jlree

for linguists

Tex macros for typesetting complex trees

studenti
ot

koi strani

User’s Guide

John Frampton
J.frampton@neu.edu

17 September 2006
Version 2.3



Contents

1 Introduction . . . . . . .. ..o 1
2 ThejTree description language (JTDL) . . . . . . . . . . . . .. 2
2.1 The description of right branchingtrees . . . . . . . . . . 3
2.2 Treeadjunction . . . . . . . . . . ... 4
2.3 Thecolon construction . . . . . . . . . .. ... ... 6
2.4 Inline adjunction . . . . . . . . ... 7
3 Parameters . . . . . . . Lo e 8
4 Labels . . . . . . 11
5 Branches . . . . . . . . .o 15
6 Trianglesandvartriangles . . . . . . . . . ... ... ... 17
6.1 Vartriangles . . . . . . . . .o 18
T @tags . . . . e e e e e e e 20
8 The colon constructionin moredetail . . . . . . . . . . .. .. 22
8.1 The syntax of the tree description language . . . . . . . . 23
9 Expansion and evaluation of control sequences in treéngars . . . 24
9.1 The" escape fromtreeparsing . . . . . . . . . . . ... 24
9.2 Control sequence expansion . . . . . . . . . . . . ... 25
10 Bellsandwhistles . . . . . . . . . . ... ... ... 26
10.1 baretopadjust. . . . . . . . . . . ... .. 26
10.2 treevshift . . . . . . . . . . ... L. 26
10.3 everytree . . . . . . . . ..o 26
10.4 Custombranches . . . . . . . . . .. ... ... ... 27
10.5 The pseudo-parameteti®A anddirB . . . . . . . . . . . 28
11 Howto build complextrees . . . . . . . . . . .. ... .... 29
12 Theboundingbox . . . . . . . . . . . .. ... ... ... 32
13 Nodes and connections betweenthem . . . . . . . . . . .. .. 33
14 Examples . . . . . . .. 37
15 Compatibilityissues . . . . . . . . . ..o L0000 61
A Installation and working environment . . . . . . . . ... L L. 62
Index . . . . L 65



1. Introduction

Complex trees that linguists often need to display afiécdit to represent linearly
in a fashion that allows a human to readily grasp the intemdga@rchical structure.
This makes it diicult to write Tex code in such a way that it can be easily debdgg
or modified a year after it was first written, or that portiorist@an be copied for
use in a diferent environmentIree was designed to overcome these problems.

As usual, it is much easier to design a good tool for a taskeitdisk is fairly
narrow. So my aim was to write a tree formatter that would béiqdarly good
for the kind of trees that | most often encounter. In the sytitat most interests
me, trees are often fairly deep, with a depth of embeddingaat!5. Example 9
in Section 14 has depth 19. Using parentheses or bracketetole embedding is
not a viable option if the Tex code is to have the desired dtarstics. In spite of
being deep, however, the trees | usually want to typesetiangesin some other
ways; they are generally binary branching and tend strotaghave their complex
branching to the rightiTree is designed to be particularly good at typesetting such
trees. Obviously, this represents a particular point ofinadout syntactic theory.

jTree is based on the widely used PSTricks macro package. bfatne
more advanced features fifee require a willingness to learn a certain amount
of PSTricks. Linguists will find much in PSTricks that is uskefeven outside the
context of displaying and annotating trees. Most of the cams take parameters
which are defined and explained in the PSTricks documentakor information
about PSTricks, sefettp;/www.tug.orgapplicationgPSTrickg. jTree also requires
the PST-XKey package, which has become the standard meah&mi handling
parameters in PSTricks based packages. See Appendix Aftmmation on
installing the PSTricks, PST-XKey, arittee packages.

Some tree formatters attempt to make many decisions abacéplent
automatically, in order to make the formater easy and faapto use. The
downside is that complex trees are generally quifgadilt to typeset because
some @ort is required to undo the automatic help provided by thendter. The
approach ofTree is to do very little automatically, but to make what imdwery
transparent and very easy to adjust. Many features of trestrewtion injTree
are controlled by parameters, whose default settings lyssitice, but which
are available for fine-grained control when necessary. e afjTree is a tree
description language. We begin by discussing that language



2. The jTree description language (JTDL)

There are two components: 1. a simple way to describe rigiriditing trees
(which | take to be trees whose left branches do not brancia) 2aa mechanism
for adjoining one tree onto another. Consider the followieg for example:

killed t

This tree can be described by a sequence of three right brentiees and
instructions for how to combine them.

Q) 1.
P, is rotten
2. adjoin atP;:
the
chees
that
P, ate t
3. adjoin atP;:
the
rat
that
John
killed t

We first address the question of describing right branchiegst then a mechanism
for combining them.



2.1. The description of right branching trees
Some trees are essentially a linear sequence of brancheodes.

Such a tree can be described as a sequence of branches dsddable one simply
attached to the one before it in the obvious way.

a. (left) (right) (right) @ (right) .
b. (left) (righty [D] .
C. (lefty (righty (left) (right) .

If this language is extended by adding an operdtarhich shifts the attachment
point to the start of the previous branch, then right bramgtiees can be described.
The trees (3) are described by the sequences (4).

b.

4) a
(left) ~ (right)
(lefty [D] ~ <(righty

b.

(left) ~ (vert ~ (right) @
(left) ~ (vert ~ (right)
(lefty ~ (verty [1] ~ (righty .



A parser for such descriptions needs to keep track of justg@sitions. At the
start,? andQ are both set to some default starting point. After a labelranbh is
parsed® is updated to be the current point. When a branch is paéedypdated
to be its starting point. Whef is parsed® is set toQ.

2.2. Tree adjunction

This language can be extended by adding the notion of an ettarpoint, and
the syntax for adjoining one tree to another at a specifiednatipn point. The
decomposition (5b) of the tree (5a) is described by (5c¢).

(5) a.

adjoin at la

(wideleft) la ~ (wideright
(left) ~ (right) .
la = (left) @ ~ (righty .

When the parser encounters an adjunction point, it recBrdad names it so

that it can be accessed in the future. In fiiee implementation of this tree
description language, the names of adjunction pointseddthgs, are character
strings beginning with and followed by a space. The tree that is described is a
physical tree, not an abstract tree. Branches are objecthwhaive dimensions and
are identified by a name. The branch denotediniydeleft> above, for example,
has diferent dimensions than the branch denoteeyft>.

jTree is based on this tree description language. Faciétieprovided for defining
and naming branches of various kinds and for drawing treesifsgd in JTDL
format. How a tree is rendered will depend not only on its dption, but on
numerous parameter settings, font choices, etc. The Texfoodendering a tree
has the form:

\jtree

preliminary definitions. parameter settings

\! = simple tree description

definitions, parameter settings, dimensionless graphics



\'!a = simple tree description

definitions, parameter settings, dimensionless graphics
\'!b = simple tree description

dimensionless graphics

\endjtree

When\jtree is executed, it establishes an adjunction point namethe macro
\! is defined so that executing xxx = setsP andQ to the point named xxx
(xxx can be empty, so the point can be namgdnd parsing the tree description
which follows is initiated, terminating when a period is enotered. For example:

\jtree PN
\! = <left>{A}!a “<right>{B}. A B
\la = <left>{C}'b "<right>{D}. s
\!b = <left>{E} “<right>{F}. C D
\endjtree PN

E F

The following code produces identical results.

\jtree PN
\! = <left>{A}!a “<right>{B}. A B
\la = <left>{C}'!'a "<right>{D}. P
\la = <left>{E} “<right>{F}. C D
\endjtree PN

E F

The name! a created in the main tree, is no longer needed (in this exgraftier
the first subtree is initiated and can therefore be reassighés even possible to
say:

\jtree P
\! = <left>{A}! “<right>{B}. A B
\! = <left>{C}! “<right>{D}. P
\! = <left>{E} “<right>{F}. C D
\endjtree P

E F

There is nothing special about the namehat \ jtree assigns other than it is
assigned before tree construction commences.



2.3. The colon construction

The combination<left>label’<right> occurs frequently in the descriptions
of binary trees. JTDL provides a shortcut for thislabel is interpreted as
<left>label"<right>. Using this:

\jtree a
\! = {a} RN
{b} {c} b c
:{d} {e} N
:{f} {9} d e
:{h} {i}. N
\endjtree f g

=y

The formatting is for readability. The following code pramhs the same tree:
\jtree\! ={a}:{b}{c}:{d}{e}:{£f}{g}:{h}{i}.\endjtree
One more example:

\jtree
\! = :{a} :{b} :{c} :{d} {e}. a
\endjtree b c

d e

For expository reasons, the description above was ovelifigop Actually,

: labelis shorthand fokcolonA>label”<colonB>. pst-jtreedefines the branches
<colonA> and<left> identically, and the branchesolonB> and<right>
identically. The user, however, is free to redefine any of¢hleranches. For
example.

\jtree a
\defbranch<colonB>(1) (-.5) T
\! = {a} b C

:{b} {c} T

:{d} {e} d e

:{f} {9}. T
\endjtree f g




A later section will give the details of how branches are dafinSifice it to say
here that a branch is defined by giving its height and slopbelsaare recognized
by thejTree parser a§ stuf }, where the “std” is anything that can go in a Tex
hbox. We also defer to a later section automatic space thasésted over and
under labels and how this is specified and adjusted.

The example below uses the colon shortcut extensively.

(6) \jtree
\defbranch<Left>(2.3) (1)
\! = <Left>!a “<right> :{is} {rotten}.
\'a = :{the} :{cheese} :{that}
<Left>!b “<right> :{ate} {\it t}.
\!b = :{the} :{rat} :{that}
<Left>!c “<right> :{killed} {\it t}.
\!c = :{the} :{cat} :{that} :{John} :{owned} {\it t}.
\endjtree

owned t

2.4. Inline adjunction

In addition to the: operatorjTree provides one other shortcut. It provides an
alternative to adjunction in the code below.



\jtree[xunit=2.8em,yunit=1em] S

\! = {S} T~
:{NP}'!a {VP} NP VP
:{V}'b {NP} | T~
<vert>{Tom}. Mary V NP

\!a = <vert>{Mary}. |
\'!b = <vert>{saw}.

saw Tom
\endjtree

This can be written:

\jtree[xunit=2.8em,yunit=1em]
\! = {S}
: {NP} (<vert>{Mary}) {VP}
{V}(<vert>{saw}) {NP}<vert>{Tom}.
\endjtree

Effectively, interpreting( ...) carries outinline adjunction, without the need to
explicitly name the adjunction point. In practice, destop by inline adjunction
should be avoided for all but very simple nonterminals (athis example) since
it can quickly lead to opaque code and the hornet’s nest @mnpaeses that JTDL
was designed to avoid.

3. Parameters

Many jTree items take which control various aspects of typesettst-jtree
contains the definitions:

\defbranch<left>(1) (1)
\defbranch<right>(1) (-1)

(Quotations frompst-jtreewill be displayed in a box, as above.) This defines
<left> to be a branch with height 1 psyunit and slope is 1, anight> to be

a branch with height 1 psyunit and slopé&. The specification of branches will
be discussed in more detail in Section 4, but for now it i§isient to know that
<left> and<right> are drawn as shown below:

1 psxunit

(7)

1 psyunit
1 psyunit

1 psxunit

<left> <right>



The fact that the dimensions of branches can be specifieduimitgs with the
xunits independent of the yunits, coupled with the fact tiranches are rendered
in physical (Tex) units, produces a great deal of flexihilitye three trees below
were produced with exactly the sanieee code, but withpsset{unit=1em},
psset{unit=2em}, andpsset{xunit=2em,yunit=1em}.

(8) a. VP b. VP c. VP
AN PN
Bill vV’ /\ Bill v/
N\ Bill V'’ P

sawMary /\ saw Mary

saw Mary

\jtree accepts parameters directly, so you can say:

\jtree[xunit=1.5em,yunit=1em] VP

\! = {VP} PN
<left>{Bill} “<right>{V$’$} Bill V'
<left>{saw} “<right>{Mary}. /\

\endjtree saw Mary

Individual branches also take parameters, so you can say:

\jtree[xunit=1.5em,yunit=1em] VP
\! = {VpP}
<left>{Bill} “<right>[xunit=3em]{V$’$} Bill \V&4
<left>{saw} “<right>{Mary}. PN
\endjtree saw Mary

The parametersnit, xunit, andyunit are defined by PSTricksjTree
defines some of its own parameters. A parametetleby is provided.
\psset{scaleby=x y} causes branches to be drawn as if

\psset{xunit=x\psxunit,yunit=y\psyunit}
had been executed (but the psunits are not actually changed)
\psset{scaleby=x} is equivalent tO\psset{scaleby=x x}.
The following are then possible:



\jtree[xunit=1.5em,yunit=1em] VP

\! = {VP} /\
:[scaleby=2]1{Bill} {V$’$} !

:{saw} {Mary}. Bill PN
\endjtree saw Mary
\jtree[xunit=1.5em,yunit=1em] VP
\! = {VP} T~

<left>{Bill} “<right>[scaleby=2 1]{V$’$} Bill Vv’

:{saw} {Mary}. ///\\\
\endjtree saw Mary

jTree defines a dozen or so parameters in all. They can be §gkbygt, but more
importantly, can be attached to particular instancesjafree and the branches
and labels that appear insigg¢tree environments.

Modifying branches by standard PSTricks parameters is afseful.

\jtree[xunit=3em,yunit=3em]
\! = <left>[scaleby=2 1,
arrows=->]{a} .
“<left>[linewidth=2pt]{b} a b \ d
“<right>[scaleby=1 2, \
linestyle=dashed] {c} \
“<right>[scaleby=1.5 1,
linestyle=dotted,linewidth=1pt]{d}
“<right>[scaleby=2 .5,doubleline=true]{e}.
\endjtree

The PSTricks documentation can be consulted for many otherand arrow
parameters whichfter further control over how branches are drawn.

10



4. Labels

In tree descriptions, material in. . } is typeset in an hbox, calledabel box. After
the label box is added to a structure with current pgina new point® becomes
the current point. The issues addressed in this sectiorhanelative positions of
P, the label box, an@’. The position of the label box is specified by giving the
position of the center of its baseline, call@here. The relative positions depend
upon the height and depthd of the label box, and five éerent parameters:
labelgapt, labelgapb, labelstrutt, labelstrutb, andlabeloffset. The
beginning user should not be discouraged by the apparenpleity. Various
defaults are set ipst-jtreeand the issue can be largely ignored unless some special
effect is desired. When the time comes that a complex positigmolglem arises,
the flexibility will be both understandable and welcome. Plesitioning rules are
given below, withparameter| representing the value of the parameter.

) F _ X, = [Labeloffset|
Vi y; = Max(h, [1labelstrutt|)
Q +|1labelgapt|
M A y» = Max(d, [Labelstrutb|)
P y2 +|1abelgapb|
X1

A consequence of these rules is that the top of a label bobilit a distance of at
least|labelgapt| below the terminus of the branch or label that it follows, #mel
baseline of a label box will be at a distaritabelstrutt| + [labelgapt| below
that terminus unless the label box is unusually high {i.e.|labelstrutt|). This
means that label boxes never get too close to the branchabeis lthey follow,
and the baselines of label boxes offelient branches of the same height will be
aligned, unless the label boxes are exceptionally high. SEmee considerations
apply to the relative positions of the label box a?d

There is also a parametesrmallabelstrut which can be set trueor false |If
set totrue, every time thak jtree is executed the dimensions of the label strut are
set to the dimensions of the current Tex strut. Specifically,

\psset{labelstrut={\the\ht\strutbox} {\the\dp\strutbox}}

is executed wheNjtree is invoked. \psset{labelstrut=x y} is equivalent
to \psset{labelstrutt=x,labelstrutb=y}. Users do not have to be
concerned with setting label strut unless they desire squaeia dfect since
pst-jtreesetsnormallabelstrut to tfrue The default settings for the top
and bottom label gaps ar85ex. \psset{labelgap=x} is equivalent to
\psset{labelgapt=x,labelgapb=x}.

The dfect of this scheme is shown below withrmallabelstrut set totrueand
labelgapt andlabelgapb set to.6 ex. The size of the labels is as shown, with

11



the baselines shown. If the height of the label does not eltebelstrutt|, the
baselines of the labels are aligned, otherwise the top datyed box is at a distance
|Labelgapt| below the terminus of the branch it follows.

Sometimes it is useful to séabelstrutt to 0. In that case, the result is:

T

Many users will probably leaweormallabelstrut set totrueand forget about it.
But most users will want to change the label gaps from timene tiContrast the
following, for example. In some applications, the seconghhbe preferable.

\jtree A
\! = {A} |
<vert>{\psframebox{B}}
:{C}{D}. N
\endjtree C D
\jtree A
\! = {A}
<vert>{\psframebox{B}}[labelgap=0]
: {C}{D}. N
\endjtree C D

This is used in typesetting (15) in Section 11.

The following contrast is also interesting, in part becatisses a negative label
gap.

12



\jtree PN
\! = :({the}{(article)}) {dog}{(noun)}. the  dog

\endjtree (article) (noun)

\jtree PN

\! = :({the}{(article)}[labelgapt=-3pt]) the  dog
{dog}{ (noun) } [1abelgapt=-3pt]. (article) (noun)

\endjtree

See examples 3 and 4 in Section 14 for applications of theg&,tivhich often
eliminates the need for complex multiline labels.

The label box can be positioned horizontally usiradpeloffset.

\jtree musketeer

\! = {musketeer} |
<vert>{musketeer}[labeloffset=1ex] musketeer
<vert>{musketeer}[labeloffset=2ex]. |

\endjtree musketeer

See example 1 in Section 14 for an illustration of how chagdiabeloffset can
solve certain spacing problems between labels.

There is one other parameter that is relevant to labels. Tdtermal specified by
everylabel is put into a token list and the token list is inserted at thgito@ng of
every label.

\jtree[everylabel=\sl] a

\! = {a} RN
:{a} {p} a p
:{a} {(e)}. N

\endjtree a (e)

If a label is{\omit...} or {\pnode...}, then the vertical positioning algorithm
discussed above is bypassed and the label is positionedasvitip edge at the level
of £ and#’ is positioned directly undef at the level of the bottom edge of the
label box.labeloffset still operates. Contrast the following:

13



\jtree[everylabel=\strut, labelgap=3pt]

\! = :{a} {\omit\psframebox{dog\strut}}
:{a} {\pnode{Al}}
:{a} {a}.

\endjtree

\jtree[everylabel=\strut,labelgap=3pt]

\! = :{a} {\psframebox{dog\strut}}
:{a} {}
:{a} {al.

\endjtree

14




5. Branches

Most tree formatting schemes format the array of labels) temnect them with
branches. The dimensions of the branches are determindtebgdation of the
labels they must connect. Aree branch, on the other hand, has dimensions
specified in its definition and determines the location ofrttagerial it points to.
Branches are defined by giving their height and slope. Theagyst

\defbranch<name-( heigh?) ( slope

The height can have Tex dimensions (pt, ex, em, in, cm, @ici),can be purely
numerical. If numeric, it is taken to be the height measuredsyunits. The
slope is the ratio of the vertical dimension measured in pgguo the horizontal
dimension measured in psxunits. Lines going from the low#rtb the upper
right have positive slopes and lines going from the uppérttéethe bottom right
have negative slopes. Usually, the slope can be expresssedexsmal number.

If the horizontal dimension is zero, as it is with a vertidakl a decimal slope is
impossible (because division by zero is) and the slope nauskpressed as a ratio.

\jtree[unit=2.5em]
\defbranch<1;3/16>(1) (3/16) %\
\defbranch<1;.5>(1)(.5)

\defbranch<1;1/1>(1) (1/1) /10 .5 /1 10 -1 -1/2
\defbranch<1;1/0>(1)(1/0)
\defbranch<1;-1>(1) (-1)
\defbranch<1;-1/2>(1)(-1/2)
\! = <1;3/10>{$3/10%}
"<1;.5>{%$.5%}
"<1;1/1>{%$1/1%}
"<1;1/0>{$1/0%}

"<1;-1>{%$-1%}
"<1;-1/2>{%$-1/2%}.
\endjtree

Note that the characters appearing in a branch name arestri¢tex to alphabetical
characters.

| have never found a use for defining branches with the hefggtied in physical
units, but someone might.

15



\jtree[xunit=2em,yunit=1em]
\defbranch<Right>(2em) (-1) é///\\\\\\\\

\! = <left>{a} “<Right>{b} b
<left>{c} “<right>{d}. ////\\\\
\endjtree c d

Finally, note that the slope specification of a branch will match the slope of the
line which is drawn on paper unless the xunits and yunits quale One is the ratio
of psyunits to psxunits, the other is the ratio of physicalsurrhe branckright>
is specified to have slopel, but:

\jtree[xunit=.5em, a
yunit=2em]

\! = {a}<right>{b}. \

\endjtree b

\jtree[xunit=4emn, a
yunit=2em]

\! = {a}<right>{b}. \

\endjtree b

jTree specializes in binary trees, Imst-jtreepredefines some branches which make
it relatively easy to make bushier trees. The entire inugmbpredefined branches
is:

\defbranch<left>(1) (1)
\defbranch<right>(1) (-1)

\defbranch<4wideleft>(1)(2/3)
\defbranch<4left>(1) (2)
\defbranch<4right>(1) (-2)
\defbranch<4wideright>(1) (-2/3)

\defbranch<wideleft>(1)(1/2)
\defbranch<wideright>(1) (-1/2)

\defbranch<bigleft>(2) (1)
\defbranch<bigright>(2) (-1)

\defbranch<vert>(1) (1/0)
\defbranch<shortvert>(.5) (1/0)

\defbranch<colonA>(1) (1)
\defbranch<colonB>(1) (-1)

16



Of course, users can define whatever branches they find needctd onA> and
<colonB> are the branches used by the colon macro. They are definedibe be
same asleft> and<right>, but can be redefined to be whatever is convenient.

\jtree X
\! = {X} N
<left>{a} “<vert>{b} “<right>{c}. a b c¢
\endjtree
\jtree X
\! = {X} /\
<4wideleft>{a} “<4left>{b} a b ¢ d
“<4right>{c} “<4wideright>{d}.
\endjtree
\jtree X
\! = {X} T TS
<wideleft>{a} "<left>{b} “<vert>{c} a b ¢ c d
“<right>{c} “<wideright>{d}.
\endjtree

6. Triangles and vartriangles

Triangles can be defined. The definition syntax is:
\deftriangle<name-(height) (slopeA) (slopeB

One triangle comes predefined.

\deftriangle<tri>(1) (1) (-1)

<tri> can be used like any other branch.

\jtree
\! = :{a} <tri>{b} <vert>{c}. a%

\endjtree b
|

c

pst-jtreedefines the parameteriratio, which can be used to adjust where the
new current point is positioned along the bottom edge ofrihagle. Ifwidth is the
width of the triangle, the new current point is at distamce triratio x width to the
right of the left corner of the triangle. The display aboveeswithtriratio=.5,
the default, which puts the current point in the center ofttbigtom edge.

17



\jtree
\! = :{a} <tri>[triratio=.8]{b} <vert>{c}. é//t;zi:>>
\endjtree b

|
c

When a triangle is evaluated, its width is computed and a maardwd is defined
which evaluates to this widttpst-jtreecontains:

\def\triline#1{\hbox to\triwd{#1}}

A construction like the following is sometimes useful:

\jtree
\! = :{a} <tri>{\triline{e\hfil f}}. é//i;zi::>
\endjtree e f

Remember as well that branches can be overwritten. Somedtong the lines of
the following is sometimes useful.

\jtree
\! = :{a} <tri> “:{e} {f} <vert>{c}. a%

\endjtree e f

6.1. Vartriangles

Vartriangles adjust their width to fit the label that theymqgdo. A vartriangle is
specified by giving a height. The definition syntax is:

\defvartriangle<name- ( height)
jTree predefines one vartriangle.

\defvartriangle<vartri>(1)

\jtree f:::::>\\\\\\
\! = :{a} <vartri>{whatever width}. a

\endjtree whatever width

18



The parametetriratio has a diferent meaning for vartriangles than it has
for ordinary triangles. It determines where the center eflibttom edge of the
vartriangle is with respect to the top vertex. The centehefliottom edge is a
distancetriratio x width to the right of its left edge. It is easier to illustrate (done
below) than to give the formula.

\jtree

\! = :{a} <vartri> a
[triratio=.3]{whatever width}. whatever width

\endjtree

\jtree ///A\\T\\\\\\\\\\\»

\!' = :{a} a
<vartri>[triratio=0]{whatever width}. whatever width

\endjtree

\jtree
\! = :{a} N

<vartri>[triratio=-.1,scaleby=2] — -
{whatever width}. whatever wi
\endjtree

Generally, there is no branching from the label followingaattiangle, so no
provision is made for adjusting the termination point of takel that follows
vartriangles. It is at the center of the base.

\Jjtree ///~\>7\\\\\\\\\‘
\! = :{a} <vartri> a

[triratio=.1]{whatever width} whatever width
<vert>{b}. |
\endjtree b

Another branch can follow a branch, but since the width of rizangle depends
on the width of the label which follows it, a vartriangle (tvibptional parameters)
must be followed immediately by a label. An error results i§inot.

19



7. @tags

jTree includes direct support for PSTricks’ powerpst-nodepackage. Even in
linear structurespst-nodes very useful to linguists. The ability to define nodes
and to connect them with arrowed curves of various kinds\allthe user to easily
code things like:

\rnode{Al1}{Who} \rnode{B1}{did} f
Jack \rnode{B2}{\sl t\/} Who did Jackt seet?
see \rnode{A2}{\sl t\/}?} A J

\psset{linearc=2pt}
\ncbar[angle=-90]{->}{A2}{Al}
\ncbar[angle=90]{->}{B2}{B1}

In tree structures, thpst-nodemacro\nccurve is particularly useful.Careful:
Nodes refer to named structures definegpbi-nodecommands, not to tree nodes.

\jtree

\! = :{\rnode{Al1}{who}} who
:{\rnode{B1}{did}} :{Jack} did
. f\rnode{B2}{\s1 t}} :{see} A Jack ;
{\rnode{A2}{\s1 t}}. see t

\psset{arrows=->,angleA=-150,
angleB=-90}

\nccurve{A2}{Al}

\nccurve{B2}{B1}

\endjtree

jTree facilitates the use @ist-nodeoy means of what are called @tags, as illustrated
below.

\jtree

\! = :{who}@Al1l :{did}@B1 :{Jack}
:{\sl t}@B2 :{see} {\sl t}@A2 .

\psset{arrows=->,angleA=-150,
angleB=-90}

\nccurve{A2}{Al}

\nccurve{B2}{B1}

\endjtree

A jTree @tag consists @ffollowed by any sequence of characters that is a valid
PSTricks node name, followed by a space. If a @tag followdal lgpparameters

20



are part of the label), then three nodes are created. If tlag @@P2, for example,
point nodes nameB2: t, P2, andP2:b are createdP2:t is at the point that was
current before the label was added to the structure pand is at the point that
becomes the current point after the label is added to thetateiP2 is a box node
consisting of the label box, with the reference point at @ater. With respect to
P2, { stuf}@P2 is equivalent to{\rnode{P2}{ stuf}}. If a @tag does not follow
a label, then a single point node is created at the curreitiqo$>.

These ideas are illustrated below:

\jtree
\! = @AA
<vert>{A} A
<vert>{B}[labelgapt=12pt]@P2
<vert>{C}. B
\psset{arrows=->,angleA=0,angleB=0,
ncurv=1.4} C
\nccurve[nodesep=0]{AA}{P2:t}
\nccurve [nodesepA=0] {AA} {P2}
\nccurve[nodesep=0,ncurv=1.6]{AA}{P2:b}
\endjtree
\jtree[scaleby=1 2,labelgap=1.2ex]
\! = :{and}@A ///\S>
{whatever}[labeloffset=1em]@AA . and”~ whatever
\psset{linestyle=dashed, arrows=->} \ Tosa A
\ncline{A}{AA:t} ST

\ncline{A}{AA:b}
\nccurve[angleA=-90,angleB=-90,ncurv=1] {A} {AA}
\endjtree

There is some further information about nodes and the usenofurve in
Section 13.

21



8. The colon construction in more detail

There are some details of the syntax of the colon construtiiat have been left
vague to this point. The idea of the colon construction ispsnenough; the
colon is replaced by the braneftolonA> and then, after some material has been
processed; <colonB> is inserted. But some precision is needed in specifying
exactly where this later insertion takes place. For exampiere is”<colonB>
inserted in the expression below?

:{a} [labelgap=0] @AA 'a @BB {c}

The rule is this. The template below is filled out a fully asgbke, then: is
replaced bycolonA> and”<colonB> is inserted after the target.

(10) : [par§ {stuf} [par§ @tag ((!‘té.g))

target

There are two restrictions. First, the target cannot be ¢etely empty.
:<left>... or ::..., for example, is impossible. Second, since parameters
must be parameters of something, thears] term in the target can only be present
if there is a{ stut'} term.

Consider the following examples:

(11) a. \jtree
\! = :[scaleby=2]{a} {b}. //////A\\b
\endjtree a
b. \jtree N
\! = :{a} [scaleby=2]{b}. a b
\endjtree

You might expect the right branch to be scaled in (11b). Tlaswa that it is not

is that [scaleby=2] goes into the target. It is parsed, according to (10), ad labe
parameters andcolonB> is inserted after the target. As label parameters, it has
no dfect. In Section 14, the following idiom is frequently usedetwsure that
parameters are not interpreted as label parameters.

(12) \jtree
\! = :{a}() [scaleby=2]{b}. 5//A\\\\\\
\endjtree b

The template (10) is filled out with targ€a} (), so<colonB> is inserted before
[scaleby=2].

The following contrast is interesting. In (13a), the targefa} (: {b}{c}), so
inline adjunction occurs on the left branch. In (13b), ondkieger hand, a fills the

22



adjunction slot in the template, so the targefag !a and the adjunction is on the
right branch.

(13) a. \jtree N
\! = :{a} (C:{b}{c}) {d}. a d
\endjtree P

b C
b. \jtree
\l = :{a}la (:{b}{c}{d}. PN
\endjtree b c

Note in (13b) that the inline adjunction leaves the currenb{p” unchanged, so it
is overwritten by the label which follows.

A target can consist entirely of a @tag.

(14) \jtree TN
\! = :@A @B . S~ A
\nccurve[angleA=-60,

angleB=240]1{->}{A}{B}
\endjtree

For the sake of completeness, a full account of the tree if¢iscr grammar
follows.

8.1. The syntax of the tree description language

The well formed tree descriptions are specified by a contex §frammar and
some assumptions about how the parser operates. We firstleotise grammar.
The termstringwhich occurs in a number of expansions is a string of characte
which can be put into a Tex control sequence. Various caditon the strings
which can appear in fferent contexts are discussed below.

treedescription — simpletreedescription ( tree description)

simple treedescription — [\!|strind [=| (tree.body) [.]
treebody — treeitem (treebody)
treeitem — sprout, target, vartrgroup, colongroup, operator

sprout — [<Jstring>] ([[]pard]))

rget — (12 (, . teg )
g @tag/ \inline_adjunctio

label — [{|stuff}] ([[|pard]l]) (@tag)
inline_adjunction — [(tree_bodyy)|

vartrigroup — [<|string>] (parametery label
colongroup — [:] ([[|pard]]) target ([[|pard]))

23



@tag — |[@string |
Itag — [!string |

operator — [7]
pars — valid PSTricks parameter setting®

The boxed characters above are symbols in the tree desariptiguage, not the
grammar description language. “8tuis anything that will go in a Texhbox.
Note that an empty parameter specificatidns permitted, and is actually useful
at times. This is an extension of the PSTricks parameteesyswhich disallows
empty parameters.

The string which follows\! must be such thdstring is the name of an adjunction
point that has already been defined, eithekyree or by a !tag in a previously
parsed target. Thestring> which occurs in a sprout must be the name of a branch
or triangle, and the string> which occurs in a vartri group must be the name of a
vartriangle. A name with an empty string or a string contagrspaces is permitted,
but not advised. The string which occurs in a @tag must beid P&Tricks node
name, with the additional restriction that it cannot comtaispace. The string
which occurs in a !tag, preceded bybecomes the name of an adjunction point.

It cannot contain a space. Note that Itags and @tags mustlbedd by a space.
OtherwisejTree is tolerant of spaces or their absence between items.

Parsing is unique under the assumption that targets anld kafgealways maximized
in left to right parsing and are never empty. Labels are newguty in any event
since they contaid and}.

9. Expansion and evaluation of control sequences in tree parsing

9.1. The " escape from tree parsing

If the parser encountery it evaluates the next token or group and continues
the parse. Evaluation should contribute no material, sihisenot parsed. But
evaluation can change parameter settings, whii@te how the remaining material
is typeset. For example:

\jtree a

\! = {a} :{b}!! {c} N
"{\psset{scaleby=.5 1}} :{f} {g}. b c

\!!l = :{d} {e}. NN

\endjtree d e f ¢

\! ... . does not establish an implicit group, so the change in seakagts to the

subsequent subtree.

24



The same fect can be achieved without usifigf rescaling is done outside tree
parsing.

\jtree a

\! = {a} :{b}'!'a {c}!b . T
\psset{scaleby=.5 1} b (o
\la = :{d} {e}. NN
\'b = :{£f} {g}. d e f g
\endjtree

9.2. Control sequence expansion

If the parser encounters a control sequence or active dealia@ tree description,
it is replaced by its expansion before the parse continules.ekpansion is parsed
without further expansion of the initial token, which prat&an infinite loop if the

expansion yields an unexpandable control sequence.

\jtree

\def\Colon{:[scaleby=2.3]}%

\! = \Colon 'a :{c} :{d} {e}. c

\!a = :{a} {b}. a b d e
\endjtree

pst-jtreecontains the definitiondef\jtlong{[scaleby=2.3]}, so we could
also write:

\jtree

\! = :\jtlong !a :{c} :{d} {e}.

\'a = :{a} {b}. C
\endjtree a b d e

This technique makes some code much more transparent. (Bage 7, for
example, can be written:

\jtree[xunit=2.2em,yunit=1em]
\! = :\jtlong 'a :{is} {rotten}.

\!a = :{the} :{cheese} :{that} :\jtlong !b :{ate} {\it t}.
\!'b = :{the} :{rat} :{that} :\jtlong 'c :{killed} {\it t}.
\!c = :{the} :{cat} :{that} :{John} :{owned} {\it t}.
\endjtree

25



The complete list of parameter changes that are encodeddrome pst-jtreeis:

\def\jtlong{[scaleby=2.3]}
\def\jtshort{[scaleby=.5]}
\def\jtwide{[scaleby=2 1]}
\def\jtbig{[scaleby=2]}
\def\jtjot{[scaleby=1.3]}

Of course, users should define whatever similar macros afalua their own
work.

10. Bells and whistles

10.1. baretopadjust

The baseline of the box created Yytree. . .\endjtree is normally the baseline
of the root label. If, however, the root label is empty, thatgthe baseline too low,
at least for my taste. Contrast the trees below:

a. A b.
/\
B/\ C B c

jTree takes corrective action by raising the tree diagramefroot label is empty
by the amount specified by the paraméteretopadjust. The default setting is
1.4ex, but you can set it to whatever you want. With the defsetting:

a. A b.
PN B C
B C

10.2. treevshift

jTree also provides the parametafeevshift, which is set to 0 by default. It is
independent obaretopadjust and can be used to move the tree diagram up and
down, if desired.

$\to$\qquad A
\jtree[treevshift=1.2em] N P\
\! = {A} :{B} {C}. B C
\endjtree

10.3. everytree

If you say, for example)\psset{everytree=\psset{style=treestyle}},
and if you have definedreestyle using a PSTricks style definition, then your

26



trees will done in that style\psset{everytree=x} putsx into the token list
\jteverytree which is inserted at the beginning of eve(ytree...\endjtree
construction. It is grouped, so that its scope is limitechitree construction. Itis
inserted before thgjtree parameters takeffeect, so that it will be overridden by
parameter settings.

If you want, you can setjteverytree directly. The same is true, by the way, for
everylabel, which uses the token listjteverylabel.

10.4. Custom branches

jTree ordinarily draws branches using the PSTricks mgped ine, but it does this
in an indirect way. It actually calls the mackbranch@type to do the drawing;
andjTree contains the lin&let\branch@type=\psline. If the user says
\psset{branch=\customline}, then\branch@type is made\customline
instead of\psline with the usual locality. INcustomline is suitably defined then
it will be used to draw branches. A few alternative macrosdi@wing branches
are included inTree. The enterprising user might want to define appropzigteag
or coil macros, following the PSTricks modg¢lree provides\blank (see example
10 in Section 14 for an illustration of its us&jrokenbranch (see example 14 in
Section 14), andletcbranch (see example 13 in Section 14).

\jtree[xunit=3em,yunit=2em]
\! = :{normal}() /////A\'”\\
[branch=\brokenbranch] {broken} normal broken
: [branch=\blank] {blank} () .
[branch=\etcbranch] {etc}. T
\endjtree blank etc

The proportion of the “etc branch” that is dotted is con&dllby a parameter
etcratio. pst-jtreecontains\psset{etcratio=.75}, but the user is free to
change this if desired. The style for the dotted portion feneel by

\newpsstyle{etc}{nodesepB=0,nodesepA=1pt,linestyle=dotted,
linewidth=1.2pt,dotsep=2pt}

The user can also overwrite the specification of this stytd winew specification,
if desired.

pst-jtreecontains the macro definition:

\def\etc{[branch=\etcbranch,scaleby=.7]}

So you can write:

27



\jtree
\! = :{A} :{B} :{C}O \etc. A§>.,
\endjtree B ;

C

10.5. The pseudo-parameters dirA and dirB

Suppose that you wish to us@ccurve to draw a curve which leaves a node
A in the same direction that a standard left branch woulddeavYou need to
setangleA to the appropriate value. The appropriate angle can be lasdcl
using some simple trigonometry, but the calculation depemdthe ratio of the
psxunits to the psyunits. It is desirable both to avoid hgtando a trig calculation
on the side and to code a tree so that unit changes do notlatgrebmetry in
an undesirable fashiordirA anddirB were introduced to solve this problem.
\psset{dirA=(-1:-1)} will causeangleA to be set so that a path drawn by
\nccurve will leave the starting node in the direction of the vectef (-1).

It is called a pseudo-parameter (my terminology) becagsset{dirA=x} is
executed for its fect on the parametamngleA, notdirA. Note that a colon is
used, so that thgpsset parser is not confuseddirB works almost the same
way for angleB, but the vector which setsirB should point backwards along the
curve, which is the direction whicingleB measures.

Use ofdirA below ensures that the “curved branch” lines up with thegttaones.
Note that the curve is made fairly §t{a high value ohcurv) so that it bows out
suficiently.

\jtree
\! = @Al
<right> B
: {B} C D
:{C} {D}@A2 .
\nccurve[dirA=(-1:-1),angleB=200,
ncurv=2,nodesepA=0]{A1}{A2}
\endjtree\kernlem

The example in 14 is a good illustration of the use of this pester.

28



11. How to build complex trees

jTree has several features which make it easy to build treszermentally. In
complex trees, this is a big advantage, because the softleaenot make it easy
to pinpoint the source of errors in the code. Consider, fongla, the tree that

is used to illustrate the features @free, a popular tree-drawing macro package
(available on CTAN) written by Avery Andrews.

(15) The cup dlid from John to Mary

GO(cup, [panFROM(Iohn), TOMary)])
IP

Fracturg

The cup did from John to Mary
cup GO(X, [pathFROM(John), TO(Mary)])
NP IP
Fraciurg Fraciurg
The cup
1 cup
Nspec N

We proceed, as usual, by starting with the right branchimgespf the tree, putting
in adjunction points for complex material on left branchieattmust be added.
Similar to adjunction pointgJree allows for tags to be inserted for “ftuthat can
be filled in later. Macrodstuff and\defstuff are defined irpst-jtreeand used
as shown below.

\jtree [a]
\def\fracture{\psframebox{Fracture}} |

\! = {\stuff[a]}
<vert>{\fracture} //////”\\\\\\
:\jtbig{\stuff[b]}!a

\jtbig{\stuff[c]} [b] [c]
<vert>{\fracture} |
:{$\vdots$} {$\vdots$}.

\endjtree PN

We then proceed to complete the structure at the taggedgrsifill in the missing
stuf, and to make whatever other changes are needed to get a gikinbldree.

29



Some things are already apparent: there is too much whitespader “Fracture”
inside the box; the tree branches do not meet the “fractuxg bad the tree needs
to be stretched in the x-direction. We delay filling in mostlaed missing stfif until
the end, and concentrate on fixing the problems noted abalgetting the tree
structure right. This produces:

\jtree[xunit=3em,yunit=1em]
\def\Fracture{<vert>{\omit\psframebox[framesep=.4ex]
{Fracture$\vphantom j$}3}}%
\! = {\stuffl[a]} [a]
\Fracture
:\jtbig{\stuff[b]}!'a
\jtbig{\stuff[c]l}
\Fracture
:{$\vdots$} [b] [c]

{$\vdots$}.
\'a = \Fracture Fracture
{\stuff[d]l}

{\stuffle]}. [d] [e]
\endjtree

We now are ready to fill in the sfiu Since the go-path construction is complicated,
appears twice, and is probably useful for this kind of workas been generalized
to a macro.pst-jtreecontains the\multiline and\endmultiline macros to
help construct complex multiline labelsmultiline starts a vbox and begins
\halign{\hfil#\hfil\cr. \endmultiline closes up the construction. Some
care is taken with the vertical spacing. The full code for) (5

\def\GO#1#2#3{$\rm GO\bigl ({#1}, [_{Path}\,
FROM({#2}),TO({#3})]\bigr)$}

\jtree[xunit=3em,yunit=1em]
\defstuffl[a]{\multiline

\it The cup slid from John to Mary\cr

\GO{\bf cup}{\bf John}{\bf Mary}\cr

IP\endmultiline}
\defstuff[b]{\multiline

\it The cup\cr

\bf cup\cr

NP\endmultiline}
\defstuff[c]{\multiline

\it slid from John to Mary\cr

\GO{\mit x}{\bf John}{\bf Mary}\cr

IP\endmultiline}
\defstuff[d]{\multiline

30



\it The\cr
$\perp$\cr
\quad N$\rm _{SPEC}$\endmultiline}
\defstuff[e]{\multiline
\it cup\cr
\bf cup\cr
N\endmultiline}
\def\Fracture{<vert>{\omit\psframebox[framesep=.4ex]
{Fracture$\vphantom j$3}}3}%
\! = {\stuffl[al}
\Fracture
:\jtbig{\stuff[b]}'!a \jtbig{\stuff[c]}
\Fracture
:{$\vdots$} {$\vdots$}.
\'!a = \Fracture
{\stuff[d]} {\stuffl[e]}.
\endjtree

31



12. The bounding box

PSTricks creates dimensionless graphics;lree goes to a lot of trouble to figure
out the sizes of the trees that it generates and to put theippirogriately sized
boxes. For example:

\psframebox[framesep=0]{\jtree

X
\! = {X} :{a} :{a} :{a}
{\multiline a
a

this and\cr . a this and
that\endmultiline}. that
\endjtree}

The sizing is not perfectiTree is not clever enough to recognize the white space
due tolabelgapt, labelgapb, labelstrutt, andlabelstrutb. But it is not
bad.

If PSTricks is used to draw arrows, they often extend outtidglree bounding
box.

\psframebox[framesep=0] {\jtree X
\! = {X}@Al
<right>
. a
' E;’; a thisand
) that
{\multiline 7
this and\cr
that\endmultiline}@A2 .

\nccurve[angleA=210,angleB=200,
ncurv=2,nodesepA=0]{->}{Al1:b}{A2}
\endjtree}

This has to be fixed by hand by inserting appropriate kerning.

32



\psframebox[framesep=0]{\kern2.4em X
\jtree
\! = {X}@A1l
. a
f{*;?hv a this and
) that
:{a}
{\multiline
this and\cr
that\endmultiline}@A2 .

\nccurve[angleA=210,angleB=200,
ncurv=2,nodesepA=0]{->}{Al1:b}{A2}
\endjtree}

13. Nodes and connections between them

Nodes have a shape, a reference point, and a nastenodeallows the user to
define box, elliptical, circular, and point nodes. In aduitio a shape, nodes have
a reference point. It is at the center of an elliptical, dacuor point node. It can
be at the center of a box node, but there are other optionfonbdes: the ends
and centers of the edges and the baselps:nodenas a number of commands
for drawing curves of various kinds between nodes. Varieasures of how these
curves are rendered (linewidth, linestyle, arrows, etar) loe specified. The most
useful curve drawing command for annotating tree strustig&nccurve. The
main point of this section is to explain homccurve works.

Suppose there is a box node and a point node as shown belovdothare the
reference points.

A

The diagram below illustrates how
\nccurve[angleA=50,angleB=110] {A}{B}

is drawn.

33



This simple picture can be modified by a number of paramebersddition to the
usual parameters likeinewidth, linestyle andarrows which determine how a
geometrical curve is rendered, there are six parametehwvodify the geometry
of the curve itself:ncurvA, ncurvB, nodesepA, nodesepB, offsetA, and
offsetB. The parameters can be set individually or in palgssset{nodesep=x}
induces\psset{nodesepA=X,node