents commands were sometimes placed at the end of the file,
after any indices and just before the @bye, but we no longer recommend this. This
command could be used by a user printing a manual, to force the contents to be
printed after the title page (after the ‘@end titlepage’ line) even if the @contents

command was at the end of the manual. It now does nothing.

@setshortcontentsaftertitlepage

This placed the short table of contents after the ‘@end titlepage’ command even
if the @shortcontents command was at the end. It now does nothing.



215

Appendix B Tips and Hints

Here are some tips for writing Texinfo documentation:

• Write in the present tense, not in the past or the future.

• Write actively! For example, write “We recommend that . . . ” rather than “It is recom-
mended that . . . ”.

• Use 70 or 72 as your fill column. Longer lines are hard to read.

• Include a copyright notice and copying permissions.

Index, Index, Index!

Write many index entries, in different ways. Readers like indices; they are helpful and convenient.

Although it is easiest to write index entries as you write the body of the text, some people
prefer to write entries afterwards. In either case, write an entry before the paragraph to which
it applies. This way, an index entry points to the first page of a paragraph that is split across
pages.

Here are more index-related hints we have found valuable:

• Write each index entry differently, so each entry refers to a different place in the document.

• Write index entries only where a topic is discussed significantly. For example, it is not useful
to index “debugging information” in a chapter on reporting bugs. Someone who wants to
know about debugging information will certainly not find it in that chapter.

• Consistently capitalize the first word of every concept index entry, or else consistently use
lowercase. Terse entries often call for lowercase; longer entries for capitalization. Whichever
case convention you use, please use one or the other consistently! Mixing the two styles
looks bad.

• Always capitalize or use uppercase for those words in an index for which this is proper,
such as names of countries or acronyms. Always use the appropriate case for case-sensitive
names, such as those in C or Lisp.

• Write the indexing commands that refer to a whole section immediately after the section
command, and write the indexing commands that refer to a paragraph before that para-
graph.

In the example that follows, a blank line comes after the index entry for “Leaping”:

@section The Dog and the Fox

@cindex Jumping, in general

@cindex Leaping

@cindex Dog, lazy, jumped over

@cindex Lazy dog jumped over

@cindex Fox, jumps over dog

@cindex Quick fox jumps over dog

The quick brown fox jumps over the lazy dog.

(Note that the example shows entries for the same concept that are written in different
ways—‘Lazy dog’, and ‘Dog, lazy’—so readers can look up the concept in different ways.)

Blank Lines

• Insert a blank line between a sectioning command and the first following sentence or para-
graph, or between the indexing commands associated with the sectioning command and the
first following sentence or paragraph, as shown in the tip on indexing. It makes the source
easier to read.



Appendix B: Tips and Hints 216

• Always insert a blank line before a @table command and after an @end table command;
but never insert a blank line after an @table command.

For example,

Types of fox:

@table @samp

@item Quick

Jump over lazy dogs.

@item Brown

Also jump over lazy dogs.

@end table

@noindent

On the other hand, ...

Insert blank lines before and after @itemize . . . @end itemize and @enumerate . . . @end

enumerate in the same way.

Complete Phrases

Complete phrases are easier to read than . . .

• Write entries in an itemized list as complete sentences; or at least, as complete phrases.
Incomplete expressions . . . awkward . . . like this.

• Write the prefatory sentence or phrase for a multi-item list or table as a complete expression.
Do not write “You can set:”; instead, write “You can set these variables:”. The former
expression sounds cut off.

Editions, Dates and Versions

Include edition numbers, version numbers, and dates in the @copying text (for people reading
the Texinfo file, and for the legal copyright in the output files). Then use @insertcopying in
the @titlepage section for people reading the printed output (see Section 2.4 [Short Sample],
page 10).

It is easiest to handle such version information using @set and @value. See Section 16.5.4
[@value Example], page 128, and Section C.2 [GNU Sample Texts], page 220.

Definition Commands

Definition commands are @deffn, @defun, @defmac, and the like, and enable you to write
descriptions in a uniform format.

• Write just one definition command for each entity you define with a definition command.
The automatic indexing feature creates an index entry that leads the reader to the definition.

• Use @table . . . @end table in an appendix that contains a summary of functions, not
@deffn or other definition commands.

Capitalization

• Capitalize “Texinfo”; it is a name. Do not write the ‘x’ or ‘i’ in uppercase.

• Capitalize “Info”; it is a name.

• Write TEX using the @TeX{} command. Note the uppercase ‘T’ and ‘X’. This command
causes the formatters to typeset the name according to the wishes of Donald Knuth, who
wrote TEX. (Likewise @LaTeX{} for LATEX.)



Appendix B: Tips and Hints 217

Spaces

Do not use spaces to format a Texinfo file, except inside of @example . . . @end example and
other literal environments and commands.

For example, TEX fills the following:

@kbd{C-x v}

@kbd{M-x vc-next-action}

Perform the next logical operation

on the version-controlled file

corresponding to the current buffer.

so it looks like this:

C-x v M-x vc-next-action Perform the next logical operation on the version-
controlled file corresponding to the current buffer.

In this case, the text should be formatted with @table, @item, and @itemx, to create a table.

@code, @samp, @var, and ‘---’

• Use @code around Lisp symbols, including command names. For example,

The main function is @code{vc-next-action}, ...

• Avoid putting letters such as ‘s’ immediately after an ‘@code’. Such letters look bad.

• Use @var around meta-variables. Do not write angle brackets around them.

• Use three hyphens in a row, ‘---’, to indicate a long dash. TEX typesets these as a long
dash and the Info formatters reduce three hyphens to two.

Periods Outside of Quotes

Place periods and other punctuation marks outside of quotations, unless the punctuation is
part of the quotation. This practice goes against some publishing conventions in the United
States, but enables the reader to distinguish between the contents of the quotation and the
whole passage.

For example, you should write the following sentence with the period outside the end quota-
tion marks:

Evidently, ‘au’ is an abbreviation for ``author''.

since ‘au’ does not serve as an abbreviation for ‘author.’ (with a period following the word).

Introducing New Terms

• Introduce new terms so that a reader who does not know them can understand them from
context; or write a definition for the term.

For example, in the following, the terms “check in”, “register” and “delta” are all appearing
for the first time; the example sentence should be rewritten so they are understandable.

The major function assists you in checking in a file to your version control
system and registering successive sets of changes to it as deltas.

• Use the @dfn command around a word being introduced, to indicate that the reader should
not expect to know the meaning already, and should expect to learn the meaning from this
passage.

Program Invocation Nodes

You can invoke programs such as Emacs, GCC, and gawk from a shell. The documentation for
each program should contain a section that describes this. Unfortunately, if the node names
and titles for these sections are all different, they are difficult for users to find.

So, there is a convention to name such sections with a phrase beginning with the word
‘Invoking’, as in ‘Invoking Emacs’; this way, users can find the section easily.



Appendix B: Tips and Hints 218

ANSI C Syntax

When you use @example to describe a C function’s calling conventions, use the ANSI C syntax,
like this:

void dld_init (char *@var{path});

And in the subsequent discussion, refer to the argument values by writing the same argument
names, again highlighted with @var.

Avoid the obsolete style that looks like this:

#include <dld.h>

dld_init (path)

char *path;

Also, it is best to avoid writing #include above the declaration just to indicate that the
function is declared in a header file. The practice may give the misimpression that the #include
belongs near the declaration of the function. Either state explicitly which header file holds the
declaration or, better yet, name the header file used for a group of functions at the beginning
of the section that describes the functions.

Node Length

Keep nodes (sections) to a reasonable length, whatever reasonable might be in the given context.
Don’t hesitate to break up long nodes into subnodes and have an extensive tree structure; that’s
what it’s there for. Many times, readers will probably try to find a single specific point in the
manual, using search, indexing, or just plain guessing, rather than reading the whole thing from
beginning to end.

You can use the texi-elements-by-size utility to see a list of all nodes (or sections) in
the document, sorted by size (either lines or words), to find candidates for splitting. It’s in the
util/ subdirectory of the Texinfo sources.

Bad Examples

Here are several examples of bad writing to avoid:

In this example, say, “ . . . you must @dfn{check in} the new version.” That flows better.

When you are done editing the file, you must perform a @dfn{check in}.
In the following example, say, “. . . makes a unified interface such as VC mode possible.”

SCCS, RCS and other version-control systems all perform similar functions in
broadly similar ways (it is this resemblance which makes a unified control mode
like this possible).

And in this example, you should specify what ‘it’ refers to:

If you are working with other people, it assists in coordinating everyone’s changes
so they do not step on each other.

And Finally . . .

• Pronounce TEX as if the ‘X’ were a Greek ‘chi’, as the last sound in the name ‘Bach’. But
pronounce Texinfo as in ‘speck’: “teckinfo”.

• Write notes for yourself at the very end of a Texinfo file after the @bye. None of the
formatters process text after the @bye; it is as if the text were within @ignore . . . @end

ignore.



219

Appendix C Sample Texinfo Files

The first example from the first chapter (see Section 2.4 [Short Sample], page 10) is given here
in its entirety, without commentary. The second example includes the full texts to be used in
GNU manuals.

C.1 Short Sample

Here is a complete, short sample Texinfo file. You can see this file, with comments, in the first
chapter. See Section 2.4 [Short Sample], page 10.

In a nutshell: The makeinfo program transforms a Texinfo source file such as this into an
Info file or HTML; and TEX typesets it for a printed manual.

\input texinfo

@settitle Sample Manual 1.0

@copying

This is a short example of a complete Texinfo file.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

@end copying

@titlepage

@title Sample Title

@page

@vskip 0pt plus 1filll

@insertcopying

@end titlepage

@c Output the table of the contents at the beginning.

@contents

@ifnottex

@node Top

@top GNU Sample

This manual is for GNU Sample

(version @value{VERSION}, @value{UPDATED}).

@end ifnottex

@menu

* First Chapter:: The first chapter is the

only chapter in this sample.

* Index:: Complete index.

@end menu

@node First Chapter

@chapter First Chapter

@cindex chapter, first



Appendix C: Sample Texinfo Files 220

This is the first chapter.

@cindex index entry, another

Here is a numbered list.

@enumerate

@item

This is the first item.

@item

This is the second item.

@end enumerate

@node Index

@unnumbered Index

@printindex cp

@bye

C.2 GNU Sample Texts

Following is a sample Texinfo document with the full texts that should be used (adapted as
necessary) in GNU manuals.

As well as the legal texts, it also serves as a practical example of how many elements in a
GNU system can affect the manual. If you’re not familiar with all these different elements, don’t
worry. They’re not required and a perfectly good manual can be written without them. They’re
included here nonetheless because many manuals do (or could) benefit from them.

See Section 2.4 [Short Sample], page 10, for a minimal example of a Texinfo file. See Chapter 3
[Beginning and Ending a File], page 13, for a full explanation of that minimal example.

Here are some notes on the example:

• The ‘$Id:’ comment is for the CVS (http://www.nongnu.org/cvs/), RCS (see Revision
Control System) and other version control systems, which expand it into a string such as:

$Id$

(This is potentially useful in all sources that use version control, not just manuals.) You
may wish to include the ‘$Id:’ comment in the @copying text, if you want a completely
unambiguous reference to the documentation source version.

If you want to literally write $Id$, use @w: @w{$}Id$. Unfortunately, this technique does
not work in plain text output, where it’s not clear what should be done.

• The version.texi in the @include command is maintained automatically by Automake
(see Section “Texinfo” in GNU Automake). It sets the ‘VERSION’, ‘UPDATED’ and
‘UPDATED-MONTH’ values used elsewhere. If your distribution doesn’t use Automake, but
you do use Emacs, you may find the time-stamp.el package helpful (see Section “Time
Stamps” in The GNU Emacs Manual).

• The @syncodeindex command reflects the recommendation to use only one index where
possible, to make it easier for readers to look up index entries.

• The @dircategory is for constructing the Info directory. See Section 21.2.4 [Installing Dir
Entries], page 180, which includes a variety of recommended category names.

http://www.nongnu.org/cvs/


Appendix C: Sample Texinfo Files 221

• The ‘Invoking’ node is a GNU standard to help users find the basic information about
command-line usage of a given program. See Section “Manual Structure Details” in GNU
Coding Standards.

• It is best to include the entire GNU Free Documentation License in a GNU manual, unless
the manual is only a few pages long. Of course this sample is even shorter than that, but it
includes the FDL anyway in order to show one conventional way to do so. The fdl.texi file
is available on the GNU machines and in the Texinfo and other GNU source distributions.

The FDL provides for omitting itself under certain conditions, but in that case the sample
texts given here have to be modified. See Appendix H [GNU Free Documentation License],
page 252.

• If the FSF is not the copyright holder, then use the appropriate name.

• If your manual is published on paper by the FSF or is longer than 400 pages, you should
include the standard FSF cover texts (see Section “License Notices for Documentation” in
GNU Maintainer Information).

• For documents that express your personal views, feelings or experiences, it is more appropri-
ate to use a license permitting only verbatim copying, rather than the FDL. See Section C.3
[Verbatim Copying License], page 222.

Here is the sample document:

\input texinfo @c -*-texinfo-*-

@comment $Id@w{$}

@comment %**start of header

@include version.texi

@settitle GNU Sample @value{VERSION}

@syncodeindex pg cp

@comment %**end of header

@copying

This manual is for GNU Sample (version @value{VERSION}, @value{UPDATED}),

which is an example in the Texinfo documentation.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

@quotation

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3 or

any later version published by the Free Software Foundation; with no

Invariant Sections, with no Front-Cover Texts, and with no Back-Cover

Texts. A copy of the license is included in the section entitled

``GNU Free Documentation License''.

@end quotation

@end copying

@dircategory Texinfo documentation system

@direntry

* sample: (sample)Invoking sample.

@end direntry

@titlepage

@title GNU Sample

@subtitle for version @value{VERSION}, @value{UPDATED}

@author A.U. Thor (@email{bug-sample@@gnu.org})



Appendix C: Sample Texinfo Files 222

@page

@vskip 0pt plus 1filll

@insertcopying

@end titlepage

@contents

@ifnottex

@node Top

@top GNU Sample

This manual is for GNU Sample (version @value{VERSION}, @value{UPDATED}).

@end ifnottex

@menu

* Invoking sample::

* GNU Free Documentation License::

* Index::

@end menu

@node Invoking sample

@chapter Invoking sample

@pindex sample

@cindex invoking @command{sample}

This is a sample manual. There is no sample program to

invoke, but if there were, you could see its basic usage

and command line options here.

@node GNU Free Documentation License

@appendix GNU Free Documentation License

@include fdl.texi

@node Index

@unnumbered Index

@printindex cp

@bye

C.3 Verbatim Copying License

For software manuals and other documentation, it is critical to use a license permitting free
redistribution and updating, so that when a free program is changed, the documentation can be
updated as well.

On the other hand, for documents that express your personal views, feelings or experiences,
it is more appropriate to use a license permitting only verbatim copying.



Appendix C: Sample Texinfo Files 223

Here is sample text for such a license permitting verbatim copying only. This is just the
license text itself. For a complete sample document, see the previous sections.

@copying

This document is a sample for allowing verbatim copying only.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

@quotation

Permission is granted to make and distribute verbatim copies

of this entire document without royalty provided the

copyright notice and this permission notice are preserved.

@end quotation

@end copying

C.4 All-permissive Copying License

For software manuals and other documentation, it is important to use a license permitting free
redistribution and updating, so that when a free program is changed, the documentation can be
updated as well.

On the other hand, for small supporting files, short manuals (under 300 lines long) and rough
documentation (README files, INSTALL files, etc.), the full FDL would be overkill. They can
use a simple all-permissive license.

Here is sample text for such an all-permissive license. This is just the license text itself. For
a complete sample document, see the previous sections.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,

are permitted in any medium without royalty provided the copyright

notice and this notice are preserved.



224

Appendix D Using Texinfo Mode

You may edit a Texinfo file with any text editor you choose. A Texinfo file is no different from
any other ASCII file. However, GNU Emacs comes with a special mode, called Texinfo mode,
that provides Emacs commands and tools to help ease your work.

D.1 Texinfo Mode Overview

Texinfo mode provides special features for working with Texinfo files. You can:

• Insert frequently used @-commands.

• Automatically create @node lines.

• Show the structure of a Texinfo source file.

• Automatically create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node.

• Automatically create or update menus.

• Automatically create a master menu.

• Format a part or all of a file for Info.

• Typeset and print part or all of a file.

Perhaps the two most helpful features are those for inserting frequently used @-commands
and for creating node pointers and menus.

D.2 The Usual GNU Emacs Editing Commands

In most cases, the usual Text mode commands work the same in Texinfo mode as they do
in Text mode. Texinfo mode adds new editing commands and tools to GNU Emacs’ general
purpose editing features. The major difference concerns filling. In Texinfo mode, the paragraph
separation variable and syntax table are redefined so that Texinfo commands that should be on
lines of their own are not inadvertently included in paragraphs. Thus, the M-q (fill-paragraph)
command will refill a paragraph but not mix an indexing command on a line adjacent to it into
the paragraph.

In addition, Texinfo mode sets the page-delimiter variable to the value of
texinfo-chapter-level-regexp; by default, this is a regular expression matching the
commands for chapters and their equivalents, such as appendices. With this value for the page
delimiter, you can jump from chapter title to chapter title with the C-x ] (forward-page) and
C-x [ (backward-page) commands and narrow to a chapter with the C-x n p (narrow-to-page)
command. (See Section “Pages” in The GNU Emacs Manual, for details about the page
commands.)

You may name a Texinfo file however you wish, but the convention is to end a Texinfo
file name with one of the extensions .texinfo, .texi, .txi, or .tex. A longer extension is
preferred, since it is explicit, but a shorter extension may be necessary for operating systems
that limit the length of file names. GNU Emacs automatically enters Texinfo mode when you
visit a file with a .texinfo, .texi or .txi extension. Also, Emacs switches to Texinfo mode
when you visit a file that has ‘-*-texinfo-*-’ in its first line. If ever you are in another mode
and wish to switch to Texinfo mode, type M-x texinfo-mode.

Like all other Emacs features, you can customize or enhance Texinfo mode as you wish. In
particular, the keybindings are very easy to change. The keybindings described here are the
default or standard ones.



Appendix D: Using Texinfo Mode 225

D.3 Inserting Frequently Used Commands

Texinfo mode provides commands to insert various frequently used @-commands into the buffer.
You can use these commands to save keystrokes.

The insert commands are invoked by typing C-c twice and then the first letter of the @-
command:

C-c C-c c

M-x texinfo-insert-@code

Insert @code{} and put the cursor between the braces.

C-c C-c d

M-x texinfo-insert-@dfn

Insert @dfn{} and put the cursor between the braces.

C-c C-c e

M-x texinfo-insert-@end

Insert @end and attempt to insert the correct following word, such as ‘example’ or
‘table’. (This command does not handle nested lists correctly, but inserts the word
appropriate to the immediately preceding list.)

C-c C-c i

M-x texinfo-insert-@item

Insert @item and put the cursor at the beginning of the next line.

C-c C-c k

M-x texinfo-insert-@kbd

Insert @kbd{} and put the cursor between the braces.

C-c C-c n

M-x texinfo-insert-@node

Insert @node and a comment line listing the sequence for the ‘Next’, ‘Previous’, and
‘Up’ nodes. Leave point after the @node.

C-c C-c o

M-x texinfo-insert-@noindent

Insert @noindent and put the cursor at the beginning of the next line.

C-c C-c r

M-x texinfo-insert-dwim-@ref

This function and binding were added in Emacs 27.1. Inserts one of @pxref{},
@xref{}, or @ref{} based on the text around point; calling it near an unclosed
preceding open parenthesis results in @pxref{}, at the beginning of a sentence or
at (point-min) yields @xref{}, any other location (including inside a word), will
result in @ref{}. A numeric argument says how many words the braces should
surround. Puts the cursor between the braces.

C-c C-c s

M-x texinfo-insert-@samp

Insert @samp{} and put the cursor between the braces.

C-c C-c t

M-x texinfo-insert-@table

Insert @table followed by a SPC and leave the cursor after the SPC.

C-c C-c v

M-x texinfo-insert-@var

Insert @var{} and put the cursor between the braces.



Appendix D: Using Texinfo Mode 226

C-c C-c x

M-x texinfo-insert-@example

Insert @example and put the cursor at the beginning of the next line.

C-c C-c {

M-x texinfo-insert-braces

Insert {} and put the cursor between the braces.

C-c }

C-c ]

M-x up-list

Move from between a pair of braces forward past the closing brace. Typing C-c

] is easier than typing C-c }, which is, however, more mnemonic; hence the two
keybindings. (Also, you can move out from between braces by typing C-f.)

To put a command such as @code{...} around an existing word, position the cursor in front
of the word and type C-u 1 C-c C-c c. This makes it easy to edit existing plain text. The value
of the prefix argument tells Emacs how many words following point to include between braces—
‘1’ for one word, ‘2’ for two words, and so on. Use a negative argument to enclose the previous
word or words. If you do not specify a prefix argument, Emacs inserts the @-command string
and positions the cursor between the braces. This feature works only for those @-commands
that operate on a word or words within one line, such as @kbd and @var.

This set of insert commands was created after analyzing the frequency with which different
@-commands are used in the GNU Emacs Manual and the GDB Manual. If you wish to add
your own insert commands, you can bind a keyboard macro to a key, use abbreviations, or
extend the code in texinfo.el.

C-c C-c C-d (texinfo-start-menu-description) is an insert command that works differ-
ently from the other insert commands. It inserts a node’s section or chapter title in the space
for the description in a menu entry line. (A menu entry has three parts, the entry name, the
node name, and the description. Only the node name is required, but a description helps explain
what the node is about. See Section 4.9.4 [The Parts of a Menu], page 35.)

To use texinfo-start-menu-description, position point in a menu entry line and type C-c
C-c C-d. The command looks for and copies the title that goes with the node name, and inserts
the title as a description; it positions point at beginning of the inserted text so you can edit it.
The function does not insert the title if the menu entry line already contains a description.

This command is only an aid to writing descriptions; it does not do the whole job. You must
edit the inserted text since a title tends to use the same words as a node name but a useful
description uses different words.

D.4 Showing the Sectioning Structure of a File

You can show the sectioning structure of a Texinfo file by using the C-c C-s command
(texinfo-show-structure). This command lists the lines that begin with the @-commands
for @chapter, @section, and the like. It constructs what amounts to a table of contents. These
lines are displayed in another buffer called the ‘*Occur*’ buffer. In that buffer, you can position
the cursor over one of the lines and use the C-c C-c command (occur-mode-goto-occurrence),
to jump to the corresponding spot in the Texinfo file.

C-c C-s

M-x texinfo-show-structure

Show the @chapter, @section, and such lines of a Texinfo file.



Appendix D: Using Texinfo Mode 227

C-c C-c

M-x occur-mode-goto-occurrence

Go to the line in the Texinfo file corresponding to the line under the cursor in the
*Occur* buffer.

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s, it will
list not only those lines with the @-commands for @chapter, @section, and the like, but also the
@node lines. You can use texinfo-show-structure with a prefix argument to check whether
the ‘Next’, ‘Previous’, and ‘Up’ pointers of an @node line are correct.

Often, when you are working on a manual, you will be interested only in the structure of the
current chapter. In this case, you can mark off the region of the buffer that you are interested in
by using the C-x n n (narrow-to-region) command and texinfo-show-structure will work on
only that region. To see the whole buffer again, use C-x n w (widen). (See Section “Narrowing”
in The GNU Emacs Manual, for more information about the narrowing commands.)

In addition to providing the texinfo-show-structure command, Texinfo mode sets the
value of the page delimiter variable to match the chapter-level @-commands. This enables
you to use the C-x ] (forward-page) and C-x [ (backward-page) commands to move forward
and backward by chapter, and to use the C-x n p (narrow-to-page) command to narrow to a
chapter. See Section “Pages” in The GNU Emacs Manual, for more information about the page
commands.

D.5 Updating Nodes and Menus

Texinfo mode provides commands for automatically creating or updating menus and node point-
ers. The commands are called “update” commands because their most frequent use is for up-
dating a Texinfo file after you have worked on it; but you can use them to insert the ‘Next’,
‘Previous’, and ‘Up’ pointers into an @node line that has none and to create menus in a file that
has none.

If you do not use any updating commands, you need to write menus by hand, which is a
tedious task.

D.5.1 The Updating Commands

You can use the updating commands to:

• insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node,

• insert or update the menu for a section, and

• create a master menu for a Texinfo source file.

You can also use the commands to update all the nodes and menus in a region or in a whole
Texinfo file.

The updating commands work only with conventional Texinfo files, which are structured
hierarchically like books. In such files, a structuring command line must follow closely after each
@node line, except for the ‘Top’ @node line. (A structuring command line is a line beginning
with @chapter, @section, or other similar command.)

You can write the structuring command line on the line that follows immediately after an
@node line or else on the line that follows after a single @comment line or a single @ifinfo line.
You cannot interpose more than one line between the @node line and the structuring command
line; and you may interpose only a @comment line or an @ifinfo line.

Commands which work on a whole buffer require that the ‘Top’ node be followed by a node
with a @chapter or equivalent-level command. The menu updating commands will not create a
main or master menu for a Texinfo file that has only @chapter-level nodes! The menu updating
commands only create menus within nodes for lower level nodes. To create a menu of chapters,
you must provide a ‘Top’ node.



Appendix D: Using Texinfo Mode 228

The menu updating commands remove menu entries that refer to other Info files since they
do not refer to nodes within the current buffer. This is a deficiency. Rather than use menu
entries, you can use cross references to refer to other Info files. None of the updating commands
affect cross-references.

Texinfo mode has five updating commands that are used most often: two are for updating
the node pointers or menu of a single node (or a region); two are for updating every node pointer
and menu in a file; and one, the texinfo-master-menu command, is for creating a master menu
for a complete file, and optionally, for updating every node and menu in the whole Texinfo file.

The texinfo-master-menu command is the primary command:

C-c C-u m

M-x texinfo-master-menu

Create or update a master menu that includes all the other menus (incorporating
the descriptions from pre-existing menus, if any).

With an argument (prefix argument, C-u, if interactive), first create or update all
the nodes and all the regular menus in the buffer before constructing the master
menu. (See Section 3.6 [The Top Node and Master Menu], page 21, for more about
a master menu.)

For texinfo-master-menu to work, the Texinfo file must have a ‘Top’ node and at
least one subsequent node.

After extensively editing a Texinfo file, you can type the following:

C-u M-x texinfo-master-menu

or
C-u C-c C-u m

This updates all the nodes and menus completely and all at once.

The other major updating commands do smaller jobs and are designed for the person who
updates nodes and menus as he or she writes a Texinfo file.

The commands are:

C-c C-u C-n

M-x texinfo-update-node

Insert the ‘Next’, ‘Previous’, and ‘Up’ pointers for the node that point is within
(i.e., for the @node line preceding point). If the @node line has pre-existing ‘Next’,
‘Previous’, or ‘Up’ pointers in it, the old pointers are removed and new ones inserted.
With an argument (prefix argument, C-u, if interactive), this command updates all
@node lines in the region (which is the text between point and mark).

C-c C-u C-m

M-x texinfo-make-menu

Create or update the menu in the node that point is within. With an argument
(C-u as prefix argument, if interactive), the command makes or updates menus for
the nodes which are either within or a part of the region.

Whenever texinfo-make-menu updates an existing menu, the descriptions from that
menu are incorporated into the new menu. This is done by copying descriptions from
the existing menu to the entries in the new menu that have the same node names.
If the node names are different, the descriptions are not copied to the new menu.

C-c C-u C-e

M-x texinfo-every-node-update

Insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers for every node in the
buffer.



Appendix D: Using Texinfo Mode 229

C-c C-u C-a

M-x texinfo-all-menus-update

Create or update all the menus in the buffer. With an argument (C-u as prefix
argument, if interactive), first insert or update all the node pointers before working
on the menus.

If a master menu exists, the texinfo-all-menus-update command updates it; but
the command does not create a new master menu if none already exists. (Use the
texinfo-master-menu command for that.)

When working on a document that does not merit a master menu, you can type the
following:

C-u C-c C-u C-a

or
C-u M-x texinfo-all-menus-update

This updates all the nodes and menus.

The texinfo-column-for-description variable specifies the column to which menu de-
scriptions are indented. By default, the value is 32 although it can be useful to reduce it to as
low as 24. You can set the variable via customization (see Section “Customization” in The GNU
Emacs Manual) or with the M-x set-variable command (see Section “Examining and Setting
Variables” in The GNU Emacs Manual).

Also, the texinfo-indent-menu-description command may be used to indent existing
menu descriptions to a specified column. Finally, if you wish, you can use the texinfo-insert-

node-lines command to insert missing @node lines into a file. (See Section D.5.3 [Other Up-
dating Commands], page 230, for more information.)

D.5.2 Updating Requirements

To use the updating commands, you must organize the Texinfo file hierarchically with chapters,
sections, subsections, and the like. When you construct the hierarchy of the manual, do not
‘jump down’ more than one level at a time: you can follow the ‘Top’ node with a chapter, but not
with a section; you can follow a chapter with a section, but not with a subsection. However, you
may ‘jump up’ any number of levels at one time—for example, from a subsection to a chapter.

Each @node line, with the exception of the line for the ‘Top’ node, must be followed by a line
with a structuring command such as @chapter, @section, or @unnumberedsubsec.

Each @node line/structuring-command line combination must look either like this:

@node Comments, Minimum, Conventions, Overview

@comment node-name, next, previous, up

@section Comments

or like this (without the @comment line):

@node Comments, Minimum, Conventions, Overview

@section Comments

or like this (without the explicit node pointers):

@node Comments

@section Comments

In this example, ‘Comments’ is the name of both the node and the section. The next node
is called ‘Minimum’ and the previous node is called ‘Conventions’. The ‘Comments’ section is
within the ‘Overview’ node, which is specified by the ‘Up’ pointer. (Instead of an @comment line,
you may also write an @ifinfo line.)

If a file has a ‘Top’ node, it must be called ‘top’ or ‘Top’ and be the first node in the file.



Appendix D: Using Texinfo Mode 230

The menu updating commands create a menu of sections within a chapter, a menu of sub-
sections within a section, and so on. This means that you must have a ‘Top’ node if you want
a menu of chapters.

Incidentally, the makeinfo command will create an Info file for a hierarchically organized
Texinfo file that lacks ‘Next’, ‘Previous’ and ‘Up’ pointers. Thus, if you can be sure that your
Texinfo file will be formatted with makeinfo, you have no need for the update node commands.
(See Section 21.1 [Creating an Info File], page 175, for more information about makeinfo.)

D.5.3 Other Updating Commands

In addition to the five major updating commands, Texinfo mode possesses several less frequently
used updating commands:

M-x texinfo-insert-node-lines

Insert @node lines before the @chapter, @section, and other sectioning commands
wherever they are missing throughout a region in a Texinfo file.

With an argument (C-u as prefix argument, if interactive), the command
texinfo-insert-node-lines not only inserts @node lines but also inserts the
chapter or section titles as the names of the corresponding nodes. In addition,
it inserts the titles as node names in pre-existing @node lines that lack names.
Since node names should be more concise than section or chapter titles, you must
manually edit node names so inserted.

For example, the following marks a whole buffer as a region and inserts @node lines
and titles throughout:

C-x h C-u M-x texinfo-insert-node-lines

This command inserts titles as node names in @node lines; the texinfo-start-

menu-description command (see Section D.3 [Inserting], page 225) inserts titles
as descriptions in menu entries, a different action. However, in both cases, you need
to edit the inserted text.

M-x texinfo-multiple-files-update

Update nodes and menus in a document built from several separate files. With
C-u as a prefix argument, create and insert a master menu in the outer file. With a
numeric prefix argument, such as C-u 2, first update all the menus and all the ‘Next’,
‘Previous’, and ‘Up’ pointers of all the included files before creating and inserting a
master menu in the outer file. The texinfo-multiple-files-update command is
described in the appendix on @include files. See Section 18.2 [texinfo-multiple-
files-update], page 140.

M-x texinfo-indent-menu-description

Indent every description in the menu following point to the specified column.
You can use this command to give yourself more space for descriptions. With
an argument (C-u as prefix argument, if interactive), the texinfo-indent-menu-

description command indents every description in every menu in the region. How-
ever, this command does not indent the second and subsequent lines of a multi-line
description.

M-x texinfo-sequential-node-update

Insert the names of the nodes immediately following and preceding the current node
as the ‘Next’ or ‘Previous’ pointers regardless of those nodes’ hierarchical level.
This means that the ‘Next’ node of a subsection may well be the next chapter.
Sequentially ordered nodes are useful for novels and other documents that you read
through sequentially. (However, in Info, the g * command lets you look through the
file sequentially, so sequentially ordered nodes are not strictly necessary.) With an



Appendix D: Using Texinfo Mode 231

argument (prefix argument, if interactive), the texinfo-sequential-node-update

command sequentially updates all the nodes in the region.

D.6 Formatting for Info

Texinfo mode provides several commands for formatting part or all of a Texinfo file for Info.
Often, when you are writing a document, you want to format only part of a file—that is, a
region.

You can use either the texinfo-format-region or the makeinfo-region command to format
a region:

C-c C-e C-r

M-x texinfo-format-region

C-c C-m C-r

M-x makeinfo-region

Format the current region for Info.

You can use either the texinfo-format-buffer or the makeinfo-buffer command to format
a whole buffer:

C-c C-e C-b

M-x texinfo-format-buffer

C-c C-m C-b

M-x makeinfo-buffer

Format the current buffer for Info.

For example, after writing a Texinfo file, you can type the following:

C-u C-c C-u m

or
C-u M-x texinfo-master-menu

This updates all the nodes and menus. Then type the following to create an Info file:

C-c C-m C-b

or
M-x makeinfo-buffer

See Section 21.1 [Creating an Info File], page 175, for details about Info formatting.

D.7 Printing

Typesetting and printing a Texinfo file is a multi-step process in which you first create a file for
printing (called a DVI file), and then print the file. Optionally, you may also create indices. To
do this, you must run the texindex command after first running the tex typesetting command;
and then you must run the tex command again. Or else run the texi2dvi command which
automatically creates indices as needed (see Section 19.2 [Format with texi2dvi], page 143).

Often, when you are writing a document, you want to typeset and print only part of a file
to see what it will look like. You can use the texinfo-tex-region and related commands for
this purpose. Use the texinfo-tex-buffer command to format all of a buffer.

C-c C-t C-b

M-x texinfo-tex-buffer

Run texi2dvi on the buffer. In addition to running TEX on the buffer, this com-
mand automatically creates or updates indices as needed.

C-c C-t C-r

M-x texinfo-tex-region

Run TEX on the region.



Appendix D: Using Texinfo Mode 232

C-c C-t C-i

M-x texinfo-texindex

Run texindex to sort the indices of a Texinfo file formatted with texinfo-tex-

region. The texinfo-tex-region command does not run texindex automatically;
it only runs the tex typesetting command. You must run the texinfo-tex-region

command a second time after sorting the raw index files with the texindex com-
mand. (Usually, you do not format an index when you format a region, only when
you format a buffer. Now that the texi2dvi command exists, there is little or no
need for this command.)

C-c C-t C-p

M-x texinfo-tex-print

Print the file (or the part of the file) previously formatted with texinfo-tex-buffer

or texinfo-tex-region.

For texinfo-tex-region or texinfo-tex-buffer to work, the file must start with a ‘\input
texinfo’ line and must include a @settitle line. The file must end with @bye on a line by
itself. (When you use texinfo-tex-region, you must surround the @settitle line with start-
of-header and end-of-header lines.)

See Chapter 19 [Hardcopy], page 143, for a description of the other TEX related commands,
such as tex-show-print-queue.

D.8 Texinfo Mode Summary

In Texinfo mode, each set of commands has default keybindings that begin with the same keys.
All the commands that are custom-created for Texinfo mode begin with C-c. The keys are
somewhat mnemonic.

Insert Commands

The insert commands are invoked by typing C-c twice and then the first letter of the @-command
to be inserted. (It might make more sense mnemonically to use C-c C-i, for ‘custom insert’,
but C-c C-c is quick to type.)

C-c C-c c Insert ‘@code’.

C-c C-c d Insert ‘@dfn’.

C-c C-c e Insert ‘@end’.

C-c C-c i Insert ‘@item’.

C-c C-c n Insert ‘@node’.

C-c C-c s Insert ‘@samp’.

C-c C-c v Insert ‘@var’.

C-c { Insert braces.
C-c ]

C-c } Move out of enclosing braces.

C-c C-c C-d Insert a node’s section title
in the space for the description
in a menu entry line.

Show Structure

The texinfo-show-structure command is often used within a narrowed region.

C-c C-s List all the headings.



Appendix D: Using Texinfo Mode 233

The Master Update Command

The texinfo-master-menu command creates a master menu; and can be used to update every
node and menu in a file as well.

C-c C-u m

M-x texinfo-master-menu

Create or update a master menu.

C-u C-c C-u m With C-u as a prefix argument, first
create or update all nodes and regular
menus, and then create a master menu.

Update Pointers

The update pointer commands are invoked by typing C-c C-u and then either C-n for
texinfo-update-node or C-e for texinfo-every-node-update.

C-c C-u C-n Update a node.
C-c C-u C-e Update every node in the buffer.

Update Menus

Invoke the update menu commands by typing C-c C-u and then either C-m for texinfo-make-

menu or C-a for texinfo-all-menus-update. To update both nodes and menus at the same
time, precede C-c C-u C-a with C-u.

C-c C-u C-m Make or update a menu.

C-c C-u C-a Make or update all
menus in a buffer.

C-u C-c C-u C-a With C-u as a prefix argument,
first create or update all nodes and
then create or update all menus.

Format for Info

The Info formatting commands that are written in Emacs Lisp are invoked by typing C-c C-e

and then either C-r for a region or C-b for the whole buffer.

The Info formatting commands that are written in C and based on the makeinfo program
are invoked by typing C-c C-m and then either C-r for a region or C-b for the whole buffer.

Use the texinfo-format... commands:

C-c C-e C-r Format the region.
C-c C-e C-b Format the buffer.

Use makeinfo:

C-c C-m C-r Format the region.
C-c C-m C-b Format the buffer.
C-c C-m C-l Recenter the makeinfo output buffer.
C-c C-m C-k Kill the makeinfo formatting job.

Typeset and Print

The TEX typesetting and printing commands are invoked by typing C-c C-t and then another
control command: C-r for texinfo-tex-region, C-b for texinfo-tex-buffer, and so on.

C-c C-t C-r Run TEX on the region.
C-c C-t C-b Run texi2dvi on the buffer.



Appendix D: Using Texinfo Mode 234

C-c C-t C-i Run texindex.

C-c C-t C-p Print the DVI file.
C-c C-t C-q Show the print queue.
C-c C-t C-d Delete a job from the print queue.
C-c C-t C-k Kill the current TEX formatting job.
C-c C-t C-x Quit a currently stopped TEX formatting job.
C-c C-t C-l Recenter the output buffer.

Other Updating Commands

The remaining updating commands do not have standard keybindings because they are rarely
used.

M-x texinfo-insert-node-lines

Insert missing @node lines in region.
With C-u as a prefix argument,
use section titles as node names.

M-x texinfo-multiple-files-update

Update a multi-file document.
With C-u 2 as a prefix argument,
create or update all nodes and menus
in all included files first.

M-x texinfo-indent-menu-description

Indent descriptions.

M-x texinfo-sequential-node-update

Insert node pointers in strict sequence.



235

Appendix E Page Headings

Most printed manuals contain headings along the top of every page except the title and copyright
pages. Some manuals also contain footings. Headings and footings have no meaning in Info or
the other output formats.

E.1 Headings Introduced

Texinfo provides standard page heading formats for manuals that are printed on one side of each
sheet of paper and for manuals that are printed on both sides of the paper. Typically, you will
use these formats, but you can specify your own format if you wish.

In addition, you can specify whether chapters should begin on a new page, or merely continue
the same page as the previous chapter; and if chapters begin on new pages, you can specify
whether they must be odd-numbered pages.

By convention, a book is printed on both sides of each sheet of paper. When you open a book,
the right-hand page is odd-numbered, and chapters begin on right-hand pages—a preceding left-
hand page is left blank if necessary. Reports, however, are often printed on just one side of paper,
and chapters begin on a fresh page immediately following the end of the preceding chapter. In
short or informal reports, chapters often do not begin on a new page at all, but are separated
from the preceding text by a small amount of whitespace.

The @setchapternewpage command controls whether chapters begin on new pages, and
whether one of the standard heading formats is used. In addition, Texinfo has several heading
and footing commands that you can use to generate your own heading and footing formats.

In Texinfo, headings and footings are single lines at the tops and bottoms of pages; you
cannot create multiline headings or footings. Each header or footer line is divided into three
parts: a left part, a middle part, and a right part. Any part, or a whole line, may be left blank.
Text for the left part of a header or footer line is set flushleft; text for the middle part is centered;
and, text for the right part is set flushright.

E.2 Standard Heading Formats

Texinfo provides two standard heading formats, one for manuals printed on one side of each
sheet of paper, and the other for manuals printed on both sides of the paper.

By default, nothing is specified for the footing of a Texinfo file, so the footing remains blank.

The standard format for single-sided printing consists of a header line in which the left-hand
part contains the name of the chapter, the central part is blank, and the right-hand part contains
the page number.

A single-sided page looks like this:

_______________________

| |

| chapter page number |

| |

| Start of text ... |

| ... |

| |

The standard format for two-sided printing depends on whether the page number is even
or odd. By convention, even-numbered pages are on the left- and odd-numbered pages are on
the right. (TEX will adjust the widths of the left- and right-hand margins. Usually, widths are
correct, but during double-sided printing, it is wise to check that pages will bind properly—
sometimes a printer will produce output in which the even-numbered pages have a larger right-
hand margin than the odd-numbered pages.)



Appendix E: Page Headings 236

In the standard double-sided format, the left part of the left-hand (even-numbered) page
contains the page number, the central part is blank, and the right part contains the title (specified
by the @settitle command). The left part of the right-hand (odd-numbered) page contains
the name of the chapter, the central part is blank, and the right part contains the page number.

Two pages, side by side as in an open book, look like this:

_______________________ _______________________

| | | |

| page number title | | chapter page number |

| | | |

| Start of text ... | | More text ... |

| ... | | ... |

| | | |

The chapter name is preceded by the word “Chapter”, the chapter number and a colon. This
makes it easier to keep track of where you are in the manual.

E.3 Specifying the Type of Heading

TEX does not begin to generate page headings for a standard Texinfo file until it reaches the
@end titlepage command. Thus, the title and copyright pages are not numbered. The @end

titlepage command causes TEX to begin to generate page headings according to a standard
format specified by the @setchapternewpage command that precedes the @titlepage section.

There are four possibilities:

No @setchapternewpage command
Cause TEX to specify the single-sided heading format, with chapters on new pages.
This is the same as @setchapternewpage on.

@setchapternewpage on

Specify the single-sided heading format, with chapters on new pages.

@setchapternewpage off

Cause TEX to start a new chapter on the same page as the last page of the preceding
chapter, after skipping some vertical whitespace. Also cause TEX to typeset for
single-sided printing. (You can override the headers format with the @headings

double command; see Section 3.7.3 [@headings], page 24.)

@setchapternewpage odd

Specify the double-sided heading format, with chapters on new pages.

Texinfo lacks a @setchapternewpage even command.

E.4 How to Make Your Own Headings

You can use the standard headings provided with Texinfo or specify your own. By default,
Texinfo has no footers, so if you specify them, the available page size for the main text will be
slightly reduced.

Texinfo provides six commands for specifying headings and footings:

• @everyheading and @everyfooting generate page headers and footers that are the same
for both even- and odd-numbered pages.

• @evenheading and @evenfooting command generate headers and footers for
even-numbered (left-hand) pages.

• @oddheading and @oddfooting generate headers and footers for odd-numbered (right-hand)
pages.



Appendix E: Page Headings 237

Write custom heading specifications in the Texinfo file immediately after the @end titlepage

command. You must cancel the predefined heading commands with the @headings off com-
mand before defining your own specifications.

Here is how to tell TEX to place the chapter name at the left, the page number in the center,
and the date at the right of every header for both even- and odd-numbered pages:

@headings off

@everyheading @thischapter @| @thispage @| @today{}

You need to divide the left part from the central part and the central part from the right part
by inserting ‘@|’ between parts. Otherwise, the specification command will not be able to tell
where the text for one part ends and the next part begins.

Each part can contain text or @-commands. The text is printed as if the part were within
an ordinary paragraph in the body of the page. The @-commands replace themselves with the
page number, date, chapter name, or whatever.

Here are the six heading and footing commands:

@everyheading left @| center @| right

@everyfooting left @| center @| right

The ‘every’ commands specify the format for both even- and odd-numbered pages.
These commands are for documents that are printed on one side of each sheet of
paper, or for documents in which you want symmetrical headers or footers.

@evenheading left @| center @| right

@oddheading left @| center @| right

@evenfooting left @| center @| right

@oddfooting left @| center @| right

The ‘even’ and ‘odd’ commands specify the format for even-numbered pages and
odd-numbered pages. These commands are for books and manuals that are printed
on both sides of each sheet of paper.

Use the ‘@this...’ series of @-commands to provide the names of chapters and sections and
the page number. You can use the ‘@this...’ commands in the left, center, or right portions of
headers and footers, or anywhere else in a Texinfo file so long as they are between @iftex and
@end iftex commands.

Here are the ‘@this...’ commands:

@thispage

Expands to the current page number.

@thissectionname

Expands to the name of the current section.

@thissectionnum

Expands to the number of the current section.

@thissection

Expands to the number and name of the current section, in the format ‘Section 1:
Title’.

@thischaptername

Expands to the name of the current chapter.

@thischapternum

Expands to the number of the current chapter, or letter of the current appendix.

@thischapter

Expands to the number and name of the current chapter, in the format ‘Chapter 1:
Title’.



Appendix E: Page Headings 238

@thistitle

Expands to the name of the document, as specified by the @settitle command.

@thisfile

For @include files only: expands to the name of the current @include file. If the
current Texinfo source file is not an @include file, this command has no effect. This
command does not provide the name of the current Texinfo source file unless it is
an @include file. (See Chapter 18 [Include Files], page 140, for more information
about @include files.)

You can also use the @today{} command, which expands to the current date, in ‘1 Jan 1900’
format.

Other @-commands and text are printed in a header or footer just as if they were in the body
of a page. It is useful to incorporate text, particularly when you are writing drafts:

@headings off

@everyheading @emph{Draft!} @| @thispage @| @thischapter

@everyfooting @| @| Version: 0.27: @today{}

Beware of overlong titles: they may overlap another part of the header or footer and blot it
out.

If you have very short chapters and/or sections, several of them can appear on a single page.
You can specify which chapters and sections you want @thischapter, @thissection and other
such macros to refer to on such pages as follows:

@everyheadingmarks ref

@everyfootingmarks ref

The ref argument can be either top (the @this... commands will refer to the
chapter/section at the top of a page) or bottom (the commands will reflect the
situation at the bottom of a page). These ‘@every...’ commands specify what to
do on both even- and odd-numbered pages.

@evenheadingmarks ref

@oddheadingmarks ref

@evenfootingmarks ref

@oddfootingmarks ref

These ‘@even...’ and ‘@odd...’ commands specify what to do on only even- or odd-
numbered pages, respectively. The ref argument is the same as with the ‘@every...’
commands.

Write these commands immediately after the @...contents commands, or after the @end

titlepage command if you don’t have a table of contents or if it is printed at the end of your
manual.

By default the @this... commands reflect the situation at the bottom of a page both in
headings and in footings.



239

Appendix F Catching Mistakes

Besides mistakes in the content of your documentation, there are two kinds of mistake you can
make with Texinfo: you can make mistakes with @-commands, and you can make mistakes with
the structure of the nodes and chapters.

Emacs has two tools for catching the @-command mistakes and two for catching structuring
mistakes.

For finding problems with @-commands, you can run TEX or a region formatting command
on the region that has a problem; indeed, you can run these commands on each region as you
write it.

For finding problems with the structure of nodes and chapters, you can use C-c C-s

(texinfo-show-structure) and the related occur command and you can use the M-x Info-

validate command.

F.1 makeinfo Preferred

The makeinfo program does an excellent job of catching errors and reporting them—far better
than texinfo-format-region or texinfo-format-buffer. In addition, the various functions
for automatically creating and updating node pointers and menus remove many opportunities
for human error.

If you can, use the updating commands to create and insert pointers and menus. These
prevent many errors. Then use makeinfo (or its Texinfo mode manifestations, makeinfo-region
and makeinfo-buffer) to format your file and check for other errors. This is the best way to
work with Texinfo. But if you cannot use makeinfo, or your problem is very puzzling, then you
may want to use the tools described in this appendix.

F.2 Catching Errors with Info Formatting

After you have written part of a Texinfo file, you can use the texinfo-format-region or the
makeinfo-region command to see whether the region formats properly.

Most likely, however, you are reading this section because for some reason you cannot use
the makeinfo-region command; therefore, the rest of this section presumes that you are using
texinfo-format-region.

If you have made a mistake with an @-command, texinfo-format-region will stop pro-
cessing at or after the error and display an error message. To see where in the buffer the error
occurred, switch to the ‘*Info Region*’ buffer; the cursor will be in a position that is after
the location of the error. Also, the text will not be formatted after the place where the error
occurred (or more precisely, where it was detected).

For example, if you accidentally end a menu with the command @end menus with an ‘s’ on
the end, instead of with @end menu, you will see an error message that says:

@end menus is not handled by texinfo

The cursor will stop at the point in the buffer where the error occurs, or not long after it. The
buffer will look like this:



Appendix F: Catching Mistakes 240

---------- Buffer: *Info Region* ----------

* Menu:

* Using texinfo-show-structure:: How to use

`texinfo-show-structure'

to catch mistakes.

* Running Info-validate:: How to check for

unreferenced nodes.

@end menus

?
---------- Buffer: *Info Region* ----------

The texinfo-format-region command sometimes provides slightly odd error messages. For
example, the following cross-reference fails to format:

(@xref{Catching Mistakes, for more info.)

In this case, texinfo-format-region detects the missing closing brace but displays a message
that says ‘Unbalanced parentheses’ rather than ‘Unbalanced braces’. This is because the
formatting command looks for mismatches between braces as if they were parentheses.

Sometimes texinfo-format-region fails to detect mistakes. For example, in the following,
the closing brace is swapped with the closing parenthesis:

(@xref{Catching Mistakes), for more info.}

Formatting produces:

(*Note for more info.: Catching Mistakes)

The only way for you to detect this error is to realize that the reference should have looked
like this:

(*Note Catching Mistakes::, for more info.)

Incidentally, if you are reading this node in Info and type f RET (Info-follow-reference),
you will generate an error message that says:

No such node: "Catching Mistakes) The only way ...

This is because Info perceives the example of the error as the first cross-reference in this node
and if you type a RET immediately after typing the Info f command, Info will attempt to go
to the referenced node. If you type f catch TAB RET, Info will complete the node name of the
correctly written example and take you to the ‘Catching Mistakes’ node. (If you try this, you
can return from the ‘Catching Mistakes’ node by typing l (Info-last).)

F.3 Debugging with TEX

You can also catch mistakes when you format a file with TEX.

Usually, you will want to do this after you have run texinfo-format-buffer (or, better,
makeinfo-buffer) on the same file, because texinfo-format-buffer sometimes displays error
messages that make more sense than TEX. (See Section F.2 [Debugging with Info], page 239,
for more information.)

For example, TEX was run on a Texinfo file, part of which is shown here:

---------- Buffer: texinfo.texi ----------

name of the Texinfo file as an extension. The

@samp{??} are `wildcards' that cause the shell to

substitute all the raw index files. (@xref{sorting

indices, for more information about sorting

indices.)@refill

---------- Buffer: texinfo.texi ----------



Appendix F: Catching Mistakes 241

(The cross-reference lacks a closing brace.) TEX produced the following output, after which it
stopped:

---------- Buffer: *tex-shell* ----------

Runaway argument?

{sorting indices, for more information about sorting

indices.) @refill @ETC.

! Paragraph ended before @xref was complete.

<to be read again>

@par

l.27

?

---------- Buffer: *tex-shell* ----------

In this case, TEX produced an accurate and understandable error message:

Paragraph ended before @xref was complete.

‘@par’ is an internal TEX command of no relevance to Texinfo. ‘l.27’ means that TEX detected
the problem on line 27 of the Texinfo file. The ‘?’ is the prompt TEX uses in this circumstance.

Unfortunately, TEX is not always so helpful, and sometimes you must truly be a Sherlock
Holmes to discover what went wrong.

In any case, if you run into a problem like this, you can do one of three things.

1. You can tell TEX to continue running and ignore just this error by typing RET at the ‘?’
prompt.

2. You can tell TEX to continue running and to ignore all errors as best it can by typing r RET

at the ‘?’ prompt.

This is often the best thing to do. However, beware: the one error may produce a cascade
of additional error messages as its consequences are felt through the rest of the file. To stop
TEX when it is producing such an avalanche of error messages, type C-c (or C-c C-c, if you
are running a shell inside Emacs).

3. You can tell TEX to stop this run by typing x RET at the ‘?’ prompt.

If you are running TEX inside Emacs, you need to switch to the shell buffer and line at which
TEX offers the ‘?’ prompt.

Sometimes TEX will format a file without producing error messages even though there is a
problem. This usually occurs if a command is not ended but TEX is able to continue processing
anyhow. For example, if you fail to end an itemized list with the @end itemize command, TEX
will write a DVI file that you can print out. The only error message that TEX will give you is
the somewhat mysterious comment:

(@end occurred inside a group at level 1)

However, if you print the DVI file, you will find that the text of the file that follows the itemized
list is entirely indented as if it were part of the last item in the itemized list. The error message
is the way TEX says that it expected to find an @end command somewhere in the file; but that
it could not determine where it was needed.

Another source of notoriously hard-to-find errors is a missing @end group command. If you
ever are stumped by incomprehensible errors, look for a missing @end group command first.

If the Texinfo file lacks header lines, TEX may stop in the beginning of its run and display
output that looks like the following. The ‘*’ indicates that TEX is waiting for input.

This is TeX, Version 3.14159 (Web2c 7.0)

(test.texinfo [1])

*



Appendix F: Catching Mistakes 242

In this case, simply type \end RET after the asterisk. Then write the header lines in the Texinfo
file and run the TEX command again. (Note the use of the backslash, ‘\’. TEX uses ‘\’ instead
of ‘@’; and in this circumstance, you are working directly with TEX, not with Texinfo.)

F.4 Using texinfo-show-structure

It is not always easy to keep track of the nodes, chapters, sections, and subsections of a Texinfo
file. This is especially true if you are revising or adding to a Texinfo file that someone else has
written.

In GNU Emacs, in Texinfo mode, the texinfo-show-structure command lists all the lines
that begin with the @-commands that specify the structure: @chapter, @section, @appendix,
and so on. With an argument (C-u as prefix argument, if interactive), the command also shows
the @node lines. The texinfo-show-structure command is bound to C-c C-s in Texinfo mode,
by default.

The lines are displayed in a buffer called the ‘*Occur*’ buffer, indented by hierarchical level.
For example, here is a part of what was produced by running texinfo-show-structure on this
manual:

Lines matching "^@\\(chapter \\|sect\\|subs\\|subh\\|

unnum\\|major\\|chapheading \\|heading \\|appendix\\)"

in buffer texinfo.texi.

...

4177:@chapter Nodes

4198: @heading Two Paths

4231: @section Node and Menu Illustration

4337: @section The @code{@@node} Command

4393: @subheading Choosing Node and Pointer Names

4417: @subsection How to Write a @code{@@node} Line

4469: @subsection @code{@@node} Line Tips

...

This says that lines 4337, 4393, and 4417 of texinfo.texi begin with the @section,
@subheading, and @subsection commands respectively. If you move your cursor into the
‘*Occur*’ window, you can position the cursor over one of the lines and use the C-c C-c command
(occur-mode-goto-occurrence), to jump to the corresponding spot in the Texinfo file. See
Section “Using Occur” in The GNU Emacs Manual, for more information about occur-mode-

goto-occurrence.

The first line in the ‘*Occur*’ window describes the regular expression specified by texinfo-
heading-pattern. This regular expression is the pattern that texinfo-show-structure looks
for. See Section “Using Regular Expressions” in The GNU Emacs Manual, for more information.

When you invoke the texinfo-show-structure command, Emacs will display the structure
of the whole buffer. If you want to see the structure of just a part of the buffer, of one chapter,
for example, use the C-x n n (narrow-to-region) command to mark the region. (See Section
“Narrowing” in The GNU Emacs Manual.) This is how the example used above was generated.
(To see the whole buffer again, use C-x n w (widen).)

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s, it will
list lines beginning with @node as well as the lines beginning with the @-sign commands for
@chapter, @section, and the like.

You can remind yourself of the structure of a Texinfo file by looking at the list in the ‘*Occur*’
window; and if you have mis-named a node or left out a section, you can correct the mistake.



Appendix F: Catching Mistakes 243

F.5 Using occur

Sometimes the texinfo-show-structure command produces too much information. Perhaps
you want to remind yourself of the overall structure of a Texinfo file, and are overwhelmed by
the detailed list produced by texinfo-show-structure. In this case, you can use the occur

command directly. To do this, type:

M-x occur

and then, when prompted, type a regexp, a regular expression for the pattern you want to
match. (See Section “Regular Expressions” in The GNU Emacs Manual.) The occur command
works from the current location of the cursor in the buffer to the end of the buffer. If you want
to run occur on the whole buffer, place the cursor at the beginning of the buffer.

For example, to see all the lines that contain the word ‘@chapter’ in them, just type
‘@chapter’. This will produce a list of the chapters. It will also list all the sentences with
‘@chapter’ in the middle of the line.

If you want to see only those lines that start with the word ‘@chapter’, type ‘^@chapter’
when prompted by occur. If you want to see all the lines that end with a word or phrase, end
the last word with a ‘$’; for example, ‘catching mistakes$’. This can be helpful when you
want to see all the nodes that are part of the same chapter or section and therefore have the
same ‘Up’ pointer.

See Section “Using Occur” in The GNU Emacs Manual, for more information.

F.6 Finding Badly Referenced Nodes

You can use the Info-validate command to check whether any of the ‘Next’, ‘Previous’, ‘Up’
or other node pointers fail to point to a node. This command checks that every node pointer
points to an existing node. The Info-validate command works only on Info files, not on
Texinfo files.

The makeinfo program validates pointers automatically, so you do not need to use the
Info-validate command if you are using makeinfo. You only may need to use Info-validate
if you are unable to run makeinfo and instead must create an Info file using texinfo-format-

region or texinfo-format-buffer, or if you write an Info file from scratch.

F.6.1 Using Info-validate

To use Info-validate, visit the Info file you wish to check and type:

M-x Info-validate

Note that the Info-validate command requires an uppercase ‘I’. You may also need to create
a tag table before running Info-validate. See Section F.6.3 [Tagifying], page 244.

If your file is valid, you will receive a message that says “File appears valid”. However, if you
have a pointer that does not point to a node, error messages will be displayed in a buffer called
‘*problems in info file*’.

For example, Info-validate was run on a test file that contained only the first node of this
manual. One of the messages said:

In node "Overview", invalid Next: Texinfo Mode

This meant that the node called ‘Overview’ had a ‘Next’ pointer that did not point to anything
(which was true in this case, since the test file had only one node in it).

Now suppose we add a node named ‘Texinfo Mode’ to our test case but we do not specify a
‘Previous’ for this node. Then we will get the following error message:

In node "Texinfo Mode", should have Previous: Overview

This is because every ‘Next’ pointer should be matched by a ‘Previous’ (in the node where the
‘Next’ points) which points back.



Appendix F: Catching Mistakes 244

Info-validate also checks that all menu entries and cross-references point to actual nodes.

Info-validate requires a tag table and does not work with files that have been split.
(The texinfo-format-buffer command automatically splits large files.) In order to use
Info-validate on a large file, you must run texinfo-format-buffer with an argument so
that it does not split the Info file; and you must create a tag table for the unsplit file.

F.6.2 Creating an Unsplit File

You can run Info-validate only on a single Info file that has a tag table. The command will
not work on the indirect subfiles that are generated when a master file is split. If you have
a large file (longer than 300,000 bytes or so), you need to run the texinfo-format-buffer or
makeinfo-buffer command in such a way that it does not create indirect subfiles. You will also
need to create a tag table for the Info file. After you have done this, you can run Info-validate

and look for badly referenced nodes.

The first step is to create an unsplit Info file. To prevent texinfo-format-buffer from
splitting a Texinfo file into smaller Info files, give a prefix to the M-x texinfo-format-buffer

command:

C-u M-x texinfo-format-buffer

or else

C-u C-c C-e C-b

When you do this, Texinfo will not split the file and will not create a tag table for it.

F.6.3 Tagifying a File

After creating an unsplit Info file, you must create a tag table for it. Visit the Info file you wish
to tagify and type:

M-x Info-tagify

(Note the uppercase ‘I’ in Info-tagify.) This creates an Info file with a tag table that you can
validate.

The third step is to validate the Info file:

M-x Info-validate

(Note the uppercase ‘I’ in Info-validate.) In brief, the steps are:

C-u M-x texinfo-format-buffer

M-x Info-tagify

M-x Info-validate

After you have validated the node structure, you can rerun texinfo-format-buffer in the
normal way so it will construct a tag table and split the file automatically, or you can make the
tag table and split the file manually.

F.6.4 Splitting a File Manually

You should split a large file or else let the texinfo-format-buffer or makeinfo-buffer com-
mand do it for you automatically. (Generally you will let one of the formatting commands do
this job for you. See Section 21.1 [Creating an Info File], page 175.)

The split-off files are called the indirect subfiles.

Info files are split to save memory. With smaller files, Emacs does not have make such a
large buffer to hold the information.

If an Info file has more than 30 nodes, you should also make a tag table for it. See Section F.6.1
[Using Info-validate], page 243, for information about creating a tag table. (Again, tag tables
are usually created automatically by the formatting command; you only need to create a tag



Appendix F: Catching Mistakes 245

table yourself if you are doing the job manually. Most likely, you will do this for a large, unsplit
file on which you have run Info-validate.)

Visit the Info file you wish to tagify and split and type the two commands:

M-x Info-tagify

M-x Info-split

(Note that the ‘I’ in ‘Info’ is uppercase.)

When you use the Info-split command, the buffer is modified into a (small) Info file which
lists the indirect subfiles. This file should be saved in place of the original visited file. The
indirect subfiles are written in the same directory the original file is in, with names generated
by appending ‘-’ and a number to the original file name.

The primary file still functions as an Info file, but it contains just the tag table and a directory
of subfiles.



246

Appendix G Info Format Specification

Here we describe the technical details of the Info format.

In this formal description, the characters <>*()|=# are used for the language of the de-
scription itself. Other characters are literal. The formal constructs used are typical: <...>

indicates a metavariable name, ‘=’ means definition, ‘*’ repetition, ‘?’ optional, ‘()’ grouping,
‘|’ alternation, ‘#’ comment. Exception: ‘*’ at the beginning of a line is literal.

In general, programs that read Info files should try to be case-insensitive to keywords that
occur in the file (for example, ‘Tag Table’ and ‘Tag table’ should be equivalent) in order to
support Info-generating programs that use different capitalization.

The sections in an Info file (such as nodes or tag tables) are separated with a sequence:

(^L)?^_(^L)?^J

That is, a ‘CTRL-_’ character followed by a newline, with optional formfeed characters. We refer
to such sequences as <separator>.

We specify literal parentheses (those that are part of the Info format) with <lparen> and
<rparen>, meaning the single characters ‘(’ and ‘)’ respectively. We specify the ‘CTRL-?’ char-
acter (character number 127) <del>. Finally, the two-character sequence ‘^x’ means the single
character ‘CTRL-x’, for any x.

This format definition was written some 25 years after the Info format was first devised.
So in the event of conflicts between this definition and actual practice, practice wins. It also
assumes some general knowledge of Texinfo; it is meant to be a guide for implementors rather
than a rigid technical standard. We often refer back to other parts of this manual for examples
and definitions, rather than redundantly spelling out every detail.

G.1 Info Format General Layout

This section describes the overall layout of Info manuals.

Info Format: A Whole Manual

To begin, an Info manual is either nonsplit (contained wholly within a single file) or split (across
several files).

The syntax for a nonsplit manual is:

<nonsplit info file> =

<preamble>

<node>*

<tag table>?

<local variables>?

When split, there is a main file, which contains only pointers to the nodes given in other
subfiles. The main file looks like this:

<split info main file> =

<preamble>

<indirect table>

<tag table>

<local variables>?

The subfiles in a split manual have the following syntax:

<split info subfile> =

<preamble>

<node>*

Note that the tag table is not optional for split files, as it is used with the indirect table to
deduce which subfile a particular node is in.



Appendix G: Info Format Specification 247

Info Format: Preamble

The <preamble> is text at the beginning of all output files. It is not intended to be visible by
default in an Info viewer, but may be displayed upon user request.

<preamble> =

<identification> # "This is FILENAME, produced by ..."

<copying text> # Expansion of @copying text.

<dir entries> # Derived from @dircategory and @direntry.

These pieces are:

<identification line>

An arbitrary string beginning the output file, followed by a blank line.

<copying text>

The expansion of a @copying environment, if the manual has one (see Section 3.3.1
[@copying], page 16).

<dir entries>

The result of any @dircategory and @direntry commands present in the manual
(see Section 21.2.4 [Installing Dir Entries], page 180).

Info Format: Indirect Table

<indirect table> =

<separator>

Indirect:

(<filename>: <bytepos>)*

The indirect table is written to the main file in the case of split output only. It specifies,
as a decimal integer, the starting byte position (zero-based) that the first node of each subfile
would have if the subfiles were concatenated together in order, not including the top-level file.
The first node of actual content is pointed to by the first entry.

As an example, suppose split output is generated for the GDB manual. The top-level file
gdb.info will contain something like this:

<separator>

Indirect:

gdb.info-1: 1878

gdb.info-2: 295733

...

This tells Info viewers that the first node of the manual occurs at byte 1878 of the file
gdb.info-1 (which would be after that file’s preamble.) The first node in the gdb.info-2

subfile would start at byte 295733 if gdb.info-2 were appended to gdb.info-1, including any
preamble sections in both files.

Unfortunately, Info-creating programs such as makeinfo have not always implemented these
rules perfectly, due to various bugs and oversights. Therefore, robust Info viewers should fall
back to searching “nearby” the given position for a node, instead of giving up immediately if
the position is not exactly at a node beginning.

Info Format: Tag Table

<tag table> =

<separator>

Tag Table:

(<lparen>Indirect<rparen>)?

(Node|Ref): <nodeid>^?<bytepos>



Appendix G: Info Format Specification 248

<separator>

End Tag Table

The ‘(Indirect)’ line appears in the case of split output only.

The tag table specifies the starting byte position of each node and anchor in the file. In the
case of split output, it is only written in the main output file.

Each line defines an identifier as either an anchor or a node, as specified. For exam-
ple, ‘Node: Top^?1647’ says that the node named ‘Top’ starts at byte 1647 while ‘Ref:
Overview-Footnote-1^?30045’ says that the anchor named ‘Overview-Footnote-1’ starts at
byte 30045. It is an error to define the same identifier both ways.

In the case of nonsplit output, the byte positions simply refer to the location in the output file.
In the case of split output, the byte positions refer to an imaginary file created by concatenating
all the split files (but not the top-level file). See the previous section.

Here is an example:

^_

Tag Table:

Node: Top^?89

Node: Ch1^?292

^_

End Tag Table

This specifies a manual with two nodes, ‘Top’ and ‘Ch1’, at byte positions 89 and 292 respec-
tively. Because the ‘(Indirect)’ line is not present, the manual is not split.

Preamble sections or other non-node sections of files do not have a tag table entry.

Info Format: Local Variables

The local variables section is optional and is currently used to give the encoding information. It
may be augmented in the future.

<local variables> =

<separator>

Local Variables:

coding: <encoding>

End:

See Section 15.2 [@documentencoding], page 120.

Info Format: Regular Nodes

Regular nodes look like this:

<node> =

<separator>

File: <fn>, Node: <id1>, (Next: <id2>, )? (Prev: <id3>, )? Up: <id4>

<general text, until the next ^_ or end-of-file>

At least one space or tab must be present after each colon and comma, but any number of spaces
are ignored. The <id> node identifiers have following format:

<id> = (<lparen><infofile><rparen>)?(<del>?<nodename><del>?)?

| <id> = (<lparen><infofile><rparen>)?(<nodename>)?

This <node> defines <id1> in file <fn>, which is typically either ‘manualname’ or
‘manualname.info’. No parenthesized <infofile> component may appear within <id1>.

Each of the identifiers after Next, Prev and Up refer to nodes or anchors within a file. These
pointers normally refer within the same file, but ‘(dir)’ is often used to point to the top-level



Appendix G: Info Format Specification 249

dir file. If an <infofile> component is used then the node name may be omitted, in which case
the node identifier refers to the ‘Top’ node within the referenced file.

The Next and Prev pointers are optional. The Up pointer is technically also optional, although
most likely this indicates a mistake in the node structuring. Conventionally, the nodes are
arranged to form a tree, but this is not a requirement of the format.

Node names containing periods, commas, colons or parentheses (including @-commands
which produce any of these) can confuse Info readers. If it is necessary to refer to a
node whose name contains any of these, the <nodename> should be surrounded by a
pair of <del> characters. There is support in makeinfo for adding these characters (see
[INFO SPECIAL CHARS QUOTE], page 169); however, we don’t recommend you make
use of this support until such time as Info-reading programs that recognize this syntax are
common. See Section 4.4 [Node Line Requirements], page 29.

The use of non-ASCII characters in the names of nodes is permitted, but can cause problems
in cross-references between nodes in Info files with different character encodings, and also when
node names from many different files are listed (for example, with the --apropos option to
the standalone Info browser), so we recommend avoiding them whenever feasible. For example,
prefer the use of the ASCII apostrophe character (’) to Unicode directional quotes.

The <general text> of the node can include the special constructs described next.

G.2 Info Format Text Constructs

These special Info constructs can appear within the text of a node.

G.2.1 Info Format: Menu

Conventionally menus appear at the end of nodes, but the Info format places no restrictions on
their location.

<menu> =

* Menu:

(<menu entry> | <menu comment>)*

The parts of a <menu entry> are also described in Section 4.9.4 [Menu Parts], page 35.
They have the same syntax as cross-references (see Section G.2.4 [Info Format Cross Reference],
page 250). Indices extend the menu format to specify the destination line; see Section G.2.3
[Info Format Printindex], page 250.

A <menu comment> is any line not beginning with ‘*’ that appears either at the beginning of
the menu or is separated from a menu entry by one or more blank lines. These comments are
intended to be displayed as part of the menu, as-is (see Section 4.9.1 [Writing a Menu], page 33).

G.2.2 Info Format: Image

The @image command results in the following special directive within the Info file (see
Section 10.2 [Images], page 80):

<image> =

^@^H[image src="<image file>"

(text="<txt file contents>")?

(alt="<alt text>")?

^@^H]

The line breaks and indentation in this description are editorial; the whitespace between the
different parts of the directive in Info files is arbitrary.

In the strings <image file>, <txt file contents> and <alt text>, ‘"’ is quoted as ‘\"’
and ‘\’ is quoted as ‘\\’. The txt and alt specifications are optional.



Appendix G: Info Format Specification 250

The alt value serves the same purpose as in HTML: A prose description of the image. In text-
only displays or speech systems, for example, the alt value may be used instead of displaying
the (typically graphical) <image file>.

The <txt file contents>, if present, should be taken as an ASCII representation of the
image, for possible use on a text-only display.

The format does not prescribe the choice between displaying the <image file>, the <alt

text> or the <txt file contents>.

G.2.3 Info Format: Printindex

Indices in Info format are generally written as a menu (see Chapter 11 [Indices], page 84), but
with an additional directive at the beginning marking this as an index node:

<printindex> =

^@^H[index^@^H]

* Menu:

<index entry>*

The <index entry> items are similar to normal menu entries, but the free-format description
is replaced by the line number of where the entries occurs in the text:

<index entry> =

* <entry text>: <entry node>. <lparen>line <lineno><rparen>

The <entry text> is the index term. The <lineno> is an unsigned integer, given relative to
the start of the <entry node>. There may be arbitrary whitespace after the colon and period,
as usual in menus, and may be broken across lines. Here is an example:

^@^H[index^@^H]

* Menu:

* thunder: Weather Phenomena. (line 5)

This means that an index entry for ‘thunder’ appears at line 5 of the node ‘Weather Phe-
nomena’.

G.2.4 Info Format: Cross-reference

A general cross-reference in Info format has one of the following two forms:

<cross-reference> =

* (N|n)ote <id>::

| * (N|n)ote <label>:<id>(.|,)

<id> = (<lparen><infofile><rparen>)?(<del>?<nodename><del>?)?

| <id> = (<lparen><infofile><rparen>)?(<nodename>)?

<label> = <del>?<label text><del>?

No space should occur between the ‘*’ character and the following ‘N’ or ‘n’. ‘*Note’ should
be used at the start of a sentence, otherwise ‘*note’ should be used. (Some Info readers, such
as the one in Emacs, can display ‘*Note’ and ‘*note’ as ‘See’ and ‘see’ respectively.) In both
cases, <label text> is descriptive text.

In both forms the <id> refers to a node or anchor, in the same way as a reference in the node
information line does (see [Info Format Regular Nodes], page 248). The optional parenthesized
‘<infofile>’ is the filename of the manual being referenced, and the <nodename> is the node
or anchor within that manual,

The second form has a descriptive label. A cross-reference in this form should usually be
terminated with a comma or period, to make it feasible to find the end of the <id>.



Appendix G: Info Format Specification 251

If <label> contains a colon character (:), it should be surrounded with a pair of <del> char-
acters. Likewise, if <nodename> contains problematic characters (such as commas or periods),
it should be surrounded by a pair of <del> characters; then a terminating comma or period is
not needed.

As with node names, this quoting mechanism has as of the time of writing limited support
in Info-reading programs; hence we do not recommend using it until this changes.

The format does not prescribe how to find other manuals to resolve such references.

Here are some examples:

*note GNU Free Documentation License::

*note Tag table: Info Format Tag Table, for details.

*Note Overview: (make)Top.

*Note ^?:^?: (bash)Bourne Shell Builtins.

*Note alloca.h: (gnulib)^?alloca.h^?.

The first shows a reference to a node in the current manual using the short form.

The second also refers to a node in the current manual, namely ‘Info Format Tag Table’; the
‘Tag table’ before the ‘:’ is only a label on this particular reference, and the ‘for details.’ is
text belonging to the sentence, not part of the reference.

The third example refers to the node ‘Top’ in another manual, namely ‘make’, with ‘Overview’
being the label for this cross-reference.

The fourth example shows a colon character being quoted in a label, and the fifth example
shows a period being quoted in a node name.

See Chapter 6 [Cross References], page 43.



252

Appendix H GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

https://fsf.org/


Appendix H: GNU Free Documentation License 253

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifi-
cation. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both



Appendix H: GNU Free Documentation License 254

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its



Appendix H: GNU Free Documentation License 255

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.



Appendix H: GNU Free Documentation License 256

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.



Appendix H: GNU Free Documentation License 257

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See https://
www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

https://www.gnu.org/copyleft/
https://www.gnu.org/copyleft/


Appendix H: GNU Free Documentation License 258

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.



259

Command and Variable Index

This is an alphabetical list of all the @-commands, assorted Emacs Lisp functions, and several
variables. To make the list easier to use, the commands are listed without their preceding ‘@’.

!
! (end of sentence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

"
" (umlaut accent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

’
' (acute accent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

*
* (force line break) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

,
, (cedilla accent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

–
- (in image alt string) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
- (discretionary hyphen) . . . . . . . . . . . . . . . . . . . . . . . . 106

.

. (end of sentence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

/
/ (allow line break) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

:
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

=
= (macron accent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

?
? (end of sentence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

^
^ (circumflex accent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

‘
` (grave accent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

@
@ (literal ‘@’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

\
\ (literal \ in @math) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

{
{ (literal ‘{’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

}
} (literal ‘}’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

~
~ (tilde accent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A
AA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
aa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
abbr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
acronym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
AE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
afivepaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
afourlatex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
afourpaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
afourwide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
allowcodebreaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ampchar{} (literal ‘&’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
anchor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
appendixsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
appendixsection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
appendixsubsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
appendixsubsubsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
apply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
arrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
asis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
atchar{} (literal ‘@’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B
b (bold font) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
\backslash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
backslashchar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
bullet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
bye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



Command and Variable Index 260

C
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
cartouche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
centerchap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
chapheading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
cindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
cite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
click . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
clicksequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
clickstyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
codequotebacktick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
codequoteundirected . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
<colon> (suppress end-of-sentence space) . . . . . . . . . 93
columnfractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
comma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
complete_tree_nodes_menus . . . . . . . . . . . . . . . . . . . . 171
contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
copying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 99

D
debugtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
defcodeindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
defcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
defcvx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
deffn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
deffnx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
defindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
definfoenclose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
defivar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
defivarx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
defmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
defmacx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
defmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
defmethodx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
defop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
defopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
defoptx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
defopx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
defspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
defspecx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
deftp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
deftpx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
deftypecv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
deftypecvx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
deftypefn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
deftypefnnewline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
deftypefnx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
deftypefun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
deftypefunx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
deftypeivar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
deftypeivarx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
deftypemethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
deftypemethodx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
deftypeop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
deftypeopx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

deftypevar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
deftypevarx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
deftypevr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
deftypevrx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
defun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
defunx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
defvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
defvarx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
defvr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
defvrx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
DEL (comment character) . . . . . . . . . . . . . . . . . . . . . . . . . . 9
detailmenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 33
dfn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
dh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
dircategory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
direntry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
dmn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
docbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124, 163
documentdescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
documentencoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
documentlanguage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
dotaccent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
dotless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
dvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
dvipdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

E
email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
\emergencystretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
emph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63, 71
enddots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
enumerate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
equiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
errormsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
errormsg, and line numbers in TEX . . . . . . . . . . . . . . 138
euro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
evenfooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
evenfootingmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
evenheading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
evenheadingmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
everyfooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
everyfootingmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
everyheading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
everyheadingmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
exampleindent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
exclamdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
exdent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



Command and Variable Index 261

F
file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
fill_gaps_in_sectioning . . . . . . . . . . . . . . . . . . . . . . 171
finalout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
findex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
firstparagraphindent . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
flushleft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
flushright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
fn-name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
fonttextsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
foo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
foobar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110, 113
footnote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
footnotestyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
forward-word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
frenchspacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
ftable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

G
\gdef within @tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
geq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
\globaldefs within @tex . . . . . . . . . . . . . . . . . . . . . . . . 124
group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
guillemetleft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
guillemetright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
guillemotleft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
guillemotright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
guilsinglleft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
guilsinglright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

H
H (Hungarian umlaut accent) . . . . . . . . . . . . . . . . . . . . . 95
hashchar{} (literal ‘#’) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
hbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
headitem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
headitemfont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
headword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124, 163
hyphenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

I
i (italic font) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
ifclear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
ifcommanddefined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
ifcommandnotdefined . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
ifdocbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122, 124
ifhtml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122, 124
ifinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
ifnotdocbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ifnothtml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ifnotinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ifnotplaintext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ifnottex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ifnotxml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ifplaintext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
ifset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
iftex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

ifxml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122, 124
ignore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
include . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
indent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
indentedblock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
indicateurl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
inforef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Info-validate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
inlinefmt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
inlinefmtifelse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
inlineifclear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
inlineifset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
inlineraw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
\input (raw TEX startup) . . . . . . . . . . . . . . . . . . . . . . . . . 9
insert_nodes_for_sectioning_commands . . . . . . . 171
insertcopying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
isearch-backward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
isearch-forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71, 74, 76
itemize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
itemx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

K
kbd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
kbdinputstyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
kindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

L
L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
LaTeX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
lbracechar{} (literal ‘{’) . . . . . . . . . . . . . . . . . . . . . . . . . 90
leq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
\linkcolor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
lisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
listoffloats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
lowersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

M
macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
\mag (raw TEX magnification) . . . . . . . . . . . . . . . . . . . 152
majorheading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
makeinfo-buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
makeinfo-kill-job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
makeinfo-recenter-output-buffer . . . . . . . . . . . . . 176
makeinfo-region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
\mathopsup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
minus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
move_index_entries_after_items . . . . . . . . . . . . . . 171
multitable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Command and Variable Index 262

N
need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
<newline> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
next-error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
noindent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
novalidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

O
O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
occur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
occur-mode-goto-occurrence . . . . . . . . . . . . . . . . . . . 227
oddfooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
oddfootingmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
oddheading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
oddheadingmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
OE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
oe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ogonek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ordf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ordm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

P
page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
page, within @titlepage . . . . . . . . . . . . . . . . . . . . . . . . . 18
pagesizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
paragraphindent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
parse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
phoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
pindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
plaintexinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
plaintext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
pounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
printindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
pxref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Q
questiondown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
quotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
quotedblbase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
quotedblleft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
quotedblright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
quoteleft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
quoteright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
quotesinglbase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

R
r (roman font) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
raggedright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
raisesections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
rawtext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
rbracechar{} (literal ‘}’) . . . . . . . . . . . . . . . . . . . . . . . . . 90
ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
refill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
regenerate_master_menu . . . . . . . . . . . . . . . . . . . . . . . . 171
registeredsymbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ringaccent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
rmacro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

S
samp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
sansserif (sans serif font) . . . . . . . . . . . . . . . . . . . . . . . 62
sc (small caps font) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
@seealso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
@seeentry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
setchapternewpage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
@setcontentsaftertitlepage . . . . . . . . . . . . . . . . . . . 214
setfilename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
@setshortcontentsaftertitlepage . . . . . . . . . . . . . 214
settitle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
shortcaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
shortcontents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
shorttitlepage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
simple_menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
slanted (slanted font) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
smallbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
smalldisplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
smallexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
smallformat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 70
smallindentedblock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
smalllisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
smallquotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64, 70
sortas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
sp (line spacing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
sp (titlepage line spacing) . . . . . . . . . . . . . . . . . . . . . . . . 18
<space> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
strong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
sub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
@subentry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
subheading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
subsection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
subsubheading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
subsubsection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
subtitle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
summarycontents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
sup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
syncodeindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
synindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



Command and Variable Index 263

T
t (typewriter font) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
<tab> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
TeX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Texinfo::Parser module . . . . . . . . . . . . . . . . . . . . . . . . 154
texinfo-all-menus-update . . . . . . . . . . . . . . . . . . . . . 229
texinfo-every-node-update . . . . . . . . . . . . . . . . . . . . 228
texinfo-format-buffer . . . . . . . . . . . . . . . . . . . . 176, 231
texinfo-format-region . . . . . . . . . . . . . . . . . . . . 176, 231
texinfo-indent-menu-description . . . . . . . . . . . . . 230
texinfo-insert-braces . . . . . . . . . . . . . . . . . . . . . . . . . 226
texinfo-insert-@code . . . . . . . . . . . . . . . . . . . . . . . . . . 225
texinfo-insert-@dfn . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
texinfo-insert-dwim-@ref . . . . . . . . . . . . . . . . . . . . . 225
texinfo-insert-@end . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
texinfo-insert-@example . . . . . . . . . . . . . . . . . . . . . . 226
texinfo-insert-@item . . . . . . . . . . . . . . . . . . . . . . . . . . 225
texinfo-insert-@kbd . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
texinfo-insert-@node . . . . . . . . . . . . . . . . . . . . . . . . . . 225
texinfo-insert-node-lines . . . . . . . . . . . . . . . . . . . . 230
texinfo-insert-@noindent . . . . . . . . . . . . . . . . . . . . . 225
texinfo-insert-@samp . . . . . . . . . . . . . . . . . . . . . . . . . . 225
texinfo-insert-@table . . . . . . . . . . . . . . . . . . . . . . . . . 225
texinfo-insert-@var . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
texinfo-make-menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
texinfo-master-menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
texinfo-multiple-files-update . . . . . . . . . . . . . . . 140
texinfo-multiple-files-update (in brief) . . . . . . 230
texinfo-sequential-node-update . . . . . . . . . . . . . . 230
texinfo-show-structure . . . . . . . . . . . . . . . . . . . 226, 242
texinfo-start-menu-description . . . . . . . . . . . . . . 226
texinfosxml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
texinfo-tex-buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
texinfo-tex-print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
texinfo-tex-region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
texinfo-update-node . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
textcontent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
textdegree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
th . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
thischapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
thischaptername . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
thischapternum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
thisfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
thispage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
thissection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
thissectionname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
thissectionnum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

thistitle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
tie (unbreakable interword space) . . . . . . . . . . . . . . . 107
tieaccent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
tindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
titlefont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
titlepage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 31

U
U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
u (breve accent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
ubaraccent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
udotaccent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
unmacro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
unnumbered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
unnumberedsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
unnumberedsubsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
unnumberedsubsubsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
up-list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
uref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
urefbreakstyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
\urefurlonlylinktrue . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
url . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
\urlcolor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

V
v (caron) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
validatemenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
verb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
verbatim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
verbatiminclude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
vindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
vskip TEX vertical skip . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
vtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

W
w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

X
xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124, 163
xref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
xrefautomaticsectiontitle . . . . . . . . . . . . . . . . . . . . . 46



264

General Index

!
¡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

"
„ (double low-9 quotation mark) . . . . . . . . . . . . . . . . . . 96
" (undirected double quote character) . . . . . . . . . . . . . 96

#
‘#line’ directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
‘#line’ directives, not processing with TEX . . . . . . 138
‘#line’ syntax details . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

$
$Id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
$Id expansion, preventing . . . . . . . . . . . . . . . . . . . . . . . 107

&
‘&#xhex;’, output from @U . . . . . . . . . . . . . . . . . . . . . . . 104

’
’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
’’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

(
(dir) as Up node of Top node . . . . . . . . . . . . . . . . . . . . . 30

,
‚ (single low-9 quotation mark) . . . . . . . . . . . . . . . . . . . 96

–
-, breakpoint within @code . . . . . . . . . . . . . . . . . . . . . . . 106

<
‹ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
« . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

>
› . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
» . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

?
¿ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

^
‘^@^H’ for images in Info . . . . . . . . . . . . . . . . . . . . . . . . . . 81

, breakpoint within @code . . . . . . . . . . . . . . . . . . . . . . 106

‘
‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
‘‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

@
‘@’ as continuation in definition commands . . . . . . . 110

8
8-bit characters, in HTML cross-references . . . . . . . 190

A
a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A4 paper, printing on . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A5 paper, printing on . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
<abbr> and <abbrev> tags . . . . . . . . . . . . . . . . . . . . . . . . 59
Abbreviations for keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Abbreviations, tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Abstract of document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Abstract syntax tree

representation of documents . . . . . . . . . . . . . . . . . . . 154
Accents, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
accesskey, customization variable for . . . . . . . . . . . . 167
accesskey, in HTML output of menus . . . . . . . . . . . . 34
accesskey, in HTML output of nodes . . . . . . . . . . . . . 27
<acknowledgements> Docbook tag . . . . . . . . . . . . . . . . 38
<acronym> tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Acronyms, tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Acute accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Adding a new Info file . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Additional output formats . . . . . . . . . . . . . . . . . . . . . . . . . 5
--add-once, for install-info . . . . . . . . . . . . . . . . . . . 181
Advanced indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Advice on writing entries . . . . . . . . . . . . . . . . . . . . . . . . . 86
Æ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
æ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
after, value for @urefbreakstyle . . . . . . . . . . . . . . . . 51
AFTER_ABOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
AFTER_BODY_OPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
AFTER_OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
AFTER_TOC_LINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Aliases, command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
--align=column, for install-info . . . . . . . . . . . . . . 181
Allow line break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
All-permissive copying license . . . . . . . . . . . . . . . . . . . 223
Alphabetical @-command list . . . . . . . . . . . . . . . . . . . . 194
Alt attribute for images . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Ampersand, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Angle quotation marks . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Another Info directory . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
--append-new-sections, for install-info . . . . . . 181



General Index 265

Arguments, repeated and optional . . . . . . . . . . . . . . . 110
ASCII text output with --plaintext . . . . . . . . . . . . 159
ASCII, source document portability using . . . . . . . . 103
Aspect ratio of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
At sign, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Auk, bird species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
autoexec.bat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
automake, and version info . . . . . . . . . . . . . . . . . . . . . . . 220
Automatic pointer creation with makeinfo . . . . . . . . 33
Automatic quoting of commas for some macros . . 132
Automatically insert nodes, menus . . . . . . . . . . . . . . . 227
Auxiliary files, omitting . . . . . . . . . . . . . . . . . . . . . . . . . 146
AVOID_MENU_REDUNDANCY . . . . . . . . . . . . . . . . . . . . . . . . . 164

B
B5 paper, printing on . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Back-end output formats . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Backslash in macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Backslash, and macros . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Backslash, in macro arguments . . . . . . . . . . . . . . . . . . 133
Backslash, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
backtick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Badly referenced nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 243
BASEFILENAME_LENGTH . . . . . . . . . . . . . . . . . . . . . . 164, 187
Bastard title page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Batch formatting for Info . . . . . . . . . . . . . . . . . . . . . . . . 176
Beebe, Nelson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
before, value for @urefbreakstyle . . . . . . . . . . . . . . . 51
BEFORE_OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
BEFORE_TOC_LINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Beginning a Texinfo file . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Beginning line of a Texinfo file . . . . . . . . . . . . . . . . . . . . 14
Berry, Karl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Big points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
BIG_RULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Black rectangle in hardcopy . . . . . . . . . . . . . . . . . . . . . 151
Blank lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
<blockquote> HTML tag . . . . . . . . . . . . . . . . . . . . . . . . . 64
Body of a macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
<body> text, customizing . . . . . . . . . . . . . . . . . . . . . . . . 164
BODYTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Bold font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Bolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Book characteristics, printed . . . . . . . . . . . . . . . . . . . . . . . 4
Book, printing small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
border-pattern of Window . . . . . . . . . . . . . . . . . . 116, 117
BoTEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Box with rounded corners . . . . . . . . . . . . . . . . . . . . . . . . 70
Box, ugly black in hardcopy . . . . . . . . . . . . . . . . . . . . . 151
Brace-delimited conditional text . . . . . . . . . . . . . . . . . 125
Brace-delimited flag conditionals . . . . . . . . . . . . . . . . . 127
Braces and argument syntax . . . . . . . . . . . . . . . . . . . . . 193
Braces, in index entries . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Braces, in macro arguments . . . . . . . . . . . . . . . . . . . . . 133
Braces, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Braces, when to use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Breakpoints within urls . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Breaks in a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Breaks, within @code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Breve accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Buffer formatting and printing . . . . . . . . . . . . . . . . . . . 231
Bugs, reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Bzipped dir files, reading . . . . . . . . . . . . . . . . . . . . . . . . 181

C
-c var=value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
--calign=column, for install-info . . . . . . . . . . . . . 181
Capitalization of index entries . . . . . . . . . . . . . . . . . . . . 86
Captions, for floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Caron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Cascading Style Sheets, and HTML output . . . . . . 185
Case in node name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Case, not altering in @code . . . . . . . . . . . . . . . . . . . . . . . 54
CASE_INSENSITIVE_FILENAMES . . . . . . . . . . . . . . . . . . . 164
Catching errors with Info formatting . . . . . . . . . . . . . 239
Catching errors with TEX formatting . . . . . . . . . . . . 240
Catching mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Catcode for comments in TEX . . . . . . . . . . . . . . . . . . . . . 9
Categories, choosing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Category codes, of plain TEX . . . . . . . . . . . . . . . . . . . . 124
<caution> Docbook tag . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Caveats for macro usage . . . . . . . . . . . . . . . . . . . . . . . . . 133
Cedilla accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Centimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Chapter structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
<chapter> Docbook tag . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CHAPTER_HEADER_LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Chapters, formatting one at a time . . . . . . . . . . . . . . 146
Character set, declaring . . . . . . . . . . . . . . . . . . . . . . . . . 120
Characteristics, printed books or manuals . . . . . . . . . . 4
Characters, basic input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Characters, invalid in node name . . . . . . . . . . . . . . . . . 29
Chassell, Robert J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Check accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
CHECK_HTMLXREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Checking for badly referenced nodes . . . . . . . . . . . . . 243
Checking for Texinfo commands . . . . . . . . . . . . . . . . . 129
Checklist for bug reports . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Ciceros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Circumflex accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Click sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
CLOSE_QUOTE_SYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Closing punctuation, and sentence ending . . . . . . . . . 94
CM-Super fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
CM-Super fonts, installing . . . . . . . . . . . . . . . . . . . . . . . 149
Code point of Unicode character, inserting by . . . . 103
code, value for @kbdinputstyle . . . . . . . . . . . . . . . . . . . 55
Collapsing whitespace around continuations . . . . . . 110
Colon in node name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Colon, last in INFOPATH . . . . . . . . . . . . . . . . . . . . . . . . . . 179
<colophon> Docbook tag . . . . . . . . . . . . . . . . . . . . . . . . . 38
Colored links, in PDF output . . . . . . . . . . . . . . . . . . . . . 52
Column widths, defining for multitables . . . . . . . . . . . 76
Combining indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Comma after cross-reference . . . . . . . . . . . . . . . . . . . . . . 44
Comma in node name . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Comma, in macro arguments . . . . . . . . . . . . . . . . . . . . 132
Comma, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Command aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Command definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
@-command list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Command names, indicating . . . . . . . . . . . . . . . . . . . . . . 58
Command syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
@-command syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
--command, for texi2dvi . . . . . . . . . . . . . . . . . . . . . . . . 144
Command-line options of texi2html . . . . . . . . . . . . . 174
@-commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Commands in node names . . . . . . . . . . . . . . . . . . . . . . . . 29



General Index 266

@-commands in node names . . . . . . . . . . . . . . . . . . . . . . 29
Commands to insert special characters . . . . . . . . . . . . 90
Commands using raw TEX . . . . . . . . . . . . . . . . . . . . . . . 123
@-commands, customization variables for . . . . . . . . 162
Commands, inserting them . . . . . . . . . . . . . . . . . . . . . . 225
Commands, testing for Texinfo . . . . . . . . . . . . . . . . . . 129
--commands-in-node-names . . . . . . . . . . . . . . . . . . . . . 155
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Comments, in CSS files . . . . . . . . . . . . . . . . . . . . . . . . . . 186
compatibility, with texi2html . . . . . . . . . . . . . . . . . . . 170
Compile command for formatting . . . . . . . . . . . . . . . . 148
COMPLEX_FORMAT_IN_TABLE . . . . . . . . . . . . . . . . . . . . . . 165
Compressed dir files, reading . . . . . . . . . . . . . . . . . . . . 181
Computer Modern fonts . . . . . . . . . . . . . . . . . . . . . . . . . 121
Conditional commands, inline . . . . . . . . . . . . . . . . . . . 125
Conditionally visible text . . . . . . . . . . . . . . . . . . . . . . . . 122
Conditionals, nested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Conditions for copying Texinfo . . . . . . . . . . . . . . . . . . . . . 1
--conf-dir=path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Configuration, for HTML

cross-manual references . . . . . . . . . . . . . . . . . . . . . . . 191
Cons, Lionel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 173
Contents, after title page . . . . . . . . . . . . . . . . . . . . . . . . 214
Contents, table of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Contents-like outline of file structure . . . . . . . . . . . . . 226
Contexts, of @-commands . . . . . . . . . . . . . . . . . . . . . . . 213
Continuation lines in definition commands . . . . . . . 110
Control keys, specifying . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Controlling line breaks . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Conventions for writing definitions . . . . . . . . . . . . . . . 118
Conventions, syntactic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Copying conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Copying Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Copying text, including . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Copyright holder for FSF works . . . . . . . . . . . . . . . . . . 17
Copyright page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Copyright symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Copyright word, always in English . . . . . . . . . . . . . . . . 17
Correcting mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Country codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
cp (concept) index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
CPP_LINE_DIRECTIVES . . . . . . . . . . . . . . . . . . . . . . 137, 168
Create nodes, menus automatically . . . . . . . . . . . . . . 227
Creating an Info file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Creating an unsplit file . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Creating index entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Creating pointers with makeinfo . . . . . . . . . . . . . . . . . . 33
Critical editions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Cross-reference configuration, for HTML . . . . . . . . . 191
Cross-reference parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Cross-reference targets, arbitrary . . . . . . . . . . . . . . . . . 49
Cross-references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Cross-references using @inforef . . . . . . . . . . . . . . . . . . 49
Cross-references using @pxref . . . . . . . . . . . . . . . . . . . . . 48
Cross-references using @ref . . . . . . . . . . . . . . . . . . . . . . . 48
Cross-references using @xref . . . . . . . . . . . . . . . . . . . . . . 45
Cross-references, in HTML output . . . . . . . . . . . . . . . 187
Cross-references, in Info format . . . . . . . . . . . . . . . . . . 250
.cshrc initialization file . . . . . . . . . . . . . . . . . . . . . . . . . 149
CSS, and HTML output . . . . . . . . . . . . . . . . . . . . . . . . . 185
CSS_LINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
--css-include . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
--css-ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
CTRL-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Custom page sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Customization variables for @-commands . . . . . . . . 162
Customization variables for options . . . . . . . . . . . . . . 162
Customize Emacs package

(Development/Docs/Texinfo) . . . . . . . . . . . . . . . . . 148
Customized highlighting . . . . . . . . . . . . . . . . . . . . . . . . . 136
Customizing of TEX for Texinfo . . . . . . . . . . . . . . . . . . 150
CVS $Id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

D
-D var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Dash, breakpoint within @code . . . . . . . . . . . . . . . . . . 106
Dashes in source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DATE_IN_HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
DEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
--debug, for install-info . . . . . . . . . . . . . . . . . . . . . . 181
debugging document, with tree representation . . . 163
Debugging the Texinfo structure . . . . . . . . . . . . . . . . . 239
Debugging with Info formatting . . . . . . . . . . . . . . . . . 239
Debugging with TEX formatting . . . . . . . . . . . . . . . . . 240
<dedication> Docbook tag . . . . . . . . . . . . . . . . . . . . . . . 38
DEF_TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Default font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
DEFAULT_RULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Defining indexing entries . . . . . . . . . . . . . . . . . . . . . . . . . 84
Defining macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Defining new indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Defining new Texinfo commands . . . . . . . . . . . . . . . . . 131
Definition command headings, continuing . . . . . . . . 110
Definition commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Definition conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Definition lists, typesetting . . . . . . . . . . . . . . . . . . . . . . . 74
Definition of Info format . . . . . . . . . . . . . . . . . . . . . . . . . 246
Definition template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Definitions grouped together . . . . . . . . . . . . . . . . . . . . . 111
Degree symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
--delete, for install-info . . . . . . . . . . . . . . . . . . . . . 181
Delimiter character, for verbatim . . . . . . . . . . . . . . . . . 57
Depth of text area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Description for menu, start . . . . . . . . . . . . . . . . . . . . . . 226
Description of document . . . . . . . . . . . . . . . . . . . . . . . . . . 23
--description=text, for install-info . . . . . . . . . 182
Detail menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Detailed menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Details of macro usage . . . . . . . . . . . . . . . . . . . . . . . . . . 133
detexinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Didôt points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Different cross-reference commands . . . . . . . . . . . . . . . 43
Dimension formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Dimensions and image sizes . . . . . . . . . . . . . . . . . . . . . . . 81
Dir categories, choosing . . . . . . . . . . . . . . . . . . . . . . . . . 180
dir directory for Info installation . . . . . . . . . . . . . . . . 178
dir file listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
dir file, creating your own . . . . . . . . . . . . . . . . . . . . . . . 180
dir files and Info directories . . . . . . . . . . . . . . . . . . . . . 179
Dir files, compressed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
dir, created by install-info . . . . . . . . . . . . . . . . . . . 181
--dir-file=name, for install-info . . . . . . . . . . . . . 182
--disable-encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Display formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Displayed equation, in plain TEX . . . . . . . . . . . . . . . . 124
Displayed equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
distinct, value for @kbdinputstyle . . . . . . . . . . . . . . 55
Distorting images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
DO_ABOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



General Index 267

--docbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Docbook and prefatory sections . . . . . . . . . . . . . . . . . . . 38
Docbook output, overview . . . . . . . . . . . . . . . . . . . . . . . . . 3
Docbook, including raw . . . . . . . . . . . . . . . . . . . . . . . . . 124
DOCTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Document description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Document input encoding . . . . . . . . . . . . . . . . . . . . . . . 120
Document language, declaring . . . . . . . . . . . . . . . . . . . 120
Document Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Document strings, internationalization of . . . . . . . . 172
Document strings, translation of . . . . . . . . . . . . . . . . . 120
Document structure, of Texinfo . . . . . . . . . . . . . . . . . . . 27
Document title, specifying . . . . . . . . . . . . . . . . . . . . . . . . 15
Documentation identification . . . . . . . . . . . . . . . . . . . . 220
--document-language . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
documentlanguage customization variable . . . . . . . . 172
Dot accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Dotless i, j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Dots, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Double angle quotation marks . . . . . . . . . . . . . . . . . . . . 96
Double guillemets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Double left-pointing angle quotation mark . . . . . . . . 96
Double low-9 quotation mark . . . . . . . . . . . . . . . . . . . . . 96
Double quotation marks . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Double right-pointing angle quotation mark . . . . . . . 96
Double structure, of Texinfo documents . . . . . . . . . . . 27
Double-colon menu entries . . . . . . . . . . . . . . . . . . . . . . . . 35
--dry-run, for install-info . . . . . . . . . . . . . . . . . . . . 182
DTD, for Texinfo XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Dumas, Patrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 187
DUMP_TEXI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
DUMP_TREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
--dvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
DVI file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
DVI output, overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
DVI, output in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
--dvipdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
--dvipdf, for texi2dvi . . . . . . . . . . . . . . . . . . . . . . . . . . 143
dvipdfmx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
dvips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 143
Ð . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ð . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

E
-E file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
-e limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
EC fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
EC fonts, installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Ellipsis, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Em dash, compared to minus sign . . . . . . . . . . . . . . . 100
Em dash, producing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Emacs shell, format, print from . . . . . . . . . . . . . . . . . . 147
Emacs-W3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Emphasizing text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Emphasizing text, font for . . . . . . . . . . . . . . . . . . . . . . . . 61
En dash, producing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
ENABLE_ENCODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
ENABLE_ENCODING_USE_ENTITY . . . . . . . . . . . . . . . . . . . 168
--enable-encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Encoding, declaring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
‘End’ node footnote style . . . . . . . . . . . . . . . . . . . . . . . . . 82
End of header line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

End titlepage starts headings . . . . . . . . . . . . . . . . . . . . . 20
Ending a Sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Ending a Texinfo file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Entity reference in HTML et al. . . . . . . . . . . . . . . . . . 104
Entries for an index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Entries, making index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
--entry=text, for install-info . . . . . . . . . . . . . . . . 182
Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Environment indentation . . . . . . . . . . . . . . . . . . . . . . . . . 26
Environment variable INFOPATH . . . . . . . . . . . . . . . . . . 179
Environment variable TEXINFO_OUTPUT_FORMAT . . . 160
Environment variable TEXINPUTS . . . . . . . . . . . . . . . . . 150
eps image format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
epsf.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
epsf.tex, installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Equation, displayed, in plain TEX . . . . . . . . . . . . . . . . 124
Equations, displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Equivalence, indicating . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Error message, indicating . . . . . . . . . . . . . . . . . . . . . . . . 102
Error messages, line numbers in . . . . . . . . . . . . . . . . . 137
ERROR_LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
--error-limit=limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Errors, parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Escaping to HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Es-zet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
etex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Eth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Euro font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Euro font, installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Euro symbol, and encodings . . . . . . . . . . . . . . . . . . . . . 121
Euro symbol, producing . . . . . . . . . . . . . . . . . . . . . . . . . . 99
European A4 paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
European Computer Modern fonts . . . . . . . . . . . . . . . . 96
European Computer Modern fonts, installing . . . . 149
Evaluation glyph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Example beginning of Texinfo file . . . . . . . . . . . . . . . . . 13
Example indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Example menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
example, value for @kbdinputstyle . . . . . . . . . . . . . . . 55
Examples in smaller fonts . . . . . . . . . . . . . . . . . . . . . . . . . 70
Examples of using texi2any . . . . . . . . . . . . . . . . . . . . . 154
Examples, formatting them . . . . . . . . . . . . . . . . . . . . . . . 65
Examples, glyphs for . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Expanding macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Expansion of 8-bit characters in

HTML cross-references . . . . . . . . . . . . . . . . . . . . . . . . 190
Expansion of macros, contexts for . . . . . . . . . . . . . . . 133
Expansion, indicating . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
expansion, of node names in HTML

cross-references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Expressions in a program, indicating . . . . . . . . . . . . . . 54
EXTENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
External macro processors . . . . . . . . . . . . . . . . . . . . . . . 137
EXTERNAL_CROSSREF_SPLIT . . . . . . . . . . . . . . . . . . . . . . 168
EXTERNAL_DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
EXTRA_HEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



General Index 268

F
-F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
-f width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Family names, in all capitals . . . . . . . . . . . . . . . . . . . . . . 59
Features of Texinfo, adapting to . . . . . . . . . . . . . . . . . 129
Feminine ordinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
feymr10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
feymr10, installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
File beginning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
File ending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
File name collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
File sectioning structure, showing . . . . . . . . . . . . . . . . 226
filename recorder for TEX . . . . . . . . . . . . . . . . . . . . . . . . 144
FILLCOLUMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
--fill-column=width . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
filll TEX dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Final output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Finding badly referenced nodes . . . . . . . . . . . . . . . . . . 243
Fine-tuning, and hyphenation . . . . . . . . . . . . . . . . . . . 106
First line of a Texinfo file . . . . . . . . . . . . . . . . . . . . . . . . . 14
First node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
First paragraph, suppressing indentation of . . . . . . . 25
Fixed-width font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Flag conditionals, brace-delimited . . . . . . . . . . . . . . . 127
Float environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Floating accents, inserting . . . . . . . . . . . . . . . . . . . . . . . . 95
Floating, not yet implemented . . . . . . . . . . . . . . . . . . . . 78
Floats, in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Floats, list of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Floats, making unnumbered . . . . . . . . . . . . . . . . . . . . . . 78
Floats, numbering of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
fn (function) index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Font for multitable heading rows . . . . . . . . . . . . . . . . . . 76
Font size, reducing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Fonts for indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Fonts for printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Footings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Footnote styles, in HTML . . . . . . . . . . . . . . . . . . . . . . . 184
FOOTNOTE_END_HEADER_LEVEL . . . . . . . . . . . . . . . . . . . . 165
FOOTNOTE_SEPARATE_HEADER_LEVEL . . . . . . . . . . . . . . 165
Footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
footnotestyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
--footnote-style=style . . . . . . . . . . . . . . . . . . . . . . . . 156
FORCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
--force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Force line break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Forcing indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Forcing line and page breaks . . . . . . . . . . . . . . . . . . . . . 105
Form feed characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Format a dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Format and print hardcopy . . . . . . . . . . . . . . . . . . . . . . 143
Format and print in Texinfo mode . . . . . . . . . . . . . . . 147
Format with the compile command . . . . . . . . . . . . . . 148
Format, print from Emacs shell . . . . . . . . . . . . . . . . . . 147
Formats for images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Formatting a file for Info . . . . . . . . . . . . . . . . . . . . . . . . 175
Formatting commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Formatting examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Formatting for Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Formatting for printing . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Formatting headings and footings . . . . . . . . . . . . . . . . 235
Formatting partial documents . . . . . . . . . . . . . . . . . . . 146
Formatting requirements . . . . . . . . . . . . . . . . . . . . . . . . 149

Formatting with tex and texindex . . . . . . . . . . . . . . 145
Formulas, mathematical . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Four- and five argument forms of

cross-references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Fox, Brian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
FRAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
FRAMESET_DOCTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Free Documentation License, including entire . . . . 221
Free software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Free Software Directory . . . . . . . . . . . . . . . . . . . . . . . . . 180
French quotation marks . . . . . . . . . . . . . . . . . . . . . . . . . . 96
French spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Frequently used commands, inserting . . . . . . . . . . . . 225
Frontmatter, text in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Full texts, GNU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Function definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Functions, in typed languages . . . . . . . . . . . . . . . . . . . 113
Future of Texinfo implementations . . . . . . . . . . . . . . . 154

G
General syntactic conventions . . . . . . . . . . . . . . . . . . . . . . 8
Generating HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Generating menus with indices . . . . . . . . . . . . . . . . . . . . 86
Generating page headings . . . . . . . . . . . . . . . . . . . . . . . . . 20
Generating plain text files with --no-headers . . . 157
Generating plain text files with --plaintext . . . . . 159
German quotation marks . . . . . . . . . . . . . . . . . . . . . . . . . 96
German S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Global Document Commands . . . . . . . . . . . . . . . . . . . . . 23
Globbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Glyphs for programming . . . . . . . . . . . . . . . . . . . . . . . . . 100
Glyphs for text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
GNU Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
GNU Emacs shell, format, print from . . . . . . . . . . . . 147
GNU Free Documentation License,

including entire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
GNU sample texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Going to other Info files’ nodes . . . . . . . . . . . . . . . . . . . 35
Grave accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
grave accent, standalone . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Grave accent, vs. left quote . . . . . . . . . . . . . . . . . . . . . . . 96
Group (hold text together vertically) . . . . . . . . . . . . 107
Grouping two definitions together . . . . . . . . . . . . . . . . 111
GUI click sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Guillemets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Guillemots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

H
-h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Hacek accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Hardcopy, printing it . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Hash sign, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
‘hbox’, overfull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
<head> HTML tag, and <link> . . . . . . . . . . . . . . . . . . 167
Header for Texinfo files . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Header of a Texinfo file . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
HEADER_IN_TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Heading row, in table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Headings, indentation after . . . . . . . . . . . . . . . . . . . . . . . 25
Headings, page, begin to appear . . . . . . . . . . . . . . . . . . 20



General Index 269

Height of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Height of text area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
--help, for texi2any . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
--help, for texindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
help2man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Hierarchical documents, and menus . . . . . . . . . . . . . . . 33
Highlighting text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Highlighting, customized . . . . . . . . . . . . . . . . . . . . . . . . 136
Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
History of Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Holder of copyright for FSF works . . . . . . . . . . . . . . . . 17
Holding text together vertically . . . . . . . . . . . . . . . . . . 107
href, producing HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
--html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
HTML cross-reference 8-bit

character expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
HTML cross-reference command expansion . . . . . . 189
HTML cross-reference configuration . . . . . . . . . . . . . 191
HTML cross-reference link basics . . . . . . . . . . . . . . . . 187
HTML cross-reference mismatch . . . . . . . . . . . . . . . . . 191
HTML cross-reference node name expansion . . . . . 188
HTML cross-references . . . . . . . . . . . . . . . . . . . . . . . . . . 187
HTML output, and encodings . . . . . . . . . . . . . . . . . . . 121
HTML output, browser compatibility of . . . . . . . . . 184
HTML output, overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
HTML output, split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
HTML translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
HTML, and CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
HTML, including raw . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
html32.pm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
htmlxref.cnf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
http-equiv, and charset specification . . . . . . . . . . . . 121
Hungarian umlaut accent . . . . . . . . . . . . . . . . . . . . . . . . . 95
Hurricanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Hyphen, breakpoint within @code . . . . . . . . . . . . . . . . 106
Hyphen, compared to minus . . . . . . . . . . . . . . . . . . . . . 100
Hyphenation patterns, language-dependent . . . . . . 120
Hyphenation, helping TEX do . . . . . . . . . . . . . . . . . . . . 106
Hyphenation, preventing . . . . . . . . . . . . . . . . . . . . . . . . 106
Hyphens in source, two or three in a row . . . . . . . . . . . 8

I
ı (dotless i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
-I path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
I18n, of document strings . . . . . . . . . . . . . . . . . . . . . . . . 172
Icelandic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ICONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Identification of documentation . . . . . . . . . . . . . . . . . . 220
If text conditionally visible . . . . . . . . . . . . . . . . . . . . . . 122
--ifdocbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
--ifhtml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
--ifinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
--ifplaintext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
--iftex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
--ifxml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
IGNORE_BEFORE_SETFILENAME . . . . . . . . . . . . . . . . . . . . 168
IGNORE_SPACE_AFTER_BRACED_COMMAND_NAME . . . . . 168
Ignored before @setfilename . . . . . . . . . . . . . . . . . . . . . 15
Ignored text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Image formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
IMAGE_LINK_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Images, alternate text for . . . . . . . . . . . . . . . . . . . . . . . . . 80
Images, in Info format . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Images, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Images, scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Implementation, texi2any as reference . . . . . . . . . . . 154
Implicit pointer creation with makeinfo . . . . . . . . . . . 33
‘@import’ specifications, in CSS files . . . . . . . . . . . . . 186
<important> Docbook tag . . . . . . . . . . . . . . . . . . . . . . . . 64
Inches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Include file sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
@include file sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Include files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Include files requirements . . . . . . . . . . . . . . . . . . . . . . . . 141
Include files, and section levels . . . . . . . . . . . . . . . . . . . . 42
Including a file verbatim . . . . . . . . . . . . . . . . . . . . . . . . . 142
Including permissions text . . . . . . . . . . . . . . . . . . . . . . . . 17
Indentation undoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Indentation, forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Indentation, omitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Indented text block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Indenting environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Indenting paragraphs, control of . . . . . . . . . . . . . . . . . . 25
Indenting, suppressing of first paragraph . . . . . . . . . . 25
Index entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Index entries, advice on writing . . . . . . . . . . . . . . . . . . . 86
Index entries, making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Index file names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Index font types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
index sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
INDEX_ENTRY_COLON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
INDEX_SPECIAL_CHARS_WARNING . . . . . . . . . . . . . . . . . . 169
Indexing table entries automatically . . . . . . . . . . . . . . 75
Indexing, advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Indicating commands, definitions, etc. . . . . . . . . . . . . 53
Indicating evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Indices, combining them . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Indices, defining new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Indices, in Info format . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Indices, printing and menus . . . . . . . . . . . . . . . . . . . . . . . 86
Indices, sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Indices, two letter names . . . . . . . . . . . . . . . . . . . . . . . . . 88
Indirect subfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Indirect table, in Info format . . . . . . . . . . . . . . . . . . . . 247
--info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Info batch formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Info file installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Info file name, choosing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Info file, listing a new . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Info file, splitting manually . . . . . . . . . . . . . . . . . . . . . . 244
Info files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Info format specification . . . . . . . . . . . . . . . . . . . . . . . . . 246
Info format text constructs . . . . . . . . . . . . . . . . . . . . . . 249
Info format, and menus . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Info formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Info installed in another directory . . . . . . . . . . . . . . . 179
Info nodes, in Info format . . . . . . . . . . . . . . . . . . . . . . . 248
Info output, and encoding . . . . . . . . . . . . . . . . . . . . . . . 121
Info output, overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Info validating a large file . . . . . . . . . . . . . . . . . . . . . . . 243
Info, creating an online file . . . . . . . . . . . . . . . . . . . . . . 175
Info; other files’ nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
INFO_SPECIAL_CHARS_QUOTE . . . . . . . . . . . . . . . . . . . . . 169
INFO_SPECIAL_CHARS_WARNING . . . . . . . . . . . . . . . . . . . 169
--info-dir=dir, for install-info . . . . . . . . . . . . . . 182
--info-file=file, for install-info . . . . . . . . . . . . 182
INFOPATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



General Index 270

--init-file=file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Initialization file for TEX input . . . . . . . . . . . . . . . . . . 149
Inline conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
INLINE_CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
INLINE_CSS_STYLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Input encoding, declaring . . . . . . . . . . . . . . . . . . . . . . . . 120
‘\input’ source line ignored . . . . . . . . . . . . . . . . . . . . . . . 15
Insert nodes, menus automatically . . . . . . . . . . . . . . . 227
Inserting @ (literal ‘@’) . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Inserting # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Inserting & . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Inserting accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Inserting dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Inserting ellipsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Inserting frequently used commands . . . . . . . . . . . . . 225
Inserting indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Inserting quotation marks . . . . . . . . . . . . . . . . . . . . . . . . 96
Inserting quote characters . . . . . . . . . . . . . . . . . . . . . . . . 92
Inserting space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Inserting special characters and symbols . . . . . . . . . . 90
INSTALL file, generating . . . . . . . . . . . . . . . . . . . . . . . . . 159
install-info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Installing an Info file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Installing Info in another directory . . . . . . . . . . . . . . . 179
Internal links, of HTML . . . . . . . . . . . . . . . . . . . . . . . . . 157
INTERNAL_LINKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
--internal-links=file . . . . . . . . . . . . . . . . . . . . . . . . . 157
Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Internationalization of document strings . . . . . . . . . 172
Introduction to Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Invalid characters in node names . . . . . . . . . . . . . . . . . . 29
Invoking macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Invoking nodes, including in dir file . . . . . . . . . . . . . . 181
Invoking pod2texi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
ISO 3166 country codes . . . . . . . . . . . . . . . . . . . . . . . . . 120
ISO 639-2 language codes . . . . . . . . . . . . . . . . . . . . . . . . 120
ISO 8859-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ISO 8859-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ISO 8859-15, and Euro . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Italic font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
--item=text, for install-info . . . . . . . . . . . . . . . . . . 182
Itemization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

J
ȷ (dotless j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
jpeg image format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

K
KEEP_TOP_EXTERNAL_REF . . . . . . . . . . . . . . . . . . . . . . . . . 166
--keep-old, for install-info . . . . . . . . . . . . . . . . . . . 182
Keyboard input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Keys, recommended names . . . . . . . . . . . . . . . . . . . . . . . 56
Keyword expansion, preventing . . . . . . . . . . . . . . . . . . 107
Keywords, indicating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Knuth, Donald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
ky (keystroke) index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

L
 L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
 l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
L2H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
L2H_CLEAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
L2H_FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
L2H_HTML_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
L2H_L2H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
L2H_SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
L2H_TMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
lang, HTML attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Language codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Language, declaring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
--language, for texi2dvi . . . . . . . . . . . . . . . . . . . . . . . 143
Larger or smaller pages . . . . . . . . . . . . . . . . . . . . . . . . . . 152
LATEX logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
LATEX, processing with texi2dvi . . . . . . . . . . . . . . . . 143
Latin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Latin 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Latin 9, and Euro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Left quotation marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Left-pointing angle quotation marks . . . . . . . . . . . . . . 96
Legal paper, printing on . . . . . . . . . . . . . . . . . . . . . . . . . 152
Length of file names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Less cluttered menu entry . . . . . . . . . . . . . . . . . . . . . . . . 35
libintl-perl Gettext implementation . . . . . . . . . . . 172
Libre software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
License for all-permissive copying . . . . . . . . . . . . . . . . 223
License for verbatim copying . . . . . . . . . . . . . . . . . . . . 222
Limited scope of Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Line breaking, and urls . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Line breaks, awkward . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Line breaks, controlling . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Line breaks, preventing . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Line length, column widths as fraction of . . . . . . . . . 76
Line numbers, in error messages . . . . . . . . . . . . . . . . . 137
Line spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
<lineannotation> Docbook tag . . . . . . . . . . . . . . . . . . 62
<link> HTML tag, in <head> . . . . . . . . . . . . . . . . . . . . 167
Links, coloring in PDF output . . . . . . . . . . . . . . . . . . . . 52
Lisp example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Lisp examples in smaller fonts . . . . . . . . . . . . . . . . . . . . 70
List of @-commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
List of floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Listing a new Info file . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Lists and tables, making . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Literate programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Literate programming, with Texinfo and awk . . . . . 146
Local variable section, in Info format . . . . . . . . . . . . 248
Local variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Local Variables section, for encoding . . . . . . . . . . . . . 121
Locale, declaring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Location of menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Logos, TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Longest nodes, finding . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Looking for badly referenced nodes . . . . . . . . . . . . . . 243
Lowering and raising sections . . . . . . . . . . . . . . . . . . . . . 42
lpr (DVI print command) . . . . . . . . . . . . . . . . . . . . . . . 146
lpr-d, replacements on MS-DOS/MS-Windows . . 147
Lynx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Lzip-compressed dir files, reading . . . . . . . . . . . . . . . . 181
LZMA-compressed dir files, reading . . . . . . . . . . . . . . 181



General Index 271

M
Macro definitions, programming-language . . . . . . . . 118
Macro definitions, Texinfo . . . . . . . . . . . . . . . . . . . . . . . 131
Macro details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Macro expansion, contexts for . . . . . . . . . . . . . . . . . . . 133
Macro expansion, indicating . . . . . . . . . . . . . . . . . . . . . 101
Macro invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Macro names, valid characters in . . . . . . . . . . . . . . . . 131
Macro processors, external . . . . . . . . . . . . . . . . . . . . . . . 137
MACRO_EXPAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
--macro-expand=file . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Macron accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Macros, undefining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Magnified printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Mailto link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
makeinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
makeinfo inside Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . 175
makeinfo options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Making a printed manual . . . . . . . . . . . . . . . . . . . . . . . . 143
Making a tag table automatically . . . . . . . . . . . . . . . . 177
Making a tag table manually . . . . . . . . . . . . . . . . . . . . 244
Making cross-references . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Making line and page breaks . . . . . . . . . . . . . . . . . . . . 105
Making lists and tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Man page output, not supported . . . . . . . . . . . . . . . . . . . 5
Man page, reference to . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Manual characteristics, printed . . . . . . . . . . . . . . . . . . . . . 4
Manual, referring to as a whole . . . . . . . . . . . . . . . . . . . 47
Margins on page, not controllable . . . . . . . . . . . . . . . . 152
Marking text within a paragraph . . . . . . . . . . . . . . . . . 53
Marking words and phrases . . . . . . . . . . . . . . . . . . . . . . . 53
Masculine ordinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Master menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Math italic font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Mathematical expressions, inserting . . . . . . . . . . . . . . . 97
MathML, not used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
MAX_HEADER_LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
MAX_MACRO_CALL_NESTING . . . . . . . . . . . . . . . . . . . . . . . . 169
--max-width=column, for install-info . . . . . . . . . 182
Menu description, start . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Menu entries with two colons . . . . . . . . . . . . . . . . . . . . . 35
Menu example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Menu location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Menu parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
@menu parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Menu writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Menu, master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
MENU_ENTRY_COLON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
MENU_SYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
--menuentry=text, for install-info . . . . . . . . . . . . 182
Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Menus generated with indices . . . . . . . . . . . . . . . . . . . . . 86
Menus, automatically generating . . . . . . . . . . . . . . . . . . 34
Menus, in Info format . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Menus, omitting with --no-headers . . . . . . . . . . . . . 157
Menus, omitting with --plaintext . . . . . . . . . . . . . . 159
META key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Meta keys, specifying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
<meta> HTML tag, and charset specification . . . . . 121
<meta> HTML tag, and document description . . . . . 23
Meta-syntactic chars for arguments . . . . . . . . . . . . . . 110
Methods, object-oriented . . . . . . . . . . . . . . . . . . . . . . . . 117
Millimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Mils, argument to @need . . . . . . . . . . . . . . . . . . . . . . . . . 108
Minimal requirements for formatting . . . . . . . . . . . . . 149
Minimal Texinfo file (requirements) . . . . . . . . . . . . . . . . 9
Minus sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Mismatched HTML cross-reference

source and target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Mistakes, catching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Mode, using Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
MONOLITHIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
monolithic manuals, for HTML cross-references . . 192
Monospace font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Mozilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Multiple dashes in source . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Multiple spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Multitable column widths . . . . . . . . . . . . . . . . . . . . . . . . 76
Multitable rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Must have in Texinfo file . . . . . . . . . . . . . . . . . . . . . . . . . . 9

N
--name=text, for install-info . . . . . . . . . . . . . . . . . . 182
Names for indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Names of index files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Names of macros, valid characters of . . . . . . . . . . . . . 131
Names recommended for keys . . . . . . . . . . . . . . . . . . . . . 56
NASA, as acronym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Navigation bar, in HTML output . . . . . . . . . . . . . . . . 184
Navigation footer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Navigation links, omitting . . . . . . . . . . . . . . . . . . . . . . . 157
Navigation panel, bottom of page . . . . . . . . . . . . . . . . 167
Need space at page bottom . . . . . . . . . . . . . . . . . . . . . . 108
Nested footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Nesting conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
New index defining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
New Info file, listing it in dir file . . . . . . . . . . . . . . . . 178
New Texinfo commands, defining . . . . . . . . . . . . . . . . 131
Newlines, avoiding in conditionals . . . . . . . . . . . . . . . 125
NEWS file for Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Next node of Top node . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
NO_CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
NO_USE_SETFILENAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
NO_WARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Node line requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Node line writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
@node line writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
node name expansion, in HTML

cross-references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Node names must be unique . . . . . . . . . . . . . . . . . . . . . . 29
Node names, choosing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Node names, invalid characters in . . . . . . . . . . . . . . . . . 29
Node separators, omitting with --no-headers . . . 157
Node separators, omitting with --plaintext . . . . . 159
Node, ‘Top’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Node, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
NODE_FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
NODE_NAME_IN_INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
NODE_NAME_IN_MENU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
--node-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
--node-files, and HTML cross-references . . . . . . . 192
Nodes in other Info files . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Nodes, catching mistakes . . . . . . . . . . . . . . . . . . . . . . . . 239
Nodes, checking for badly referenced . . . . . . . . . . . . . 243
Nodes, deleting or renaming . . . . . . . . . . . . . . . . . . . . . . 49
--no-headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157, 170
--no-ifdocbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



General Index 272

--no-ifhtml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
--no-ifinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
--no-ifplaintext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
--no-iftex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
--no-ifxml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
--no-indent, for install-info . . . . . . . . . . . . . . . . . . 182
Non-breakable space, fixed . . . . . . . . . . . . . . . . . . . . . . . 106
Non-breakable space, variable . . . . . . . . . . . . . . . . . . . . 107
none, value for @urefbreakstyle . . . . . . . . . . . . . . . . . 51
--no-node-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Nonsplit manuals, Info format of . . . . . . . . . . . . . . . . . 246
--no-number-footnotes . . . . . . . . . . . . . . . . . . . . . . . . . 158
--no-number-sections . . . . . . . . . . . . . . . . . . . . . . . . . . 158
--no-pointer-validate . . . . . . . . . . . . . . . . . . . . . . . . . 158
Normalization Form C, Unicode . . . . . . . . . . . . . . . . . 190
--no-split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Not ending a sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
<note> Docbook tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
--no-validate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
novalidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
--no-warn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Number sign, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
NUMBER_FOOTNOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
NUMBER_SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Numbering of floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
--number-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

O
Ø . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ø . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
-o file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
O’Dea, Brendan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Object-oriented programming . . . . . . . . . . . . . . . . . . . . 116
Oblique font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Obtaining TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Occurrences, listing with @occur . . . . . . . . . . . . . . . . . 243
Octotherp, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Œ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
œ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Ogonek diacritic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Omitting indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
One-argument form of cross-references . . . . . . . . . . . . 45
OPEN_QUOTE_SYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
‘\openout’ line in log file . . . . . . . . . . . . . . . . . . . . . . . . 144
Optional and repeated arguments . . . . . . . . . . . . . . . . 110
Options for makeinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Options for texi2any . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Options of texi2html . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Options, customization variables for . . . . . . . . . . . . . 162
Ordinals, Romance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Ordinary TEX commands, using . . . . . . . . . . . . . . . . . 123
Orphans, preventing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Other Info files’ nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
OUTFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Outline of file structure, showing . . . . . . . . . . . . . . . . 226
Output document strings,

internationalization of . . . . . . . . . . . . . . . . . . . . . . . . . 172
Output file name, required . . . . . . . . . . . . . . . . . . . . . . . . 15
Output file splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Output formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Output formats, supporting more . . . . . . . . . . . . . . . . . . 5
Output, in PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Output, printed through texi2any . . . . . . . . . . . . . . . 161
--output=file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

OUTPUT_ENCODING_NAME . . . . . . . . . . . . . . . . . . . . . . . . . . 169
--outputindent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Outputting HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Overfull ‘hboxes’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Overview of Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
OVERVIEW_LINK_TO_TOC . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Owner of copyright for FSF works . . . . . . . . . . . . . . . . 17

P
-p indent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
-P path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
PACKAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
PACKAGE_AND_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
PACKAGE_NAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
PACKAGE_URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
PACKAGE_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Page breaks, awkward . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Page breaks, forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Page delimiter in Texinfo mode . . . . . . . . . . . . . . . . . . 227
Page headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Page numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Page sizes for books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Page sizes, customized . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
page-delimiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Pages, starting odd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Paper size, A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Paragraph indentation control . . . . . . . . . . . . . . . . . . . . 25
Paragraph, marking text within . . . . . . . . . . . . . . . . . . . 53
paragraphindent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
--paragraph-indent=indent . . . . . . . . . . . . . . . . . . . . 159
Parameters to macros . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Parentheses in node name . . . . . . . . . . . . . . . . . . . . . . . . 29
Parsing errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Part of file formatting and printing . . . . . . . . . . . . . . 231
Part pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Partial documents, formatting . . . . . . . . . . . . . . . . . . . 146
Parts of a cross-reference . . . . . . . . . . . . . . . . . . . . . . . . . 43
Parts of a master menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Parts of a menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Patches, contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
PCL file, for printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
--pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
pdf image inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
PDF output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
PDF output of urls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
PDF output, overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
--pdf, for texi2dvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
pdfetex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
pdftex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
pdftex, and images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
pdftexi2dvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Period in node name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Periods, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Perl extension modules (XS) . . . . . . . . . . . . . . . . . . . . . 160
Perl format strings for translation . . . . . . . . . . . . . . . 172
Perl POD, converting to Texinfo . . . . . . . . . . . . . . . . . 173
Permissions text, including . . . . . . . . . . . . . . . . . . . . . . . 17
Permissions, printed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
pg (program) index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Picas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Pictures, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Pinard, François . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Plain TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



General Index 273

Plain text output with --plaintext . . . . . . . . . . . . . 159
Plain text output, overview . . . . . . . . . . . . . . . . . . . . . . . . 3
--plaintext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
png image format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
POD, converting to Texinfo . . . . . . . . . . . . . . . . . . . . . 173
pod2texi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Point, indicating in a buffer . . . . . . . . . . . . . . . . . . . . . 102
Pointer creation with makeinfo . . . . . . . . . . . . . . . . . . . 33
Pointer validation with makeinfo . . . . . . . . . . . . . . . . 161
Pointer validation, suppressing . . . . . . . . . . . . . . . . . . . 146
Pointer validation, suppressing

from command line . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Points (dimension) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
PostScript output, overview . . . . . . . . . . . . . . . . . . . . . . . . 3
Pounds symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
PRE_ABOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
PRE_BODY_CLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Preamble, in Info format . . . . . . . . . . . . . . . . . . . . . . . . 247
Predefined names for indices . . . . . . . . . . . . . . . . . . . . . . 88
Preface, etc., and Docbook . . . . . . . . . . . . . . . . . . . . . . . 38
<preface> Docbook tag . . . . . . . . . . . . . . . . . . . . . . . . . . 38
PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Preparing for TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Prev node of Top node . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Preventing first paragraph indentation . . . . . . . . . . . . 25
Preventing line and page breaks . . . . . . . . . . . . . . . . . 105
Print and format in Texinfo mode . . . . . . . . . . . . . . . 147
Print, format from Emacs shell . . . . . . . . . . . . . . . . . . 147
Printed book and manual characteristics . . . . . . . . . . . 4
Printed output, indicating . . . . . . . . . . . . . . . . . . . . . . . 101
Printed output, through texi2any . . . . . . . . . . . . . . . 161
Printed permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Printing a region or buffer . . . . . . . . . . . . . . . . . . . . . . . 231
Printing an index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Printing cost, reducing . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Printing DVI files, on MS-DOS/MS-Windows . . . . 147
Printing hardcopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Problems, catching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
.profile initialization file . . . . . . . . . . . . . . . . . . . . . . . 149
PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Program names, indicating . . . . . . . . . . . . . . . . . . . . . . . 58
PROGRAM_NAME_IN_FOOTER . . . . . . . . . . . . . . . . . . . . . . . . 166
Programming, glyphs for . . . . . . . . . . . . . . . . . . . . . . . . 100
Pronunciation of Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Prototype row, column widths defined by . . . . . . . . . 76
--ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
--ps, for texi2dvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Q
--quiet, for install-info . . . . . . . . . . . . . . . . . . . . . . 183
Quotation characters (‘’), in source . . . . . . . . . . . . . . . 96
Quotation marks, French . . . . . . . . . . . . . . . . . . . . . . . . . 96
Quotation marks, German . . . . . . . . . . . . . . . . . . . . . . . . 96
Quotation marks, inserting . . . . . . . . . . . . . . . . . . . . . . . 96
Quotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Quotations in smaller fonts . . . . . . . . . . . . . . . . . . . . . . . 70
Quote characters, inserting . . . . . . . . . . . . . . . . . . . . . . . 92
Quoting, automatic for some macros . . . . . . . . . . . . . 132

R
Ragged left, without filling . . . . . . . . . . . . . . . . . . . . . . . 68
Ragged right, with filling . . . . . . . . . . . . . . . . . . . . . . . . . 68
Ragged right, without filling . . . . . . . . . . . . . . . . . . . . . . 68
Raising and lowering sections . . . . . . . . . . . . . . . . . . . . . 42
Raw formatter commands . . . . . . . . . . . . . . . . . . . . . . . 123
Raw HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
raw text output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
RCS $Id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Recommended names for keys . . . . . . . . . . . . . . . . . . . . 56
Rectangle, black in hardcopy . . . . . . . . . . . . . . . . . . . . 151
Recursive macro invocations . . . . . . . . . . . . . . . . . . . . . 131
Reducing font size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Reference implementation . . . . . . . . . . . . . . . . . . . . . . . 154
Reference to @-commands . . . . . . . . . . . . . . . . . . . . . . . 194
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
References using @inforef . . . . . . . . . . . . . . . . . . . . . . . . 49
References using @pxref . . . . . . . . . . . . . . . . . . . . . . . . . . 48
References using @ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
References using @xref . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Referring to an entire manual . . . . . . . . . . . . . . . . . . . . . 47
Referring to other Info files . . . . . . . . . . . . . . . . . . . . . . . 35
--regex=regex, for install-info . . . . . . . . . . . . . . . 183
Region formatting and printing . . . . . . . . . . . . . . . . . . 231
Region printing in Texinfo mode . . . . . . . . . . . . . . . . . 147
Registered symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Regular expression, for ‘#line’ . . . . . . . . . . . . . . . . . . 138
Reid, Brian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
--remove, for install-info . . . . . . . . . . . . . . . . . . . . . 183
--remove-exactly, for install-info . . . . . . . . . . . . 183
Repeated and optional arguments . . . . . . . . . . . . . . . 110
Reporting bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Required in Texinfo file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Requirements for formatting . . . . . . . . . . . . . . . . . . . . . 149
Requirements for include files . . . . . . . . . . . . . . . . . . . . 141
Requirements for updating commands . . . . . . . . . . . 229
Reserved words, indicating . . . . . . . . . . . . . . . . . . . . . . . . 54
Restrictions on node names . . . . . . . . . . . . . . . . . . . . . . . 29
Result of an expression . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Return type, own line for . . . . . . . . . . . . . . . . . . . . . . . . 114
RGB color specification. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ridt.eps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Right quotation marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Right-pointing angle quotation marks . . . . . . . . . . . . . 96
Ring accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Robbins, Arnold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Roman font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Romance ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Rounded rectangles, around text . . . . . . . . . . . . . . . . . . 70
Rows, of a multitable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Running an Info formatter . . . . . . . . . . . . . . . . . . . . . . . 231
Running macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Running makeinfo in Emacs . . . . . . . . . . . . . . . . . . . . . 175

S
-s style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Sample function definition . . . . . . . . . . . . . . . . . . . . . . . 118
Sample @include file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Sample Texinfo file, no comments . . . . . . . . . . . . . . . . 219
Sample Texinfo file, with comments . . . . . . . . . . . . . . . 10
Sample Texinfo files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Sample texts, GNU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Sans serif font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



General Index 274

Scaled points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Scaling images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Schwab, Andreas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Scribe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Sea surges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
--section regex sec, for install-info . . . . . . . . . 183
--section=sec, for install-info . . . . . . . . . . . . . . . 183
SECTION_NAME_IN_TITLE . . . . . . . . . . . . . . . . . . . . . . . . . 166
Sectioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Sectioning structure of a file, showing . . . . . . . . . . . . 226
Sections, raising and lowering . . . . . . . . . . . . . . . . . . . . . 42
Semantic markup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Sentence ending punctuation . . . . . . . . . . . . . . . . . . . . . 94
Sentence non-ending punctuation . . . . . . . . . . . . . . . . . 93
Sentences, spacing after . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
‘Separate’ footnote style . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Sequence of clicks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
--set-customization-variable var=value . . . . . . 159
S-expressions, output format . . . . . . . . . . . . . . . . . . . . 163
SGML-tools output format . . . . . . . . . . . . . . . . . . . . . . . . 5
Sharp S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Sharp sign (not), inserting . . . . . . . . . . . . . . . . . . . . . . . . 91
Shell formatting with tex and texindex . . . . . . . . . 145
Shell printing, on MS-DOS/MS-Windows . . . . . . . . 147
Shell, format, print from . . . . . . . . . . . . . . . . . . . . . . . . . 147
Shell, running makeinfo in . . . . . . . . . . . . . . . . . . . . . . 175
Short captions, for lists of floats . . . . . . . . . . . . . . . . . . 79
Short table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SHOW_MENU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
SHOW_TITLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Showing the sectioning structure of a file . . . . . . . . . 226
Showing the structure of a file . . . . . . . . . . . . . . . . . . . 242
Shrubbery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
SILENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
--silent, for install-info . . . . . . . . . . . . . . . . . . . . . 183
SIMPLE_MENU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Single angle quotation marks . . . . . . . . . . . . . . . . . . . . . 96
Single guillemets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Single left-pointing angle quotation mark . . . . . . . . . 96
Single low-9 quotation mark . . . . . . . . . . . . . . . . . . . . . . 96
Single quotation marks . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Single right-pointing angle quotation mark . . . . . . . . 96
Site-wide Texinfo configuration file . . . . . . . . . . . . . . 150
Size of printed book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Slanted font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Slanted typewriter font, for @kbd . . . . . . . . . . . . . . . . . . 55
Small book size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Small caps font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Small examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Small verbatim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
<small> tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Smaller fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
sort keys for index entries . . . . . . . . . . . . . . . . . . . . . . . . 85
SORT_ELEMENT_COUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
SORT_ELEMENT_COUNT_WORDS . . . . . . . . . . . . . . . . . . . . . 170
Sorting indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Sorting nodes by size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Source file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Source files, characters used . . . . . . . . . . . . . . . . . . . . . . . . 8
Space, after sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Space, inserting horizontal . . . . . . . . . . . . . . . . . . . . . . . . 93
Space, inserting vertical . . . . . . . . . . . . . . . . . . . . . . . . . 107
Spaces in macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Spaces in node name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Spaces, in menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Spacing, at ends of sentences . . . . . . . . . . . . . . . . . . . . . 94
Spacing, in the middle of sentences . . . . . . . . . . . . . . . 93
Spacing, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Special characters, inserting . . . . . . . . . . . . . . . . . . . . . . 90
Special displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Special insertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Specification of Info format . . . . . . . . . . . . . . . . . . . . . . 246
Specifying index entries . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
spell checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Spelling of Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
SPLIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Split HTML output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
split manuals, for HTML cross-references . . . . . . . . 192
Split manuals, Info format of . . . . . . . . . . . . . . . . . . . . 246
--split=how . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
SPLIT_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
--split-size=num . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Splitting an Info file manually . . . . . . . . . . . . . . . . . . . 244
Splitting of output files . . . . . . . . . . . . . . . . . . . . . . . . . . 159
ß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Stallman, Richard M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Start of header line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Starting chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
stripping Texinfo commands . . . . . . . . . . . . . . . . . . . . . 164
Structure of a file, showing . . . . . . . . . . . . . . . . . . . . . . 226
Structure, catching mistakes in . . . . . . . . . . . . . . . . . . 239
Structure, of Texinfo documents . . . . . . . . . . . . . . . . . . 27
Structuring of chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
SUBDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Subscripts and superscripts, text . . . . . . . . . . . . . . . . . . 97
Subsection-like commands . . . . . . . . . . . . . . . . . . . . . . . . 40
Subsub sectioning commands . . . . . . . . . . . . . . . . . . . . . 40
Suggestions for Texinfo, making . . . . . . . . . . . . . . . . . . . . 2
Summary of document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Suppressing first paragraph indentation . . . . . . . . . . . 25
Suppressing indentation . . . . . . . . . . . . . . . . . . . . . . . . . . 69
SVG images, used in Docbook . . . . . . . . . . . . . . . . . . . . 80
SXML output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Syntactic conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Syntactic tokens, indicating . . . . . . . . . . . . . . . . . . . . . . . 54
Syntax details, ‘#line’ . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Syntax tree representation of documents . . . . . . . . . 154
Syntax, of @-commands . . . . . . . . . . . . . . . . . . . . . . . . . 193
Syntax, optional & repeated arguments . . . . . . . . . . 110
SystemLiteral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

T
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table of contents, after title page . . . . . . . . . . . . . . . . 214
Table of contents, for floats . . . . . . . . . . . . . . . . . . . . . . . 79
Tables and lists, making . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Tables with indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Tables, making multi-column . . . . . . . . . . . . . . . . . . . . . 76
Tables, making two-column . . . . . . . . . . . . . . . . . . . . . . . 74
Tabs; don’t use! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Tag table, in Info format . . . . . . . . . . . . . . . . . . . . . . . . 247
Tag table, making automatically . . . . . . . . . . . . . . . . . 177
Tag table, making manually . . . . . . . . . . . . . . . . . . . . . 244
Targets for cross-references, arbitrary . . . . . . . . . . . . . 49
Template for a definition . . . . . . . . . . . . . . . . . . . . . . . . 109
TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
--test, for install-info . . . . . . . . . . . . . . . . . . . . . . . 183
Testing for Texinfo commands . . . . . . . . . . . . . . . . . . . 129



General Index 275

Tests, of Texinfo language . . . . . . . . . . . . . . . . . . . . . . . 154
TEX and ‘#line’ directives . . . . . . . . . . . . . . . . . . . . . . 138
TEX commands, using ordinary . . . . . . . . . . . . . . . . . . 123
TEX index sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
TEX input initialization . . . . . . . . . . . . . . . . . . . . . . . . . 149
TEX logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
TEX, how to obtain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
texi2any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
texi2any options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
texi2any, as reference implementation . . . . . . . . . . . 154
TEXI2DVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
texi2dvi (shell script) . . . . . . . . . . . . . . . . . . . . . . . . . . 143
TEXI2HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
texi2html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
texi2oldapi.texi, for texi2any . . . . . . . . . . . . . . . . 174
texi-elements-by-size . . . . . . . . . . . . . . . . . . . . . . . . . 170
texindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Texinfo commands, defining new . . . . . . . . . . . . . . . . . 131
Texinfo commands, testing for . . . . . . . . . . . . . . . . . . . 129
Texinfo document structure . . . . . . . . . . . . . . . . . . . . . . . 27
Texinfo file beginning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Texinfo file ending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Texinfo file header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Texinfo file minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Texinfo file sectioning structure, showing . . . . . . . . 226
Texinfo history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Texinfo language tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Texinfo mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Texinfo overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Texinfo parsers, discouraging more . . . . . . . . . . . . . . . . . 5
Texinfo printed book characteristics . . . . . . . . . . . . . . . . 4
Texinfo requires @setfilename . . . . . . . . . . . . . . . . . . . . 15
Texinfo XML output, overview . . . . . . . . . . . . . . . . . . . . . 4
Texinfo, and literate programming . . . . . . . . . . . . . . . 146
Texinfo, introduction to . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
texinfo.cnf installation . . . . . . . . . . . . . . . . . . . . . . . . 150
texinfo.dtd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
texinfo.tex, installing . . . . . . . . . . . . . . . . . . . . . . . . . . 149
texinfo_document Gettext domain . . . . . . . . . . . . . . 172
TEXINFO_DTD_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
TEXINFO_OUTPUT_FORMAT . . . . . . . . . . . . . . . . . . . . 160, 163
TEXINFO_XS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
TEXINFO_XS_PARSER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
texinfo-bright-colors.css . . . . . . . . . . . . . . . . . . . . 186
TEXINPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
texiwebjr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
text constructs, Info format . . . . . . . . . . . . . . . . . . . . . . 249
Text width and height . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Text, conditionally visible . . . . . . . . . . . . . . . . . . . . . . . 122
Text, marking up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Text::Unidecode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
TEXTCONTENT_COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Textual glyphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
<thead> HTML/XML tag . . . . . . . . . . . . . . . . . . . . . . . . 76
Thin space between number, dimension . . . . . . . . . . . 95
Thorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Three-argument form of cross-references . . . . . . . . . . 45
ti.twjr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Tie-after accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Tied space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Tilde accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
time-stamp.el . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
<tip> Docbook tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Title page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Title page, bastard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
<title> Docbook tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
<title> HTML tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Titlepage end starts headings . . . . . . . . . . . . . . . . . . . . . 20
TOC_LINKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Top node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Top node example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Top node is first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
TOP_FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
TOP_NODE_FILE_TARGET . . . . . . . . . . . . . . . . . . . . . . . . . . 166
TOP_NODE_UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
TOP_NODE_UP_URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
tp (data type) index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Translating strings in output documents . . . . . . . . . 172
TRANSLITERATE_FILE_NAMES . . . . . . . . . . . . . . . . . . . . . 163
--transliterate-file-names . . . . . . . . . . . . . . . . . . . 160
Transliteration of 8-bit characters in

HTML cross-references . . . . . . . . . . . . . . . . . . . . . . . . 190
Tree representation of documents . . . . . . . . . . . . . . . . 154
tree representation, for debugging . . . . . . . . . . . . . . . . 163
Tree structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TREE_TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Two ‘First’ Lines for @deffn . . . . . . . . . . . . . . . . . . . . . 111
Two letter names for indices . . . . . . . . . . . . . . . . . . . . . . 88
Two named items for @table . . . . . . . . . . . . . . . . . . . . . 75
Two part menu entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Two-argument form of cross-references . . . . . . . . . . . . 45
txi-cc.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
txicodequotebacktick, obsolete variable . . . . . . . . . 92
txicodequoteundirected, obsolete variable . . . . . . . 92
txicommandconditionals . . . . . . . . . . . . . . . . . . . . . . . . 129
txiindexatsignignore . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
txiindexbackslashignore . . . . . . . . . . . . . . . . . . . . . . . 85
txiindexhyphenignore . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
txiindexlessthanignore . . . . . . . . . . . . . . . . . . . . . . . . . 85
txixml2texi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Typed functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Typed variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Typewriter font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

U
Ugly black rectangles in hardcopy . . . . . . . . . . . . . . . 151
Umlaut accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Unbreakable space, fixed . . . . . . . . . . . . . . . . . . . . . . . . . 106
Unbreakable space, variable . . . . . . . . . . . . . . . . . . . . . . 107
Uncluttered menu entry . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Undefining macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Underbar accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Underdot accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Underscore, breakpoint within @code . . . . . . . . . . . . 106
undirected single quote . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Unicode and TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Unicode character, inserting . . . . . . . . . . . . . . . . . . . . . 103
Unicode quotation characters . . . . . . . . . . . . . . . . . . . . . 96
Uniform resource locator, indicating . . . . . . . . . . . . . . 60
Uniform resource locator, referring to . . . . . . . . . . . . . 50
Unique index entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Unique node names requirement . . . . . . . . . . . . . . . . . . 29
Unnumbered float, creating . . . . . . . . . . . . . . . . . . . . . . . 78
Unprocessed text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Unsplit file creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244



General Index 276

Up node of Top node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
UPDATED Automake variable . . . . . . . . . . . . . . . . . . . . . 220
UPDATED-MONTH Automake variable . . . . . . . . . . . . . . . 220
Updating nodes and menus . . . . . . . . . . . . . . . . . . . . . . 227
Updating requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 229
URI syntax for Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
URL, examples of displaying . . . . . . . . . . . . . . . . . . . . . . 50
@url, examples of using . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
URL, indicating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
URL, referring to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
<URL...> convention, not used . . . . . . . . . . . . . . . . . . . . 51
URLs, coloring in PDF output . . . . . . . . . . . . . . . . . . . . 52
URLs, PDF output of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Usage tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
us-ascii encoding, and translations . . . . . . . . . . . . . 172
USE_ACCESSKEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
USE_ISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
USE_LINKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
USE_NODE_TARGET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
USE_NODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
USE_NUMERIC_ENTITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
USE_REL_REV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
USE_SETFILENAME_EXTENSION . . . . . . . . . . . . . . . . . . . . 172
USE_TITLEPAGE_FOR_TITLE . . . . . . . . . . . . . . . . . . . . . . 172
USE_UNIDECODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
USE_UP_NODE_FOR_ELEMENT_UP . . . . . . . . . . . . . . . . . . . 172
User input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
User options, marking . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
User-defined Texinfo commands . . . . . . . . . . . . . . . . . 131
Using Info-validate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Using Texinfo in general . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
UTF-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

V
-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Validating a large file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Validation of pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Value of an expression, indicating . . . . . . . . . . . . . . . . 101
Variables, in typed languages . . . . . . . . . . . . . . . . . . . . 114
Variables, object-oriented . . . . . . . . . . . . . . . . . . . . . . . . 116
Verbatim copying license . . . . . . . . . . . . . . . . . . . . . . . . 222
Verbatim environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Verbatim in-line text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Verbatim, include file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Verbatim, small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
VERBOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
--verbose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
VERSION Automake variable . . . . . . . . . . . . . . . . . . . . . 220
Version control keywords,

preventing expansion of . . . . . . . . . . . . . . . . . . . . . . . 107
Version number, for install-info . . . . . . . . . . . . . . . . . . 183
--version, for install-info . . . . . . . . . . . . . . . . . . . . 183

--version, for texi2any . . . . . . . . . . . . . . . . . . . . . . . . 160
Versions of Texinfo, adapting to . . . . . . . . . . . . . . . . . 129
VERTICAL_HEAD_NAVIGATION . . . . . . . . . . . . . . . . . . . . . 167
Vertically holding text together . . . . . . . . . . . . . . . . . . 107
Visibility of conditional text . . . . . . . . . . . . . . . . . . . . . 122
Visualizing Texinfo CSS . . . . . . . . . . . . . . . . . . . . . . . . . 186
vr (variable) index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

W
@w, for blank items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
W3 consortium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
<warning> Docbook tag . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Weinberg, Zack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Weisshaus, Melissa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
White space in node name . . . . . . . . . . . . . . . . . . . . . . . . 30
Whitespace in macros . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Whitespace, collapsed around continuations . . . . . . 110
Whitespace, controlling in conditionals . . . . . . . . . . . 125
Whitespace, inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Whole manual, in Info format . . . . . . . . . . . . . . . . . . . 246
Width of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Width of text area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Widths, defining multitable column . . . . . . . . . . . . . . . 76
Wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
word counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Words and phrases, marking them . . . . . . . . . . . . . . . . 53
WORDS_IN_PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Writing a menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Writing an @node line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Writing index entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

X
xdvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
--xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
XML Docbook output, overview . . . . . . . . . . . . . . . . . . . 3
XML Texinfo output, overview . . . . . . . . . . . . . . . . . . . . . 4
XML, including raw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
--Xopt str . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
XPM image format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
XREF_USE_FLOAT_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . 167
XREF_USE_NODE_NAME_ARG . . . . . . . . . . . . . . . . . . . . . . . . 167
XZ-compressed dir files, reading . . . . . . . . . . . . . . . . . 181

Y
Years, in copyright line . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Z
Zaretskii, Eli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Zuhn, David D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6


	Texinfo Copying Conditions
	1 Overview of Texinfo
	Reporting Bugs
	Output Formats
	Info Files
	Printed Books
	Adding Output Formats
	History

	2 Writing a Texinfo File
	General Syntactic Conventions
	Comments
	What a Texinfo File Must Have
	A Short Sample Texinfo File

	3 Beginning and Ending a Texinfo File
	Sample Texinfo File Beginning
	Texinfo File Header
	The First Line of a Texinfo File
	Start of Header
	@setfilename: Set the Output File Name
	@settitle: Set the Document Title
	End of Header

	Document Permissions
	@copying: Declare Copying Permissions
	@insertcopying: Include Permissions Text

	Title and Copyright Pages
	@titlepage
	@titlefont, @center, and @sp
	@title, @subtitle, and @author
	Copyright Page
	Heading Generation

	Generating a Table of Contents
	The `Top' Node and Master Menu
	Top Node Example
	Parts of a Master Menu

	Global Document Commands
	@documentdescription: Summary Text
	@setchapternewpage: Blank Pages Before Chapters
	The @headings Command
	@paragraphindent: Controlling Paragraph Indentation
	@firstparagraphindent: Indenting After Headings
	@exampleindent: Environment Indenting

	Ending a Texinfo File

	4 Nodes
	Texinfo Document Structure
	Choosing Node Names
	Writing an @node Line
	@node Line Requirements
	The First Node
	The @top Sectioning Command
	Node and Menu Illustration
	makeinfo Pointer Creation
	Menus
	Writing a Menu
	A Menu Example
	Menu Location
	The Parts of a Menu
	Less Cluttered Menu Entry
	Referring to Other Info Files


	5 Chapter Structuring
	Tree Structure of Sections
	Structuring Command Types
	@chapter: Chapter Structuring
	@unnumbered, @appendix: Chapters with Other Labeling
	@majorheading, @chapheading: Chapter-level Headings
	@section: Sections Below Chapters
	@unnumberedsec, @appendixsec, @heading
	@subsection: Subsections Below Sections
	The @subsection-like Commands
	@subsection and Other Subsub Commands
	@part: Groups of Chapters
	Raise/lower Sections: @raisesections and @lowersections

	6 Cross-references
	What References Are For
	Different Cross-reference Commands
	Parts of a Cross-reference
	@xref
	@xref with One Argument
	@xref with Two Arguments
	@xref with Three Arguments
	@xref with Four and Five Arguments

	Referring to a Manual as a Whole
	@ref
	@pxref
	@anchor: Defining Arbitrary Cross-reference Targets
	@inforef: Cross-references to Info-only Material
	@url, @uref{url[, text][, replacement]}
	@url Examples
	URL Line Breaking
	@url PDF Output Format
	PDF Colors

	@cite{reference}

	7 Marking Text, Words and Phrases
	Indicating Definitions, Commands, etc.
	Highlighting Commands are Useful
	@code{sample-code}
	@kbd{keyboard-characters}
	@key{key-name}
	@samp{text}
	@verb{chartextchar}
	@var{metasyntactic-variable}
	@env{environment-variable}
	@file{file-name}
	@command{command-name}
	@option{option-name}
	@dfn{term}
	@abbr{abbreviation[, meaning]}
	@acronym{acronym[, meaning]}
	@indicateurl{uniform-resource-locator}
	@email{email-address[, displayed-text]}

	Emphasizing Text
	@emph{text} and @strong{text}
	@sc{text}: The Small Caps Font
	Fonts for Printing


	8 Quotations and Examples
	Block Enclosing Commands
	@quotation: Block Quotations
	@indentedblock: Indented text blocks
	@example: Example Text
	@verbatim: Literal Text
	@lisp: Marking a Lisp Example
	@display: Examples Using the Text Font
	@format: Examples Using the Full Line Width
	@exdent: Undoing a Line's Indentation
	@flushleft and @flushright
	@raggedright: Ragged Right Text
	@noindent: Omitting Indentation
	@indent: Forcing Indentation
	@cartouche: Rounded Rectangles
	@small... Block Commands

	9 Lists and Tables
	Introducing Lists
	@itemize: Making an Itemized List
	@enumerate: Making a Numbered or Lettered List
	Making a Two-column Table
	Using the @table Command
	@ftable and @vtable
	@itemx: Second and Subsequent Items

	@multitable: Multi-column Tables
	Multitable Column Widths
	Multitable Rows


	10 Special Displays
	Floats
	@float [type][,label]: Floating Material
	@caption & @shortcaption
	@listoffloats: Tables of Contents for Floats

	Inserting Images
	Image Syntax
	Image Scaling

	Footnotes
	Footnote Commands
	Footnote Styles


	11 Indices
	Predefined Indices
	Defining the Entries of an Index
	Advanced Indexing Commands
	Making Index Entries
	Printing Indices and Menus
	Combining Indices
	@syncodeindex: Combining Indices Using @code
	@synindex: Combining Indices

	Defining New Indices

	12 Special Insertions
	Special Characters: Inserting @ {} , \ # &
	Inserting `@' with @@ and @atchar{}
	Inserting `{ `}' with @{ @} and @l rbracechar{}
	Inserting `,' with @comma{}
	Inserting `\' with @backslashchar{}
	Inserting `#' with @hashchar{}
	Inserting `&' with @& and @ampchar{}

	Inserting Quote Characters
	Inserting Space
	Multiple Spaces
	Not Ending a Sentence
	Ending a Sentence
	@frenchspacing val: Control Sentence Spacing
	@dmn{dimension}: Format a Dimension

	Inserting Accents
	Inserting Quotation Marks
	@sub and @sup: Inserting Subscripts and Superscripts
	@math: Inserting Mathematical Expressions
	Glyphs for Text
	@TeX{} (TeX) and @LaTeX{} (LaTeX)
	@copyright{} (copyright)
	@registeredsymbol{} (R)
	@dots (...) and @enddots (...)
	@bullet (bullet)
	@euro (euro): Euro Currency Symbol
	@pounds (pounds): Pounds Sterling
	@textdegree (o): Degrees Symbol
	@minus (-): Inserting a Minus Sign
	@geq (>=) and @leq (<=): Inserting Relations

	Glyphs for Programming
	Glyphs Summary
	@result{} (=>): Result of an Expression
	@expansion{} (==>): Indicating an Expansion
	@print{} (-|): Indicating Generated Output
	@error{} (error): Indicating an Error Message
	@equiv{} (==): Indicating Equivalence
	@point{} (.): Indicating Point in a Buffer
	Click Sequences

	Inserting Unicode: @U

	13 Forcing and Preventing Breaks
	Break Commands
	@* and @/: Generate and Allow Line Breaks
	@- and @hyphenation: Helping TeX Hyphenate
	@allowcodebreaks: Control Line Breaks in @code
	@w{text}: Prevent Line Breaks
	@tie{}: Inserting an Unbreakable Space
	@sp n: Insert Blank Lines
	@page: Start a New Page
	@group: Prevent Page Breaks
	@need mils: Prevent Page Breaks

	14 Definition Commands
	The Template for a Definition
	Definition Command Continuation Lines
	Optional and Repeated Arguments
	@deffnx, et al.: Two or More `First' Lines
	The Definition Commands
	Functions and Similar Entities
	Variables and Similar Entities
	Functions in Typed Languages
	Variables in Typed Languages
	Data Types
	Object-Oriented Programming
	Object-Oriented Variables
	Object-Oriented Methods


	Conventions for Writing Definitions
	A Sample Function Definition

	15 Internationalization
	@documentlanguage ll[_cc]: Set the Document Language
	@documentencoding enc: Set Input Encoding

	16 Conditionally Visible Text
	Conditional Commands
	Conditional Not Commands
	Raw Formatter Commands
	Inline Conditionals: @inline, @inlineifelse, @inlineraw
	Flags: @set, @clear, conditionals, and @value
	@set and @value
	@ifset and @ifclear
	@inlineifset and @inlineifclear
	@value Example

	Testing for Texinfo Commands: @ifcommanddefined, @ifcommandnotdefined
	Conditional Nesting

	17 Defining New Texinfo Commands
	Defining Macros
	Invoking Macros
	Macro Details and Caveats
	@alias new=existing
	@definfoenclose: Customized Highlighting
	External Macro Processors: Line Directives
	#line Directive
	#line and TeX
	#line Syntax Details


	18 Include Files
	How to Use Include Files
	texinfo-multiple-files-update
	Include Files Requirements
	Sample File with @include
	@verbatiminclude file: Include a File Verbatim
	Evolution of Include Files

	19 Formatting and Printing Hardcopy
	Use TeX
	Format with texi2dvi
	Format with tex/texindex
	Formatting Partial Documents
	Details of texindex

	Print with lpr from Shell
	Printing From an Emacs Shell
	Formatting and Printing in Texinfo Mode
	Using the Local Variables List
	TeX Formatting Requirements Summary
	Preparing for TeX
	Overfull ``hboxes''
	@smallbook: Printing ``Small'' Books
	Printing on A4 Paper
	@pagesizes [width][, height]: Custom Page Sizes
	Magnification
	PDF Output
	Obtaining TeX

	20 texi2any: The Generic Translator for Texinfo
	texi2any: A Texinfo Reference Implementation
	Invoking texi2any/makeinfo from a Shell
	Environment Variables Recognized by texi2any
	texi2any Printed Output
	Pointer Validation
	Customization Variables
	Customization Variables for @-Commands
	Customization Variables and Options
	HTML Customization Variables
	latex2html Customization Variables
	Other Customization Variables

	Internationalization of Document Strings
	Invoking pod2texi: Convert POD to Texinfo
	texi2html: Ancestor of texi2any

	21 Creating and Installing Info Files
	Creating an Info File
	makeinfo Advantages
	Running makeinfo Within Emacs
	The texinfo-format... Commands
	Batch Formatting
	Tag Files and Split Files

	Installing an Info File
	The Directory File dir
	Listing a New Info File
	Info Files in Other Directories
	Installing Info Directory Files
	Invoking install-info


	22 Generating HTML
	HTML Translation
	HTML Splitting
	HTML CSS
	HTML Cross-references
	HTML Cross-reference Link Basics
	HTML Cross-reference Node Name Expansion
	HTML Cross-reference Command Expansion
	HTML Cross-reference 8-bit Character Expansion
	HTML Cross-reference Mismatch
	HTML Cross-reference Configuration: htmlxref.cnf


	A @-Command Details
	@-Command Syntax
	@-Command List
	@-Command Contexts
	Obsolete @-Commands

	B Tips and Hints
	C Sample Texinfo Files
	Short Sample
	GNU Sample Texts
	Verbatim Copying License
	All-permissive Copying License

	D Using Texinfo Mode
	Texinfo Mode Overview
	The Usual GNU Emacs Editing Commands
	Inserting Frequently Used Commands
	Showing the Sectioning Structure of a File
	Updating Nodes and Menus
	The Updating Commands
	Updating Requirements
	Other Updating Commands

	Formatting for Info
	Printing
	Texinfo Mode Summary

	E Page Headings
	Headings Introduced
	Standard Heading Formats
	Specifying the Type of Heading
	How to Make Your Own Headings

	F Catching Mistakes
	makeinfo Preferred
	Catching Errors with Info Formatting
	Debugging with TeX
	Using texinfo-show-structure
	Using occur
	Finding Badly Referenced Nodes
	Using Info-validate
	Creating an Unsplit File
	Tagifying a File
	Splitting a File Manually


	G Info Format Specification
	Info Format General Layout
	Info Format Text Constructs
	Info Format: Menu
	Info Format: Image
	Info Format: Printindex
	Info Format: Cross-reference


	H GNU Free Documentation License
	Command and Variable Index
	General Index

