
FigPut
Interactive Figures for LATEX

https://github.com/rsfairman/figput

Randall Fairman
Version 0.90, July 21, 2022

The FigPut system allows LATEX to produce interactive figures. The system
produces a static PDF file, as usual; in addition, the document can be viewed
with an Internet browser and the figures become interactive. See the prototype
in example/example.tex to clarify what follows.1 To view this example in its
fully interactive form, see rsfairman.github.io/figput-example/.

1 Why FigPut

There are many ways to produce figures in LATEX: MetaPost, TikZ, PSTricks,
XY-pic, graphics, picture, and more. Creating technical figures is often an
exercise in programming, and none of these is based on a commonly used pro-
gramming language. FigPut is based on JavaScript (JS), which is probably
the most widely used language today. Moreover, FigPut allows figures to be
animated and/or interactive.

Aside from the fact that figures are specified with JavaScript, the system
is normal LATEX. An important feature is that the two forms of the document
– static PDF and interactive – look identical, with the same pagination and
formatting. The reader can move between the printed version and the interactive
version without needing to reorient.

2 Using FigPut

Here’s a list of all the commands available in FigPut:

\begin{figput} ... \end{figput}

\FigPut

\SetInnerMargin

\SetOuterMargin

\NeverSkip

\AllowSkip

\LoadFigureCode

1The version available on CTAN includes only what is strictly necessary to rebuild the
document from scratch: example.tex and exteernalcode.js. The repository at github in-
cludes all the files that result from the build process, and are necessary to view the PDF in
either static or interactive form.

1



2.1 The LATEX Side

Interactive figures are specified with the figput environment or the \FigPut

command. The full form of the environment specification is

\begin{figput}{<fig_name>,<fig_ht>}[optional arguments]
<JavaScript code>

\end{figput}

There are two mandatory arguments: <fig_name> and <fig_ht>. Every figure
must have a unique name. This name is unrelated to any \label or other
identifier used for the figure. The <fig_ht> is the height of the figure, expressed
like other LATEX lengths in pt, cm, etc. The figure is allocated this much vertical
space on the page. The remaining optional arguments are discussed below.

The <JavaScript code> is used to draw the figure, and the only requirement
is that it be given as

function <fig_name>(ctx) {

...

}

The name of the JS function must match the figure name given to the figput

environment – that’s how the browser finds the correct JS function to draw a
particular figure. The ctx argument is required; it’s the “rendering context”
used for drawing.2

All of the JS functions for the various figures share the same name-space,
and it is perfectly acceptable to share functions between figures or to define
helper functions within a figure’s environment. If many figures use the same
drawDoodad() function, then that function should appear with only a single
figure, and it will be available to all of them.

Use \SetInnerMargin and \SetOuterMargin to set the inner and outer
margins (which may differ in a book that has left and right pages). The figure
will be rendered within a rectangle that is set in from the left margin by the
given amount. For example, you might say

\SetInnerMargin{150pt}

\SetOuterMargin{150pt}

so that the left edge of the figure is 150pt from the left edge of the paper. These
values can be changed before every figure, if that is appropriate.

The coordinate system used within the JS code is based on big points (bp),
with the origin at the lower-left corner of the figure. The y-coordinate increases
as you move up the page. The y-axis is offset from the edge of the page by the
value given to \SetInnerMargin or \SetOuterMargin.

2 A variable of this type is commonly obtained in JavaScript by something like

let canvas = document.getElementById(’where-drawing-happens’);

let ctx = canvas.getContext(’2d’);

The full name for this type is CanvasRenderingContext2D.

2



There is no need to begin the drawing by erasing the drawing area. That’s
done automatically.

Optional Arguments

The arguments to figput in [], are optional. The first two of these arguments
are

ht_above, ht_below

If these arguments appear, then they must both appear, they must be the first
two arguments, and they must be given in that order (above, then below);
furthermore, they must include a unit specification, like bp. An interactive
figure may need a bit of extra clearance for an animation or space for widgets
that aren’t part of the figure itself. The static version of the document always
uses <fig_ht> for the figure height, while the interactive form adds this optional
amount of space above and below the figure. If ht_below is non-zero, then the
y-axis is ht_below above the bottom of the figure when drawn interactively.

The remaining optional arguments may appear in any order and function as
boolean flags:

nostatic Use this when the figure is to be shown only when the document is
viewed interactively. No figure will appear in the PDF. Almost cer-
tainly, the mandatory fig_ht argument should be zero. The sum
of ht_above and ht_below is used for the height of the interactive
figure.

done indicates to the browser that the .tikz should not be updated.

skip TikZ files can be large and take a long time to process. When this
is set, the TikZ file won’t be loaded and the figure will appear with
a default “not available” message.

When the composition of a figure is complete, it often makes sense to turn on
the done and skip flags. Using skip saves time, and done prevents inadvertent
overwriting of a .tikz file that you’re happy with. However, to see the complete
output, with your figures, you would have to go back and tediously remove all of
the skip flags. Use \NeverSkip to avoid that tedium and disable all the skip

flags that occur until the next \AllowSkip.

The \FigPut Command

\FigPut takes exactly the same arguments as the figput environment, but the
JS code must appear in an external file. The location of this external file is
indicated with \LoadFigureCode. If the code is found in mydrawcode.js, then

\LoadFigureCode{mydrawcode.js}

3



must appear somewhere in the .tex file.
It is often easier to use an external file to consolidate the drawing code in

fewer files (or a single file). Not only does it make the .tex file shorter and
easier to navigate, but it allows the use of programming tools tailored to JS.
For instance, the code could be written in TypeScript and compiled to JS. On
the other hand, if the code for the figures is brief, then it may be clearer and
more direct to use the figput environment so that the code is in the .tex file.

Additional Remarks

There is no explicit provision in FigPut for changing the body of the text
based on whether the document is to be viewed statically or interactively. This
is intentional. The aim is for the text and its layout to be identical in the two
scenarios. However, it would be relatively straightforward to set up a couple of
commands like

\newcommand{\statictext}[1]{#1}

\newcommand{\intereactivetext}[1]{ }

In the above example, anything that appears in \statictext{} will pass through
to the LATEX document, while everything in \interactivetext{} will be ig-
nored. Swap these two definitions depending on whether the document is being
compiled for interactive or static reading.

2.2 Workflow

There are several phases to composing and releasing a document. The first
phase is a loop through writing the LATEX, compiling it, viewing the output in
a browser and generating TikZ, until the document is done. Everything in the
first phase is local to your machine. The second phase is posting the result to
a public-facing website. The first phase is discussed here; see Section 3 for the
second phase.

Setup

The functionality of FigPut is given by figput.sty. It requires the following
packages: zref, xsim, tikz and verbatim.

A typical arrangement is to have a javascript directory with the files for
the browser side of the framework, and a LATEX directory where the document
is written in the usual way. The javascript directory contains the JS files and
the one HTML file needed to provide the browser front-end, and you’ll also find
server.py. This Python script runs a local server so that your browser can
open and view the document being written.3 In principle, it’s no different than
a normal web-server, but it is tailored in several ways to the task at hand. To
invoke this server, use the command-line to go to the javascript directory and
type

3This requires Python 3 – although that’s probably obvious these days.

4



python server.py directory/nameof.pdf [port_num]

The directory/nameof.pdf argument is required and should be the path from
the current (javascript) directory to the PDF being generated by LATEX. Of-
ten, this will be something like

../../latex_area/num_theory/hairy_math.pdf

The optional port_num argument indicates the TCP/IP port on which the server
will listen. It defaults to 8000. In principle, any integer in the range [0, 216)
could appear here, but certain values are restricted and others may already be
in use. Stick to values in the range 8000-8100, and you should be safe.4

By using different port numbers, it’s possible to run several servers at once,
so that multiple documents can be viewed and edited at the same time. Once the
server is running, point your browser to localhost:8000 (or whatever port_num
you’ve chosen) to load the document.

As stated, server.py differs from a normal web-server in certain ways. This
is done to make it easier to work with a document while it is being written. Once
the document is complete, it can be served by a normal web-server.

Additional Files

There are two additional directories in the javascript directory: development
and release. FigPut was written in TypeScript, and the .ts files are in
development. Even if you don’t want to modify the system, the TypeScript
files are easier to follow than the JavaScript files, and are the first place to look
to clarify how the system works internally. There are four files:

• main.ts is the main entry-point for the program. This is unlikely to
interest anyone who wants to simply use FigPut.

• layout.ts handles page layout – also uninteresting to most people.

• widgets.ts has the code for the various widgets. If widgets aren’t acting
the way you expect, then look here.

• tikz.ts handles lower-level geometry, and conversion from JS to TikZ.
Look here for details about the Point2D and FPath classes.

Two files found in the javascript directory are pdf.worker.min.js and
pdf.js. These are the source files for Mozilla’s pdf.js library. The complete
project can be found at github.com/mozilla/pdf.js. The files are included
here because, when developing a LATEX document on your local machine, it
would be pointless (and slow) to download these files every time an updated
version of your document is loaded.

The release directory contains the files to be used when the document is
released to a public-facing website. As noted above, server.py works differently
than a normal web-server. The release process is discussed in more detail in
Section 3.

4See en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

5



From JavaScript to TikZ

Once the server is running, a browser can view documents created with FigPut,
but the figures will not be visible in the PDF document until a TikZ file is
provided. The Get TikZ button in the browser window generates the TikZ files.
The server will save these files to the same directory as the PDF file. Note that
a TikZ file will only be generated if the figure has been scrolled into view (or
nearly into view) since the document was loaded.

Because TikZ files can take time to load, it’s often useful to compose the
figures one (or a few) at a time. Apply the optional done argument for any
figures that are complete, and the Get TikZ button will not generate TikZ files
for them. You may want a particular frame from an animation; once you have
the right frame, it would be frustrating to accidentally overwrite it in the course
of working on some other figure. Using done prevents that from happening.

2.3 JavaScript Drawing

In most respects, any JS code can be used with FigPut, but it must be possi-
ble to translate the JS drawing commands to TikZ, and that leads to certain
requirements. In a nutshell, all drawing must be done using a class that is very
similar to JS’s built-in Path2D class.

If this is too restrictive, then it is possible to side-step the requirement with
a bit of extra effort. If you use JS drawing commands that are off-limits, like
drawImage(), then the interactive version will work fine, but you’ll have to find
some other way to generate the figure for inclusion in the static PDF. Any of the
usual methods of generating figures for LATEX documents will work, but now the
two versions, interactive and static, are generated from different source-code.

Earlier, in a footnote on p. 2, it was a stated that the ctx argument to
your drawing function has the standard JS type, CanvasRenderingContext2D.
That’s not always true. Any drawing done to the browser is precisely an object
of this type. If you only care about seeing your document within the browser
framework, and you don’t care about generating figures for a standalone .pdf

file, then that’s all you need to know. Draw with JS however you like.
To produce TikZ output, the built-in CanvasRenderingContext2D must be

“spoofed.” All of the drawing commands that normally go to the built-in JS
browser code go to FigPut’s CTX class instead, where they are converted to TikZ
output. This class implements a sub-set of the full list of drawing commands
normally available. The permitted commands are

ctx.fill()

ctx.stroke()

ctx.lineWidth

These work almost as they normally do. The lineWidth is the thickness of
any paths, and can be thought of as being in TEX’s bp units. The fill() and
stroke() commands normally take a JS Path2D object, but you should pass an
object of type FPath instead.

6



The methods of FPath listed below are exactly like those found in Path2D.
They add a new segment to an existing FPath, obtained with new. See any JS
resource for an explanation.

• closePath()

• moveTo()

• lineTo()

• bezierCurveTo()

• ellipse()

And these methods of FPath are new – they have no counterpart in Path2D.

• addPath(p) appends the FPath, p, to an existing FPath.

• translate(p) translates an FPath by the given Point2D.

• rotate(angle) rotates an FPath by the given angle, in radians.

• scale(s) scales an FPath by the given factor (relative to the origin).

• reflectX() reflects an FPath across the x-axis.

• reflectXY() reflects an FPath across the x and y-axis.

• rotateAbout(angle,p) rotates a given FPath about the given Point2D by
the given angle.

The methods above apply to an existing FPath and return a new FPath.

• parametricToBezier(f,t0,t1,n) converts a parametric function, f(t), to
a path consisting of n Bézier curves as t runs from t0 to t1. The function
must be defined to return Point2D objects.

This is a static method, so it returns a new FPath that is unrelated to any
existing FPath objects.

There are several additional methods in FPath that may be useful, but they
haven’t yet been tested well enough to mention here (and they may change in
the future). See the source code if you’re adventurous.

Several of the methods above mention the Point2D class, and it’s what you
would expect. Use

new Point2D(x,y);

to create these objects. There’s a long list of methods defined in the class:
translate(), rotate(), length(), etc. See the source code for a complete
list.

Text is drawn in a way that is further from how it’s normally done in JS.
Instead of calling ctx.fillText(), there are three top-level functions (not part
of any class) for drawing text:

drawText(ctx,txt,x,y,dx,dy);

drawTextBrowserOnly(ctx,txt,x,y,dx,dy);

drawTextTikZOnly(ctx,txt,x,y,dx,dy);

7



The arguments are the same in the three cases, but the first function will draw
text to both the browser window and the TikZ, while the other two will draw the
text to only one destination or the other. The ctx is the same as the argument
to your drawing function, txt is the string to be drawn, x,y is the location of
the text for the browser, relative to the lower-left corner of the bounding-box.
When the text is drawn to TikZ, it is drawn at x+dx,y+dy. Because the fonts
used in the browser and in TikZ differ slightly, sometimes it’s necessary to tweak
the TikZ placement. Setting

ctx.font = ’10px san-serif’;

sets the browser font to something very close the default font used by TikZ, but
it’s not a perfect match. The dx and dy arguments are optional and default to
0.

As a bonus, the static method, Numerical.newton(), can be used to solve
f(x) = y for x, given y. It’s a naive implementation of Newton-Raphson.

2.4 JavaScript Widgets

The foregoing framework could be used an an alternative to TikZ, PSTricks,
MetaPost, etc., if your aim is strictly static output. To make the figures inter-
active, there must be some means to accept user input – widgets.

All widgets have a static register() method. Do not use new to create
widgets! Registering a widget has the effect of making it available for user input,
and drawing it too (with one exception). The arguments to these register()

methods vary with the widget, but the first argument is always the ctx known
to the drawing function, and the last argument is always a name (a string).
One drawing could have several widgets of the same kind and name is used to
distinguish them. So, if a particular drawing has three buttons, then they could
be created/registered with

let b1 = ButtonWidget.register(ctx,...,"first");

let b2 = ButtonWidget.register(ctx,...,"second");

let b3 = ButtonWidget.register(ctx,...,"third");

These names only need to be unique within a single drawing and one type of wid-
get. So, in the example above, two DraggableDotWidgets could be registered
in the same drawing as the ButtonWidgets with

let dd1 = DraggableDotWidget.register(ctx,...,"first");

let dd2 = DraggableDotWidget.register(ctx,...,"second");

2.4.1 ButtonWidget

These are registered with

ButtonWidget.register(ctx,x,y,text,name);

8



The x,y argument is the location of the button, relative to the lower-left corner.
The text is what is shown as the message within the button. Buttons work by
calling back to your drawing code whenever they are clicked. Every time the
button is clicked, the entire drawing function is executed.

There are two useful fields of ButtonWidget. If b is a ButtonWidget, then
b.clickState toggles between true and false with every click of the button,
while b.resetState is set to true whenever the button is clicked – and remains
true until your drawing code resets it.

2.4.2 NumberInputWidget

This is similar to ButtonWidget, and is used to input single numbers. It’s
registered with

NumberInputWidget.register(ctx,x,y,v,name);

The v argument is the initial numerical value shown in the widget. Whenever
the user changes this value, the widget calls back and executes the entire drawing
function. To obtain this value, call getValue() on the relevant widget. Because
this widget relies on HTML, getValue() returns a string. It may be necessary
to call the JS parseFloat() or parseInt() functions on this value.

2.4.3 DraggableDotWidget

A “draggable dot” is a small dot that can be grabbed by the mouse and moved
around. They’re registered with

DraggableDotWidget.register(ctx,x,y,name);

To determine where the user has moved a dot, refer to the widget’s widgetX

and widgetY fields.
Most widgets are used “off to the side” and wouldn’t normally interfere with

the way the figure is drawn, but these dots are typically used as part of the
drawing itself. The order in which dots are drawn may matter. Sometimes a
dot should be drawn first, so that other elements of the figure may be drawn
over it; and sometimes a dot should be drawn last so that nothing can obscure
it. For this reason, unlike other widgets, registering the widget does not also
draw the widget. An explicit call to the widget’s draw(ctx) method must be
made to draw the dot.

2.4.4 DraggableDrawWidget

This is similar to DraggableDotWidget, but it has no default drawing behavior.
The user must provide functions to specify what is to be drawn. So it can also
be a draggable polygon, or a draggable anything-you-can-draw. Register these
with

9



DraggableDrawWidget.register(ctx,x,y,

drawFcn,drawSelFcn,testPosFcn,

name);

The drawFcn must be defined to take the ctx as the sole argument. It can
draw whatever it wants, noting that the origin is shifted so that drawing should
typically take place relative to (0,0), not (widgetX,widgetY). In most cases,
this means that the drawing code is independent of where the item is on the
page. drawFcn must return an FPath object to indicate the “clickable area”
for the item. For example, if what is being drawn is a small square, then the
function might be defined as

function drawSquare(ctx) {

let p = new FPath();

// p.lineTo, moveTo, etc., to make a square.

ctx.fillPath(p);

return p;

}

The value returned is noted, and any click in the interior of the path – as
determined by the JS function isPointInPath() – is taken to be a valid click
on the object, to select it and drag it around.

The drawSelFcn argument to register is identical to the drawFcn argu-
ment, but it is called to draw the item when it is “selected.” Often, the only
difference between the two functions will be the color used to draw the item.

The testPosFcn argument is used to determine whether a particular loca-
tion for the item is acceptable. For example, an item could be limited to a
particular region. This is called every time the mouse is moved, after the item
has been selected, up until the mouse button is released. The function takes
five arguments and returns a boolean. The five arguments are the proposed
x,y position (the mouse location), followed by the width of the drawing area,
then the height above and below the x-axis, where the width is equal to the
text width. Return true if the proposed x,y is acceptable; false otherwise.
At a minimum, the function should typically check that x,y is inside the figure
rectangle.

2.4.5 LoopAnimWidget

This widget and the next one (OpenAnimWidget) are for animations, and work
similarly. A LoopAnimWidget is used for animations that run in a repeating
loop. There are many arguments to register them.

LoopAnimWidget.register(ctx,x,y,scale,visWidget,

steps,start,timeStep,

visSteps,visFastSlow,visPauseRun,visCircle,triGrab,

name);

10



The x,y values are the location of the center of the circle that is the primary
element of the widget. The widget can be made larger or smaller by changing
the scale – a value of 1.0 makes the circle 40 bp in radius. The visWidget

argument is a boolean; set it to false to run an animation without showing the
user this widget.

steps is the integral number of steps that make up one loop of the animation.
start is the step on which the animation starts – so that the animation starts
with the start-th frame. timeStep is the number of milliseconds between
frames. Unless the machine is very fast, anything less than 10 for timeStep is
probably pointless, and a setting of 50 or 75 is more reasonable considering the
human eye.

The next group of arguments – visSteps through triGrab – are all booleans.
They determine whether certain parts of the widget are visible. visSteps shows
or hides an area above the circle that can be used to change the number of steps
taken per frame. The user can use this control to skip frames of the animation.
visFastSlow is for some “sideways chevrons,” in an area below the circle, that
allow the user to change the number of milliseconds per frame. vsPauseRun is
for a pause/run control below the circle. visCircle is for the entire circle. The
circle has a small grabable triangle to indicate which frame is being shown; use
triGrab to show or hide the triangle.

To draw a particular frame from your drawing function, refer to the curStep
field of the object. This will be a value in the range from 0 to the steps argument
to register().

2.4.6 OpenAnimWidget

This widget is for open-ended animations that don’t run in a loop, but continue
“forever.” Whereas LoopAnimWidget indicates the frame being viewed relative
to a circle, OpenAnimWidget uses a bar, something like a scroll-bar. Registration
is similar to LoopAnimWidget:

OpenAnimWidget.register(ctx,x,y,scale,width,visWidget,

timeStep,decay,

visSteps,visFastSlow,visPauseRun,visBar,barGrab,

name);

The ctx, x, y, scale and visWidget arguments are as for LoopAnimWidget.
width sets the width of the bar, in bp.

timeStep is in milliseconds, as for LoopAnimWidget. The decay is used
to adjust the rate of travel of the “thumb” along the bar as the animation
progresses. Since the animation is potentially infinite, the thumb moves quickly
early in the animation, then moves more and more slowly, so that it never quite
reaches the end of the bar. The position of the thumb is given by

1− 1

(1 + decay)s
,

11



expressed as a fraction of the bar’s total length, where s is the frame count (i.e.,
curStep). A reasonable setting for decay is something in the range of 103 to
106, although it will depend on the animation.

The arguments from visSteps to barGrab are all boolean and control which
controls that make up the widget are visible. They’re like their counterparts in
LoopAnimWidget, except that OpenAnimWidget uses a bar instead of a circle.

3 Distributing a Complete Document

The PDF document is no different than any other PDF, and can be distributed
in the usual ways. When moving the document in interactive form to a public-
facing website, a few steps are necessary.

See the javascript/release directory. It has two files: figput.html and
figput.js. The .js file is just the four files used for the local version (main.js,
etc.), consolidated to a single file and minified. These two files must appear on
the web-server in the same directory as the various files that make up your
document.

figput.html is only a few lines long, and there are two important changes
that must be made. See the line that reads

<body onload="doOpenDocument(’unknown1’,unknowny)" id="mainbody">

Change unknown1 to your document’s name, without the .pdf suffix. If the
document was generated from example.tex, then unknown1 should be changed
to example. Second, change unknowny to 0. When the document is opened,
this is the vertical position, in bp, at which the document is opened. Setting
unknonwy to 0 means that the document will open at the top of the first page.
Of course, it’s possible that you want the document to open at some other
location, in which case use some other value for unknowny.

The server needs figput.html (after the modifications above), figput.js,
and the files that make up your document. These files consist of the .pdf file,
the .fig.aux file, any .js files referred to by \LoadFigureCode, plus any .fjs

files generated by your document. The server does not need the .tikz files.

4 Code Internals

An understanding of this section isn’t necessary to use FigPut; it’s here to
provide a bit of background for anyone who wants to improve or modify the
framework. Most of FigPut is in TypeScript, which should make it easier to
follow.

Throughout the various files that make up the system are BUG annotations.
These are not bugs per se, but are more like infelicities, opportunities for im-
provement, or to draw attention to something confusing or problematic. If you
want to contribute to FigPut, then these are a good place to start.

12



4.1 figput.sty

The .sty file is well-commented and should be self-explanatory. However, I am
far from an expert in LATEX3 programming. Here is a high-level list of ways in
which it might be possible to improve things.

• figput.sty is written for LATEX3. The entire thing might be simpler if it
were in LuaTEX.

• The ability to explicitly specify the inner and outer margins used by FigPut
(with \SetInnerMargin and SetOuterMargin) is useful, but it would often
suffice to default to the margins used by LATEX. How can those values be
obtained?

• Someone who is more expert in LATEX3 could improve the code’s clarity and
brevity.

• It would be nice if FigPut could create figures within a minipage, but that
would require extensive changes to both the LATEX and browser code.

A Quirk

LATEX on Windows has a quirk. TEX will not write to a file whose type is
executable. Thus, it won’t write to a .pl file (Perl), .py (Python) file, etc.,
depending on how the machine is set up. FigPut creates JavaScript files,
which are typically saved as .js files, and these may be seen as executable by
Windows. Fortunately, browsers doesn’t care what the suffix is, so FigPut uses
.jfs as the suffix.

This limitation on the file name suffix applies to \write, but not to \write18.
TEX is limited in this way to prevent accidental errors and for security. One
solution might be to have the package write files using an acceptable suffix, then
change the suffix with \write18, which does not have this limitation. However,
to use \write18 this way, LATEX would have to be invoked with something like

pdflatex -shell-escape

which would be annoying.

4.2 server.py

The server is a simple thing, so there’s not much to say. It would be nice if
it were written in a compiled language so that the user doesn’t need to install
Python.

4.3 Browser Code

This part is written in TypeScript (TS), which is essentially JS with type an-
notations. It must be translated to JS for the browser to run it, but TS code is
easier to follow, and the type information heads off many programming errors.

13



Although the program is (to my knowledge!) bug-free in the usual sense,
there are plenty of BUG annotations to draw attention to places where the code
could be improved. Some of the higher-level possibilities for improvement are
noted below.

• FigPut relies on the pdf.js library for rendering PDFs. The result is not
as crisp as I would like. It’s unclear whether the problem is with the library
itself, or how it is being used. Someone who knows that library well may be
able to improve the output. Maybe a different library would work better.

• Most of the widgets do not rely on the DOM, but NumberInputWidget and
ButtonWidget are based on the built-in DOM elements. It would be nice if
these didn’t use the DOM.

• Many additional widgets could be created.

• Adjust the font used for figures in the browser to make it more nearly identical
to what appears in the PDF.

• Color is entirely neglected on the LATEX end of FigPut. Browser output can
be colored arbitrarily (with ctx.fillStyle or ctx.strokeStyle, as usual),
but the TikZ output is limited to black and white.

• Double-buffer everything. Animations seem to run fine, without any notice-
able flicker, but double-buffering all drawing would put an end to any concerns
about flicker.

• Animations should be turned off and stop generating events when they are
scrolled out of view. This would save CPU cycles, which may matter for
documents with many animations.

And some items that are more ambitious...

• Allow figures to be set within a minipage (mentioned above).

• Double-clicking a figure (or something) could enlarge the figure to give more
room for interaction.

• Come up with a scheme so that the code that draws a figure could be made
part of the document. For certain topics, the code that draws a figure can be
as instructive as the figure itself.

• Extend the framework somehow so that it can be used within an IDE. Code
that’s mathematically-oriented is difficult to document within source code
using simple text. It would be easier to understand if it’s explained as LATEX
output that appears in the source code, rather than in a separate document.

• Extend the framework to allow inclusion of snippets of LATEX output in stan-
dard HTML documents. Things like KaTeX and MathJax are convenient,
but incomplete relative to LATEX.

14



Version History

• 0.90 – July 21, 2022. I’ve been using this, privately, for several months.
Numerous improvements and extensions are possible, but it definitely
works.

Thanks to Dan Pratt for insights regarding TypeScript, and improvements
to the code.

Several people on tex.stackexchange very patiently answered numerous
questions. Thank you.

15


