Changes to 1.

Section Page

Introduction 1

Changes to 2. The character set 17
Changes to 3. Input and output 25
Changes to 4. String handling 38
Changes to 5. On-line and off-line printing 54
Changes to 6. Reporting errorsot nenn.. 72
Changes to 7. Arithmetic with scaled dimensions 99
Changes to 7b. Random numbers 110
Changes to 8. Packed data i 128
Changes to 9. Dynamic memory allocation 133
Changes to 10. Data structures for boxes and their friends 151
Changes to 11. Memory layout, 180
Changes to 12. Displaying boxes, 191
Changes to 13. Destroying boxes 217
Changes to 14. Copying boxes, 221
Changes to 15. The command codes, 225
Changes to 16. The semanticnestot . 229
Changes to 17. The table of equivalents 238
Changes to 18. The hash table 274
Changes to 19. Saving and restoring equivalents 290
Changes to 20. Token Lists oot 311
Changes to 21. Introduction to the syntactic routines 319
Changes to 22. Input stacks and states 322
Changes to 23. Maintaining the input stacks 343
Changes to 24. Getting the next token 354
Changes to 25. Expanding the next token 388
Changes to 26. Basic scanning subroutines 428
Changes to 27. Building token lists 490
Changes to 28. Conditional processingo i .. 513
Changes to 29. Filenames 537
Changes to 30. Font metricdata 565
Changes to 31. Device-independent file format 610
Changes to 32. Shipping pages outoouiiiniiiiininennen.. 619
Changes to 32a. pdfTEX basic ...t 672
Changes to 32b. pdfTEX output low-level subroutines 679
Changes to 32c. PDF page description 691
Changes to 32d. The cross-reference table 694
Changes to 32e. Font processingo, 703
Changes to 32f. PDF shippingout 727
Changes to 33. Packaging i 816
Changes to 34. Data structures for math mode 856
Changes to 35. Subroutines for math mode 875
Changes to 36. Typesetting math formulas 895
Changes to 37. Alignment i 944
Changes to 38. Breaking paragraphs into lines 989
Changes to 39. Breaking paragraphs into lines, continued 1038
Changes to 40. Pre-hyphenation 1068
Changes to 41. Post-hyphenation 1077
Changes to 42. Hyphenation 1096
Changes to 43. Initializing the hyphenation tables 1119
Changes to 44. Breaking vertical lists into pages 1144
Changes to 45. The page builder i .. 1157

3

8
11
15
17
21
24
25
25
27
28
31
32
34
35
36
37
40
o7
64
65
66
66
69
70
7
80
81
82
83
95
104
104
114
116
116
116
116
116
120
120
120
121
123
123
123
123
123
124
129
135
135

2 WEB OUTPUT

Changes to 46. The chief executive 1206
Changes to 47. Building boxes and lists 1233
Changes to 48. Building math lists i, 1314
Changes to 49. Mode-independent processing 1386
Changes to 50. Dumping and undumping the tables 1478
Changes to 51. The main programciiiiiinninnenn.n. 1511
Changes to 52. Debuggingo 1519
Changes to 53. Extensions, 1521
Changes to 53a. The extended features of e-TEX 1649
Changes to 54/web2c. System-dependent changes for Web2c 1868
Changes to 54/web2c-string. The string recycling routines 1877
Changes to 54/web2c. More changes for Web2c 1879
Changes to 54/MLTEX. System-dependent changes for MLTEX 1882
Changes to 54/encTEX. System-dependent changes for encTEX 1896
Changes to 54/SyncTeX. The Synchronize TEXnology 1905
Changes to 54. System-dependent changes 1940

Changes to 55. Indext 1942

136
138
141
142
154
167
175
177
195
201
203
204
205
212
218
222
223

pdfTEX

61 pdfTEx PART 1: INTRODUCTION 3

June 11, 2023 at 13:14

2¥ The present implementation has a long ancestry, beginning in the summer of 1977, when Michael F.
Plass and Frank M. Liang designed and coded a prototype based on some specifications that the author had
made in May of that year. This original protoTEX included macro definitions and elementary manipulations
on boxes and glue, but it did not have line-breaking, page-breaking, mathematical formulas, alignment
routines, error recovery, or the present semantic nest; furthermore, it used character lists instead of token
lists, so that a control sequence like \halign was represented by a list of seven characters. A complete version
of TEX was designed and coded by the author in late 1977 and early 1978; that program, like its prototype,
was written in the SAIL language, for which an excellent debugging system was available. Preliminary plans
to convert the SAIL code into a form somewhat like the present “web” were developed by Luis Trabb Pardo
and the author at the beginning of 1979, and a complete implementation was created by Ignacio A. Zabala
in 1979 and 1980. The TEX82 program, which was written by the author during the latter part of 1981
and the early part of 1982, also incorporates ideas from the 1979 implementation of TEX in MESA that
was written by Leonidas Guibas, Robert Sedgewick, and Douglas Wyatt at the Xerox Palo Alto Research
Center. Several hundred refinements were introduced into TEX82 based on the experiences gained with the
original implementations, so that essentially every part of the system has been substantially improved. After
the appearance of “Version 0” in September 1982, this program benefited greatly from the comments of
many other people, notably David R. Fuchs and Howard W. Trickey. A final revision in September 1989
extended the input character set to eight-bit codes and introduced the ability to hyphenate words from
different languages, based on some ideas of Michael J. Ferguson.

No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping
TEX82 “frozen” from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of TEX82 itself, and
the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever TEX undergoes any modifications, so that it will be clear
which version of TEX might be the guilty party when a problem arises.

This program contains code for various features extending TEX, therefore this program is called ‘e-TEX’
and not ‘TEX’; the official name ‘TEX’ by itself is reserved for software systems that are fully compatible
with each other. A special test suite called the “TRIP test” is available for helping to determine whether
a particular implementation deserves to be known as ‘TEX’ [cf. Stanford Computer Science report CS1027,
November 1984].

MLTEX will add new primitives changing the behaviour of TEX. The banner string has to be changed.
We do not change the banner string, but will output an additional line to make clear that this is a modified
TEX version.

A similar test suite called the “e-TRIP test” is available for helping to determine whether a particular
implementation deserves to be known as ‘e-TEX’.

define eTeX version =2 { \eTeXversion }

define eTeX_revision =".6" { \eTeXrevision }

define eTeX version_string = -2.6° { current e-TEX version }

define eTeX banner = “This is_e-TeX, Version 3.141592653", eTeX version_string

{ printed when e-TEX starts }

define pdfter_version = 140 { \pdftexversion }

define pdftex_revision = "25" { \pdftexrevision }

define pdftez_version_string = "-1.40.25° { current pdfTEX version }

define pdfTeX banner = “This_is pdfTeX, Version;,3.141592653", eTeX version_string,

pdftex_version_string { printed when pdfTEX starts }

define TeX_banner_k = "This is TeXk, Version;3.141592653 { printed when TEX starts }

define TeX_ banner = “This_is_ TeX, Version;3.141592653 " {printed when TEX starts }

define banner = pdfTeX_banner
define banner_k = pdfTeX_banner

4 PART 1: INTRODUCTION pdfTEX §2

define TEX = PDFTEX {change program name into PDFTEX }
define TeXXeT_code =0 {the TEX--XHT feature is optional }
define eTeX states =1 {number of e-TEX state variables in eqtb }

4% The program begins with a normal Pascal program heading, whose components will be filled in later,
using the conventions of WEB. For example, the portion of the program called ‘{ Global variables 13)’ below
will be replaced by a sequence of variable declarations that starts in §13 of this documentation. In this way,
we are able to define each individual global variable when we are prepared to understand what it means; we
do not have to define all of the globals at once. Cross references in §13, where it says “See also sections 20,
26, ...,” also make it possible to look at the set of all global variables, if desired. Similar remarks apply to
the other portions of the program heading.

define mtype = t@&yQ@&p@&e { this is a WEB coding trick: }
format mitype = type {‘mtype’ will be equivalent to ‘type’}
format type = true {but ‘type’ will not be treated as a reserved word }

(Compiler directives 9)

program TEX; {all file names are defined dynamically }
const (Constants in the outer block 11*)
mtype (Types in the outer block 18)
var (Global variables 13)

procedure initialize; {this procedure gets things started properly }
var (Local variables for initialization 19*)
begin (Initialize whatever TEX might access 8*)
end;

(Basic printing procedures 57)
(Error handling procedures 78)

6* For Web2c, labels are not declared in the main program, but we still have to declare the symbolic names.

define start_of- TEX =1 {go here when TEX’s variables are initialized }
define final_end = 9999 { this label marks the ending of the program }

7¥ Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when TEX is being installed or when system wizards are fooling around with TEX without quite
knowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords
‘debug ... gubed’, with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by ‘stat ... tats’ that is intended for use when statistics
are to be kept about TEX’s memory usage. The stat ... tats code also implements diagnostic information
for \tracingparagraphs, \tracingpages, and \tracingrestores.

define debug = ifdef (" TEXMF_DEBUG ")
define gubed = endif ("TEXMF_DEBUG ")
format debug = begin

format gubed = end

define stat = ifdef ("STAT")

define tats = endif ("STAT")

format stat = begin

format tats = end

68 pdfTEx PART 1: INTRODUCTION 5

8% This program has two important variations: (1) There is a long and slow version called INITEX, which
does the extra calculations needed to initialize TEX’s internal tables; and (2) there is a shorter and faster
production version, which cuts the initialization to a bare minimum. Parts of the program that are needed
in (1) but not in (2) are delimited by the codewords ‘init ...tini’ for declarations and by the codewords
‘Init ... Tini’ for executable code. This distinction is helpful for implementations where a run-time switch
differentiates between the two versions of the program.
define init = ifdef ("INITEX")
define tini = endif ("INITEX")
define Init =
init
if ini_version then
begin
define Tini =
end ; tini
format Init = begin
format Tini = end
format init = begin
format tini = end
(Initialize whatever TEX might access 8*) =
(Set initial values of key variables 21)
Init (Initialize table entries (done by INITEX only) 182) Tini
See also section 1913*.

This code is used in section 4%*.

6

11%*

PART 1: INTRODUCTION pdfTEX §11

The following parameters can be changed at compile time to extend or reduce TEX’s capacity. They

may have different values in INITEX and in production versions of TEX.

define file_name_size = maxint
define ssup_error_line = 255
define ssup_maz_strings = 2097151

{ Larger values than 65536 cause the arrays to consume much more memory. }

define ssup_trie_opcode = 65535

define ssup_trie_size = "3FFFFF

define ssup_hyph_size = 65535 { Changing this requires changing (un)dumping! }

define iinf -hyphen_size = 610 { Must be not less than hyph_prime! }

define maz_font_mazr = 9000 {maximum number of internal fonts; this can be increased, but

hash_size + maz_font_-maz should not exceed 29000. }

define font_base =0 {smallest internal font number; must be > min_quarterword; do not change this

without modifying the dynamic definition of the font arrays. }

(Constants in the outer block 11*) =
hash_offset = 514; {smallest index in hash array, i.e., hash_base }

{ Use hash_offset = 0 for compilers which cannot decrement pointers. }

trie_op_size = 35111;

{ space for “opcodes” in the hyphenation patterns; best if relatively prime to 313, 361, and 1009. }

neg_trie_op_size = —35111; { for lower trie_op_hash array bound; must be equal to —trie_op_size. }
min_trie_.op = 0; {first possible trie op code for any language }

maz_trie_op = ssup_trie_opcode; {largest possible trie opcode for any language }

pool_name = TEXMF_POOL_NAME; {this is configurable, for the sake of ML-TEX }

{ string of length file_name_size; tells where the string pool appears }

engine_name = TEXMF_ENGINE_NAME; {the name of this engine }

inf-mem_bot = 0; sup_mem_bot = 1; inf main_memory = 3000; sup_main_memory = 256000000;
inf_trie_size = 8000; sup_trie_size = ssup_trie_size; inf-mazx_strings = 3000;
sup_mazx_strings = ssup-mazx_strings; inf-strings_free = 100; sup_strings_free = sup-maz_strings;
inf-buf_size = 500; sup_buf-size = 30000000; inf-nest_size = 40; sup_nest_size = 4000;
inf-maz_in_open = 6; sup_maz_in_open = 127; inf_-param_size = 60; sup_param_size = 32767;
inf_save_size = 600; sup_save_size = 30000000; inf stack_size = 200; sup_stack_size = 30000;
inf_dvi_buf_size = 800; sup_dvi_buf size = 65536; inf_font_mem_size = 20000;
sup_font_mem_size = 147483647; { integer-limited, so 2 could be prepended? }
sup_font-maz = maz_font_maz; inf-font-max = 50; {could be smaller, but why? }
infpool_size = 32000; sup_pool_size = 40000000; inf_pool_free = 1000; sup_pool_free = sup_pool_size;
inf_string_vacancies = 8000; sup_string_vacancies = sup_pool_size — 23000;
sup_hash_extra = sup_mazx_strings; inf -hash_extra = 0; sup_hyph_size = ssup_hyph_size;
inf_hyph_size = iinf_hyphen_size; {Must be not less than hyph_prime! }
inf-expand_depth = 10; sup_expand_depth = 10000000;

See also sections 675, 679, 695, 721, and 1632.

This code is used in section 4%*.

612 pdfIExX PART 1: INTRODUCTION 7

12¥ Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce TEX’s capacity. But if they are changed, it is necessary to rerun the initialization program INITEX
to generate new tables for the production TEX program. One can’t simply make helter-skelter changes to
the following constants, since certain rather complex initialization numbers are computed from them. They
are defined here using WEB macros, instead of being put into Pascal’s const list, in order to emphasize this
distinction.

define hash_size = 15000 { maximum number of control sequences; it should be at most about
(mem_mazx — mem_min)/10; see also font-maz }

define hash_prime = 8501 { a prime number equal to about 85% of hash_size }

define hyph_prime = 607 {another prime for hashing \hyphenation exceptions; if you change this,
you should also change iinf_hyphen_size.}

16* Here are some macros for common programming idioms.

define negate(#) = # + —# { change the sign of a variable }

define loop = while true do {repeat over and over until a goto happens }
format loop = zclause {WEB’s xclause acts like ‘while true do’}

define do_nothing = {empty statement }

define return = goto ezxit {terminate a procedure call }

format return = nil

define empty =0 {symbolic name for a null constant }

8 PART 2: THE CHARACTER SET pdfTEX §17

19¥ The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for typesetting; so the present specification of TEX
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set contains
at least the letters and symbols associated with ASCII codes 40 through “176; all of these characters are
now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name tezt_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first_text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.

define text_char = ASCII_code {the data type of characters in text files }
define first_text_char =0 {ordinal number of the smallest element of text_char }
define last_text_char = 255 {ordinal number of the largest element of text_char }

(Local variables for initialization 19*) =

i: integer;

See also sections 181 and 1104.

This code is used in section 4%*.

620 pdfIExX PART 2: THE CHARACTER SET 9

20¥ The TEX processor converts between ASCII code and the user’s external character set by means of
arrays zord and zchr that are analogous to Pascal’s ord and chr functions.

{ Global variables 13) +=
zord: array [text_char] of ASCII_code; {specifies conversion of input characters }
xchr: array [ASCII code] of text_char; { specifies conversion of output characters }
aprn: array [ASCII code] of ASCII code; { non zero iff character is printable }
mubyte_read: array [ASCII code] of pointer; { non zero iff character begins the multi byte code }
mubyte_write: array [ASCII_code] of str_number;

{ non zero iff character expands to multi bytes in log and write files }
mubyte_cswrite: array [0 ..127] of pointer;

{ non null iff cs mod 128 expands to multi bytes in log and write files }
mubyte_skip: integer; { the number of bytes to skip in buffer }
mubyte_keep: integer; { the number of chars we need to keep unchanged }
mubyte_skeep: integer; { saved mubyte_keep }
mubyte_prefiz: integer; { the type of mubyte prefix }
mubyte_tablein: boolean; { the input side of table will be updated }
mubyte_tableout: boolean; { the output side of table will be updated }
mubyte_relax: boolean; { the relax prefix is used }
mubyte_start: boolean; { we are making the token at the start of the line }
mubyte_sstart: boolean; { saved mubyte_start }
mubyte_token: pointer; { the token returned by read_buffer }
mubyte_stoken: pointer; { saved first token in mubyte primitive }
mubyte_sout: integer; { saved value of mubyte_out }
mubyte_slog: integer; { saved value of mubyte_log }
spec_sout: integer; { saved value of spec_out }
no_convert: boolean; { conversion supressed by noconvert primitive }
active_noconvert: boolean; { true if noconvert primitive is active }
write_noexpanding: boolean; { true only if we need not write expansion }
cs_converting: boolean; { true only if we need csname converting }
special_printing: boolean; { true only if we need converting in special }
message_printing: boolean; { true if message or errmessage prints to string }

10 PART 2: THE CHARACTER SET pdfTEX §23

23* The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in zchr[0 .. “37], but the safest
policy is to blank everything out by using the code shown below.

However, other settings of xzchr will make TEX more friendly on computers that have an extended character
set, so that users can type things like ‘#” instead of ‘\ne’. People with extended character sets can assign
codes arbitrarily, giving an zchr equivalent to whatever characters the users of TEX are allowed to have
in their input files. It is best to make the codes correspond to the intended interpretations as shown in
Appendix C whenever possible; but this is not necessary. For example, in countries with an alphabet of
more than 26 letters, it is usually best to map the additional letters into codes less than /0. To get the
most “permissive” character set, change “|,” on the right of these assignment statements to chr (7).

(Set initial values of key variables 21) +=
{ Initialize zchr to the identity mapping. }
for i < 0 to 37 do xchr[i] « i;
for i < 177 to 377 do zchr[i] < i; {Initialize encTEX data. }
for i <— 0 to 255 do mubyte_read[i] < null;
for i < 0 to 255 do mubyte_write[i] + 0;
for i + 0 to 127 do mubyte_cswrite[i] + null;
mubyte_keep < 0; mubyte_start < false; write_noexpanding < false; cs_converting < false;
special_printing < false; message_printing < false; no_convert < false; active_noconvert < false;

24%* The following system-independent code makes the zord array contain a suitable inverse to the infor-
mation in zchr. Note that if zchr[i] = zchr[j] where i < j < 177, the value of zord [zchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 40 in case there
is a coincidence.

(Set initial values of key variables 21) +=
for i « first_text_char to last_text_char do zord[chr(i)] < invalid_code;
for i < "200 to 377 do zord[xzchr[i]] + i;
for i <~ 0to 176 do wzord[zchr[i]] < i; {Set zprn for printable ASCII, unless eight_bit_p is set. }
for i < 0 to 255 do zprn[i] < (eight-bit_p V ((i > "u") A (i <""))); {The idea for this dynamic
translation comes from the patch by Libor Skarvada <libor@informatics.muni.cz> and Petr
Sojka <sojka@informatics.muni.cz>. I didn’t use any of the actual code, though, preferring a
more general approach. }
{ This updates the zchr, zord, and axprn arrays from the provided translate_filename. See the
function definition in texmfmp.c for more comments. }
if translate_filename then read_tcz_file;

625 pdfTEX PART 3: INPUT AND OUTPUT 11

26* Most of what we need to do with respect to input and output can be handled by the I/0O facilities
that are standard in Pascal, i.e., the routines called get, put, eof , and so on. But standard Pascal does not
allow file variables to be associated with file names that are determined at run time, so it cannot be used
to implement TEX; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for our purposes.
We shall assume that name_of_file is a variable of an appropriate type such that the Pascal run-time system
being used to implement TEX can open a file whose external name is specified by name_of-file.

{ Global variables 13) +=
name_of_file: Ttext_char;
name_length: 0 .. file_name_size;
{ this many characters are actually relevant in name_of_file (the rest are blank) }

27¥ All of the file opening functions are defined in C.
28% And all the file closing routines as well.

30¥* Input from text files is read one line at a time, using a routine called input_In. This function is defined
in terms of global variables called buffer, first, and last that will be described in detail later; for now, it
suffices for us to know that buffer is an array of ASCII_code values, and that first and last are indices into
this array representing the beginning and ending of a line of text.

{ Global variables 13) +=

buffer: 1ASCII_code; {lines of characters being read }
first: 0 .. buf_size; {the first unused position in bujffer }
last: 0 .. buf-size; {end of the line just input to buffer }
maz_buf_stack: 0 .. buf-size; {largest index used in buffer }

31* The input_In function brings the next line of input from the specified file into available positions of
the buffer array and returns the value ¢rue, unless the file has already been entirely read, in which case it
returns false and sets last < first. In general, the ASCII_code numbers that represent the next line of the
file are input into buffer[first], buffer|first + 1], ..., buffer[last — 1]; and the global variable last is set equal
to first plus the length of the line. Trailing blanks are removed from the line; thus, either last = first (in
which case the line was entirely blank) or buffer[last — 1] # "".

An overflow error is given, however, if the normal actions of input_In would make last > buf_size; this is
done so that other parts of TEX can safely look at the contents of buffer[last + 1] without overstepping the
bounds of the buffer array. Upon entry to input_in, the condition first < buf_size will always hold, so that
there is always room for an “empty” line.

The variable max_buf_stack, which is used to keep track of how large the buf_size parameter must be to
accommodate the present job, is also kept up to date by input_in.

If the bypass_eoln parameter is true, input_In will do a get before looking at the first character of the line;
this skips over an eoln that was in f1. The procedure does not do a get when it reaches the end of the line;
therefore it can be used to acquire input from the user’s terminal as well as from ordinary text files.

Standard Pascal says that a file should have eoln immediately before eof, but TEX needs only a weaker
restriction: If eof occurs in the middle of a line, the system function eoln should return a true result (even
though f1 will be undefined).

Since the inner loop of input_In is part of TEX’s “inner loop”—each character of input comes in at this
place—it is wise to reduce system overhead by making use of special routines that read in an entire array of
characters at once, if such routines are available. The following code uses standard Pascal to illustrate what
needs to be done, but finer tuning is often possible at well-developed Pascal sites.

We define input_ln in C, for efficiency. Nevertheless we quote the module ‘Report overflow of the input
buffer, and abort’ here in order to make WEAVE happy, since part of that module is needed by e-TeX.

@{(Report overflow of the input buffer, and abort 35*)@}

12 PART 3: INPUT AND OUTPUT pdfTEX §32

32¥ The user’s terminal acts essentially like other files of text, except that it is used both for input and
for output. When the terminal is considered an input file, the file variable is called term_in, and when it is
considered an output file the file variable is term_out.

define term_in = stdin {the terminal as an input file }
define term_out = stdout {the terminal as an output file }

(Global variables 13) +=
init ini_version: boolean; {are we INITEX? }
dump_option: boolean; {was the dump name option used? }
dump_line: boolean; {was a %&format line seen? }
tini
dump_name: const_cstring; {format name for terminal display }

bound_default: integer; {temporary for setup }
bound_name: const_cstring; {temporary for setup }

mem_bot: integer;
{'smallest index in the mem array dumped by INITEX; must not be less than mem_min }

main_memory: integer; {total memory words allocated in initex }

extra_mem_bot: integer; { mem_min < mem_bot — extra_mem_bot except in INITEX }

mem_man: integer; {smallest index in TEX’s internal mem array; must be min_halfword or more; must
be equal to mem_bot in INITEX, otherwise < mem_bot }

mem_top: integer; {largest index in the mem array dumped by INITEX; must be substantially larger
than mem_bot, equal to mem_maz in INITEX, else not greater than mem_maz }

extra_mem_top: integer; {mem_mazx < mem_top + extra_mem_top except in INITEX }

mem_max: integer; {greatest index in TEX’s internal mem array; must be strictly less than maz_halfword;
must be equal to mem_top in INITEX, otherwise > mem_top }

error_line: integer; { width of context lines on terminal error messages }

half-error_line: integer; {width of first lines of contexts in terminal error messages; should be between 30
and error_line — 15 }

maz_print_line: integer; { width of longest text lines output; should be at least 60 }

maz_strings: integer; {maximum number of strings; must not exceed maz_halfword }

strings_free: integer; {strings available after format loaded }

string_vacancies: integer; {the minimum number of characters that should be available for the user’s
control sequences and font names, after TEX’s own error messages are stored }

pool_size: integer; {maximum number of characters in strings, including all error messages and help texts,
and the names of all fonts and control sequences; must exceed string_vacancies by the total length of
TEX’s own strings, which is currently about 23000 }

pool_free: integer; {pool space free after format loaded }

font_mem_size: integer; {number of words of font_info for all fonts }

font-maz: integer; {maximum internal font number; ok to exceed max_quarterword and must be at most
font_base+maz_font_-maz }

font_k: integer; {loop variable for initialization }

hyph_size: integer; {maximum number of hyphen exceptions }

trie_size: integer; {space for hyphenation patterns; should be larger for INITEX than it is in production
versions of TEX. 50000 is needed for English, German, and Portuguese. }

buf_size: integer; {maximum number of characters simultaneously present in current lines of open files
and in control sequences between \csname and \endcsname; must not exceed maz_halfword }

stack_size: integer; {maximum number of simultaneous input sources }

maz-_in_open: integer;
{ maximum number of input files and error insertions that can be going on simultaneously }

param_size: integer; {maximum number of simultaneous macro parameters }

nest_size: integer; { maximum number of semantic levels simultaneously active }

save_size: integer; {space for saving values outside of current group; must be at most maz_halfword }

632 pdfIExX PART 3: INPUT AND OUTPUT 13

dvi_buf_size: integer; {size of the output buffer; must be a multiple of 8 }
expand_depth: integer; {limits recursive calls to the expand procedure }
parse_first_line_p: cinttype; {parse the first line for options }
file_line_error_style_p: cinttype; {format messages as file:line:error }
eight_bit_p: cinttype; { make all characters printable by default }
halt_on_error_p: cinttype; {stop at first error }
halting_on_error_p: boolean; {already trying to halt? }
quoted_filename: boolean; { current filename is quoted }

{ Variables for source specials }
src_specials_p: boolean; { Whether src_specials are enabled at all }
insert_src_special_auto: boolean;
insert_src_special_every_par: boolean;
insert_src_special_every_parend: boolean;
insert_src_special_every_cr: boolean;
insert_src_special_every_math: boolean;
insert_src_special_every_hbox: boolean;
insert_src_special_every_vbox: boolean;
insert_src_special_every_display: boolean;

33* Here is how to open the terminal files. t_open_out does nothing. t_open_in, on the other hand, does
the work of “rescanning,” or getting any command line arguments the user has provided. It’s defined in C.

define t_open_out = {output already open for text output }

34¥ Sometimes it is necessary to synchronize the input/output mixture that happens on the user’s terminal,
and three system-dependent procedures are used for this purpose. The first of these, update_terminal, is
called when we want to make sure that everything we have output to the terminal so far has actually left the
computer’s internal buffers and been sent. The second, clear_terminal, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to issue an unexpected error message). The
third, wake_up_terminal, is supposed to revive the terminal if the user has disabled it by some instruction
to the operating system. The following macros show how these operations can be specified with UNIX.
update_terminal does an fflush. clear_terminal is redefined to do nothing, since the user should control the
terminal.
define update_terminal = fflush (term_out)

define clear_terminal = do_nothing
define wake_up_terminal = do_nothing { cancel the user’s cancellation of output }

14 PART 3: INPUT AND OUTPUT pdfTEX §35

35¥ We need a special routine to read the first line of TEX input from the user’s terminal. This line is
different because it is read before we have opened the transcript file; there is sort of a “chicken and egg”
problem here. If the user types ‘\input paper’ on the first line, or if some macro invoked by that line does
such an \input, the transcript file will be named ‘paper.log’; but if no \input commands are performed
during the first line of terminal input, the transcript file will acquire its default name ‘texput.log’. (The
transcript file will not contain error messages generated by the first line before the first \input command.)

The first line is even more special if we are lucky enough to have an operating system that treats TEX
differently from a run-of-the-mill Pascal object program. It’s nice to let the user start running a TEX job by
typing a command line like ‘tex paper’; in such a case, TEX will operate as if the first line of input were
‘paper’, i.e., the first line will consist of the remainder of the command line, after the part that invoked TEX.

The first line is special also because it may be read before TEX has input a format file. In such cases,
normal error messages cannot yet be given. The following code uses concepts that will be explained later.
(If the Pascal compiler does not support non-local goto, the statement ‘goto final_end’ should be replaced
by something that quietly terminates the program.)

Routine is implemented in C; part of module is, however, needed for e-TeX.

{Report overflow of the input buffer, and abort 35*) =
begin cur_input.loc_field < first; cur_input.limit_field < last — 1; overflow ("buffer size", buf size);
end

This code is used in sections 31* and 1757.

37¥ The following program does the required initialization. Iff anything has been specified on the command
line, then t_open_in will return with last > first.

function init_terminal: boolean; {gets the terminal input started }
label ezit;
begin t_open_in;
if last > first then
begin loc < first;
while (loc < last) A (buffer[loc] = ") do incr(loc);
if loc < last then
begin init_terminal < true; goto exit;
end;
end;
loop begin wake_up_terminal; write(term_out, “**"); update_terminal;
if —input_ln(term_in, true) then {this shouldn’t happen }
begin write_ln(term_out); write_ln(term_out, ~! End of_ file on the terminal... why?);
init_terminal < false; return;
end;
loc + first;
while (loc < last) A (buffer[loc] = ",") do incr(loc);
if loc < last then
begin init_terminal < true; return; {return unless the line was all blank }
end;
write_ln(term_out, "Please type the name of your input, file.);
end;
exit: end;

638 pdfIExX PART 4: STRING HANDLING 15

38* String handling. Control sequence names and diagnostic messages are variable-length strings of
eight-bit characters. Since Pascal does not have a well-developed string mechanism, TEX does all of its string
processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled
with a simple data structure. The array str_pool contains all of the (eight-bit) ASCII codes in all of the strings,
and the array str_start contains indices of the starting points of each string. Strings are referred to by integer
numbers, so that string number s comprises the characters str_pool[j] for str_start[s] < j < str_start[s + 1].
Additional integer variables pool_ptr and str_ptr indicate the number of entries used so far in str_pool and
str_start, respectively; locations str_pool[pool_ptr] and str_start[str_ptr| are ready for the next string to be
allocated.

String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in
accordance with the conventions of WEB, which converts single-character strings into the ASCII code number
of the single character involved, while it converts other strings into integers and builds a string pool file.
Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,
which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater
than 255. String number 46 will presumably be the single character ‘.’; but some ASCII codes have no
standard visible representation, and TEX sometimes needs to be able to print an arbitrary ASCII character,
so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.

Elements of the str_pool array must be ASCII codes that can actually be printed; i.e., they must have an
xchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to those
generated dynamically by the user.)

Some Pascal compilers won’t pack integers into a single byte unless the integers lie in the range —128 .. 127.
To accommodate such systems we access the string pool only via macros that can easily be redefined.

define si(#) =# {convert from ASCII_code to packed_ASCII code }
define so(#) =# {convert from packed_ASCII_code to ASCII code }

(Types in the outer block 18) +=
pool_pointer = integer; { for variables that point into str_pool }
stronumber = 0 .. ssup_maz_strings; {for variables that point into str_start }
packed_ASCII_code =0 .. 255; {elements of str_pool array }

39% (Global variables 13) +=

str_pool: Tpacked_ASCII_code; {the characters }

str_start: Tpool_pointer; {the starting pointers }

pool_ptr: pool_pointer; {first unused position in str_pool }

str_ptr: str_number; {number of the current string being created }
init_pool_ptr: pool_pointer; {the starting value of pool_ptr }
init_str_ptr: str_number; {the starting value of str_ptr }

47* The initial values of str_pool, str_start, pool_ptr, and str_ptr are computed by the INITEX program,
based in part on the information that WEB has output while processing TEX.

(Declare additional routines for string recycling 1877*)
init function get_strings_started: boolean;
{ initializes the string pool, but returns false if something goes wrong }
label done, exit;
var k,l: 0..255; {small indices or counters }
g: stronumber; {garbage }
begin pool_ptr < 0; str_ptr < 0; str_start[0] < 0; (Make the first 256 strings 48);
(Read the other strings from the TEX.POOL file and return true, or give an error message and return
false 51%);
exit: end;
tini

16 PART 4: STRING HANDLING pdfTEX §49

49% The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘~~A’ unless a system-dependent change is made here. Installations that
have an extended character set, where for example zchr[’32] = “#°, would like string “32 to be printed as the
single character “32 instead of the three characters 136, 186, ‘132 (~~Z). On the other hand, even people
with an extended character set will want to represent string 15 by ~"M, since 15 is carriage_return; the
idea is to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or characters
that are treated anomalously in text files.

Unprintable characters of codes 128-255 are, similarly, rendered ~~80—""ff.

The boolean expression defined here should be true unless TEX internal code number k corresponds to a
non-troublesome visible symbol in the local character set. An appropriate formula for the extended character
set recommended in The TgXbook would, for example, be ‘k € [0, 10 .. 12, 714,715,733, 177 .. 377].
If character k cannot be printed, and k < "200, then character k + 100 or k — 100 must be printable;
moreover, ASCII codes [/ .. 46,760 .. 71,7186, 141 .. "146,°160 .. "171] must be printable. Thus, at
least 80 printable characters are needed.

(Character k cannot be printed 49*) =
(k. < uun) v (k. > u~n)

This code is used in section 48.

51*¥ (Read the other strings from the TEX.POOL file and return true, or give an error message and return
false 51%) =

g < loadpoolstrings ((pool_size — string_vacancies));

if g =0 then
begin wake_up_terminal; write_ln(term_out, ~ ! You_have to,increase POOLSIZE. °);
get_strings_started < false; return;
end;

get_strings_started < true;

This code is used in section 47*.
52¥ Empty module

53*% Empty module

854 pdfTEX PART 5: ON-LINE AND OFF-LINE PRINTING 17

54¥% On-line and off-line printing. Messages that are sent to a user’s terminal and to the transcript-
log file are produced by several ‘print’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector, which has the following possible values:

term_and_log, the normal setting, prints on the terminal and on the transcript file.

log_only, prints only on the transcript file.

term_only, prints only on the terminal.

no_print, doesn’t print at all. This is used only in rare cases before the transcript file is open.

pseudo, puts output into a cyclic buffer that is used by the show_context routine; when we get to that routine
we shall discuss the reasoning behind this curious mode.

new_string, appends the output to the current string in the string pool.

0 to 15, prints on one of the sixteen files for \write output.

The symbolic names ‘term_and_log’, etc., have been assigned numeric codes that satisfy the convenient
relations no_print + 1 = term_only, no_print + 2 = log_only, term_only + 2 = log_only + 1 = term_and_log.

Three additional global variables, tally and term_offset and file_offset, record the number of characters
that have been printed since they were most recently cleared to zero. We use tally to record the length of
(possibly very long) stretches of printing; term_offset and file_offset, on the other hand, keep track of how
many characters have appeared so far on the current line that has been output to the terminal or to the
transcript file, respectively.

define no_print =16 { selector setting that makes data disappear }
define term_only = 17 { printing is destined for the terminal only }
define log_only =18 {printing is destined for the transcript file only }
define term_and_log =19 {normal selector setting }

define pseudo =20 {special selector setting for show_context }
define new_string =21 {printing is deflected to the string pool }
define maz_selector = 21 { highest selector setting }

(Global variables 13) +=

log_file: alpha_file; {transcript of TEX session }

selector: 0 .. max_selector; {where to print a message }

dig: array [0..22] of 0..15; {digitsin a number being output }

tally: integer; {the number of characters recently printed }

term_offset: 0 .. max_print_line; {the number of characters on the current terminal line }
file_offset: 0 .. maz_print_line; {the number of characters on the current file line }
trick_buf: array [0 .. ssup_error_line] of ASCII_code; {circular buffer for pseudoprinting }
trick_count: integer; { threshold for pseudoprinting, explained later }

first_count: integer; {another variable for pseudoprinting }

18 PART 5: ON-LINE AND OFF-LINE PRINTING pdfTEX 859

59% An entire string is output by calling print. Note that if we are outputting the single standard ASCII
character c, we could call print("c"), since "c" = 99 is the number of a single-character string, as explained
above. But print_char("c") is quicker, so TEX goes directly to the print_char routine when it knows that
this is safe. (The present implementation assumes that it is always safe to print a visible ASCII character.)

(Basic printing procedures 57) +=
procedure print(s : integer); {prints string s}
label ezit;
var j: pool_pointer; { current character code position }
nl: integer; {new-line character to restore }
begin if s > str_ptr then s+ "?7?" {this can’t happen }
else if s < 256 then
if s <0then s+« "?77?" {can’t happen }
else begin if (selector > pseudo) A (—special_printing) A (—message_printing) then
begin print_char(s); return; {internal strings are not expanded }
end;
if ((Character s is the current new-line character 262)) then
if selector < pseudo then
begin print_In; no_convert < false; return;
end
else if message_printing then
begin print_char(s); no_convert < false; return;
end;
if (mubyte_log > 0) A (mno_convert) A (mubyte_write[s] > 0) then s < mubyte_write|s]
else if aprn(s| V special_printing then
begin print_char(s); no_convert + false; return;
end;
no_convert < false; nl <— new_line_char; new_line_char <+ —1;
{ temporarily disable new-line character }
J « str_start[s];
while j < str_start[s + 1] do
begin print_char(so(str_pool[j])); incr(j);
end;
new_line_char < nl; return;
end;
J + str_start|s];
while j < str_start[s + 1] do
begin print_char (so(str_pool[j])); incr(j);
end;
exit: end;

861 pdfTEX PART 5: ON-LINE AND OFF-LINE PRINTING 19

61¥ Here is the very first thing that TEX prints: a headline that identifies the version number and format
package. The term_offset variable is temporarily incorrect, but the discrepancy is not serious since we assume
that this part of the program is system dependent.

(Initialize the output routines 55) +=
if src_specials_p V file_line_error_style_p V parse_first_line_p then wterm (banner_k)
else wterm (banner);
wterm (version_string);
if format_ident = 0 then wterm_ln(",(preloaded format=", dump_name, ") ")
else begin slow_print(format_ident); print_ln;
end;
if shellenabledp then
begin wterm(y");
if restrictedshell then
begin wterm(“restricted,”);
end;
wterm_In(“\writel8 enabled. ");
end;
if src_specials_p then
begin wterm_ln (" Source specials enabled. ")
end;
if translate_filename then
begin wterm (", ("); fputs(translate_filename, stdout); wterm_In(") 7);
end;
update_terminal;

62¥ The procedure print_nl is like print, but it makes sure that the string appears at the beginning of a
new line.

(Basic printing procedures 57) +=
procedure print_nl(s: str_number); {prints string s at beginning of line }
begin if (selector < no_print) V ((term_offset > 0) A (odd (selector))) V
((file—offset > 0) A (selector > log-only)) then print_ln;
print(s);
end;

20 PART 5: ON-LINE AND OFF-LINE PRINTING pdfTEX 871

71¥ Here is a procedure that asks the user to type a line of input, assuming that the selector setting is
either term_only or term_and_log. The input is placed into locations first through last — 1 of the buffer
array, and echoed on the transcript file if appropriate.
This procedure is never called when interaction < scroll_mode.
define prompt_input(#) =
begin wake_up_terminal; print(#); term_input;
end {prints a string and gets a line of input }
procedure term_input; {gets a line from the terminal }
var k: 0 .. buf size; {index into buffer }
begin update_terminal; {now the user sees the prompt for sure }
if —input_In(term_in, true) then
begin limit + 0; fatal_error("End of_ file on the terminal!");
end;
term_offset < 0; {the user’s line ended with (return) }
decr (selector); { prepare to echo the input }
k « first;
while k£ < last do
begin print_buffer (k)
end;
print_In; incr(selector); {restore previous status }
end;

672 pdfIExX PART 6: REPORTING ERRORS 21

73¥ The global variable interaction has four settings, representing increasing amounts of user interaction:

define batch-mode =0 {omits all stops and omits terminal output }
define nonstop-mode =1 {omits all stops }
define scroll_mode =2 {omits error stops }
define error_stop-mode = 3 {stops at every opportunity to interact }
define unspecified_mode =4 {extra value for command-line switch }
define print_err(#) =
begin if interaction = error_stop_mode then wake_up_terminal;
if file_line_error_style_p then print_file_line
else print_nl("!,");
print (#);
end
(Global variables 13) +=
interaction: batch_mode .. error_stop_mode; {current level of interaction }
interaction_option: batch-mode .. unspecified_-mode; {set from command line }

74% (Set initial values of key variables 21) +=
if interaction_option = unspecified_mode then interaction < error_stop_mode
else interaction < interaction_option;

81* The jump_out procedure just cuts across all active procedure levels. The body of jump_out simply
calls ‘close_files_and_terminate;’ followed by a call on some system procedure that quietly terminates the
program.

format noreturn = procedure
define do_final_end =
begin update_terminal; ready_already < 0;
if (history # spotless) A (history # warning_issued) then wezit(1)
else uexit (0);
end

(Error handling procedures 78) +=

noreturn procedure jump_out;
begin close_files_and_terminate; do_final_end;
end;

22

PART 6: REPORTING ERRORS pdfTEX §82

82¥ Here now is the general error routine.

(Error handling procedures 78) +=
procedure error; {completes the job of error reporting }

label continue, exit;
var ¢: ASCII code; {what the user types}
s1,82,83,s4: integer; {used to save global variables when deleting tokens }
begin if history < error_message_issued then history < error_message_issued;
print_char("."); show_context;
if (halt_on_error_p) then
begin {If close_files_and_terminate generates an error, we’'ll end up back here; just give up in that
case. If files are truncated, too bad. }
if (halting_on_error_p) then do_final_end; { quit immediately }
halting_on_error_p <+ true; history < fatal_error_stop; jump_out;
end;
if interaction = error_stop_mode then (Get user’s advice and return 83);
incr (error_count);
if error_count = 100 then
begin print_nl(" (That_makes 100 errors; please try_again.)"); history < fatal_error_stop;
Jump_out;
end;
(Put help message on the transcript file 90);

erit: end;

84¥ Tt is desirable to provide an ‘E’ option here that gives the user an easy way to return from TEX to
the system editor, with the offending line ready to be edited. We do this by calling the external procedure
call_edit with a pointer to the filename, its length, and the line number. However, here we just set up the
variables that will be used as arguments, since we don’t want to do the switch-to-editor until after TeX has

closed its files.

There is a secret ‘D’ option available when the debugging routines haven’t been commented out.

define edit_file = input_stack [base_ptr]

(Interpret code ¢ and return if done 84*) =

case c of
lloll’ |l1||’ |l2l|’ ||3l|7 ||4|l7 l|5|l’ ||6||’ |l7||’ ||8l|’ ||9l|: if delethnS,allOw@d then
(Delete ¢ — "0" tokens and goto continue 88);

debug "D": begin debug_help; goto continue; end; gubed

"E": if base_ptr > 0 then
if input_stack[base_ptr].name_field > 256 then
begin edit_name_start <+ str_start[edit_file.name_field];
edit_name_length <+ str_start|[edit_file.name_field + 1] — str_start[edit_file.name_field];
edit_line < line; jump_out;
end;
"H": (Print the help information and goto continue 89);
"I": (Introduce new material from the terminal and return 87);
"Q","R","S": (Change the interaction level and return 86);
"X": begin interaction < scroll_mode; jump_out;
end;
othercases do_nothing
endcases;
(Print the menu of available options 85)

This code is used in section 83.

693 pdfIExX PART 6: REPORTING ERRORS

93*¥ The following procedure prints TEX’s last words before dying.

define succumb =
begin if interaction = error_stop_mode then interaction < scroll_mode;
{no more interaction }
if log_opened then error;
debug if interaction > batch-mode then debug_help;
gubed
history < fatal_error_stop; jump_out; {irrecoverable error }
end

(Error handling procedures 78) +=

noreturn procedure fatal_error (s : str_number); {prints s, and that’s it }
begin normalize_selector;
print_err ("Emergency_stop"); helpl (s); succumb;
end;

3

94% Here is the most dreaded error message.

(Error handling procedures 78) +=

noreturn procedure overflow (s : str_-number; n : integer); {stop due to finiteness }
begin normalize_selector; print_err("TeX capacity exceeded, sorry,["); print(s);
print_char("="); print_int(n); print_char("1");
help2 (" If you really absolutely need more capacity, ")
("youucanuaskuauwizardutouenlargeume. "); succumb;
end;

23

95% The program might sometime run completely amok, at which point there is no choice but to stop. If
no previous error has been detected, that’s bad news; a message is printed that is really intended for the
TEX maintenance person instead of the user (unless the user has been particularly diabolical). The index

entries for ‘this can’t happen’ may help to pinpoint the problem.

(Error handling procedures 78) +=
noreturn procedure confusion (s : str_number); {consistency check violated; s tells where }
begin normalize_selector;
if history < error_message_issued then
begin print_err("This,can "t happeny, ("); print(s); print_char(")");
help1 (" I m_ broken. Please show this to someone who can fix can fix");
end
else begin print_err("I can "t go on meeting you,like this");
help?(" One 0f ;your faux pas seems to have wounded me deeply... ")
(" in fact, I "'m barely conscious. Please fix, it and try again. ");
end;
succumb;
end;

24 PART 7: ARITHMETIC WITH SCALED DIMENSIONS pdfTEX 899

104* Physical sizes that a TEX user specifies for portions of documents are represented internally as scaled
points. Thus, if we define an ‘sp’ (scaled point) as a unit equal to 2716 printer’s points, every dimension
inside of TEX is an integer number of sp. There are exactly 4,736,286.72 sp per inch. Users are not allowed
to specify dimensions larger than 23° — 1 sp, which is a distance of about 18.892 feet (5.7583 meters); two
such quantities can be added without overflow on a 32-bit computer.

The present implementation of TEX does not check for overflow when dimensions are added or subtracted.
This could be done by inserting a few dozen tests of the form ‘if x > 10000000000 then report_overflow’,
but the chance of overflow is so remote that such tests do not seem worthwhile.

TEX needs to do only a few arithmetic operations on scaled quantities, other than addition and subtraction,
and the following subroutines do most of the work. A single computation might use several subroutine calls,
and it is desirable to avoid producing multiple error messages in case of arithmetic overflow; so the routines
set the global variable arith_error to true instead of reporting errors directly to the user. Another global
variable, remainder, holds the remainder after a division.

define remainder = tex_remainder

(Global variables 13) +=
arith_error: boolean; { has arithmetic overflow occurred recently? }
remainder: scaled; {amount subtracted to get an exact division }

109¥ When TEX “packages” a list into a box, it needs to calculate the proportionality ratio by which the
glue inside the box should stretch or shrink. This calculation does not affect TEX’s decision making, so the
precise details of rounding, etc., in the glue calculation are not of critical importance for the consistency of
results on different computers.

We shall use the type glue_ratio for such proportionality ratios. A glue ratio should take the same amount
of memory as an integer (usually 32 bits) if it is to blend smoothly with TEX’s other data structures. Thus
glue_ratio should be equivalent to short_real in some implementations of Pascal. Alternatively, it is possible
to deal with glue ratios using nothing but fixed-point arithmetic; see TUGboat 3,1 (March 1982), 10-27.
(But the routines cited there must be modified to allow negative glue ratios.)

define set_glue_ratio_zero(#) = # <— 0.0 {store the representation of zero ratio }
define set_glue_ratio_one(#) = # < 1.0 {store the representation of unit ratio }
define float(#) =# {convert from glue_ratio to type real }

define unfloat(#) =# {convert from real to type glue_ratio }

define float_constant(#) = #.0 { convert integer constant to real }

(Types in the outer block 18) +=

6110 pdfIExX PART 7B: RANDOM NUMBERS 25

128*% Packed data. In order to make efficient use of storage space, TEX bases its major data structures
on a memory_word, which contains either a (signed) integer, possibly scaled, or a (signed) glue_ratio, or a
small number of fields that are one half or one quarter of the size used for storing integers.

If x is a variable of type memory_word, it contains up to four fields that can be referred to as follows:

xz.int (an integer)

x.s¢ (a scaled integer)

z.gr (a glue_ratio)
x.hh.lh, x.hh.rh (two halfword fields)

x.hh.b0, x.hh.b1, x.hh.Th (two quarterword fields, one halfword field)
r.9qqq.b0, x.qqqq.b1, x.9qqq.b2, x.qqqq.b3 (four quarterword fields)

This is somewhat cumbersome to write, and not very readable either, but macros will be used to make the
notation shorter and more transparent. The Pascal code below gives a formal definition of memory_word and
its subsidiary types, using packed variant records. TEX makes no assumptions about the relative positions
of the fields within a word.

Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quarterword must
contain at least 8 bits. But it doesn’t hurt to have more bits; for example, with enough 36-bit words you
might be able to have mem_maz as large as 262142, which is eight times as much memory as anybody had
during the first four years of TEX’s existence.

N.B.: Valuable memory space will be dreadfully wasted unless TEX is compiled by a Pascal that packs
all of the memory_word variants into the space of a single integer. This means, for example, that glue_ratio
words should be short_real instead of real on some computers. Some Pascal compilers will pack an integer
whose subrange is ‘0 .. 255’ into an eight-bit field, but others insist on allocating space for an additional sign
bit; on such systems you can get 256 values into a quarterword only if the subrange is ‘—128 .. 127".

The present implementation tries to accommodate as many variations as possible, so it makes few as-
sumptions. If integers having the subrange ‘min_quarterword .. max_quarterword’ can be packed into a
quarterword, and if integers having the subrange ‘min_halfword .. maz_halfword’ can be packed into a
halfword, everything should work satisfactorily.

It is usually most efficient to have min_quarterword = min_halfword = 0, so one should try to achieve this
unless it causes a severe problem. The values defined here are recommended for most 32-bit computers.

define min_quarterword =0 {smallest allowable value in a quarterword }
define maz_quarterword = 255 {largest allowable value in a quarterword }
define min_halfword = —"FFFFFFF {smallest allowable value in a halfword }
define maz_halfword = "FFFFFFF {largest allowable value in a halfword }

129% Here are the inequalities that the quarterword and halfword values must satisfy (or rather, the
inequalities that they mustn’t satisfy):

(Check the “constant” values for consistency 14) +=
init if (mem_min # mem_bot) V (mem_-maz # mem_top) then bad < 10;
tini
if (mem_min > mem_bot) V (mem_maz < mem_top) then bad + 10;
if (min_quarterword > 0) V (maz_quarterword < 127) then bad « 11;
if (min_halfword > 0) V (max_halfword < 32767) then bad < 12;
if (min_quarterword < min_halfword) V (maz_quarterword > max_-halfword) then bad + 13;
if (mem_bot — sup-main_memory < min_halfword) V (mem_top + sup_main_memory > maz_-halfword)
then bad < 14;
if (maz_font_maz < min_halfword) V (max_font_max > maz_halfword) then bad < 15;
if font-max > font_base + max_font_max then bad < 16;
if (save_size > max_halfword) V (maz_strings > maz_halfword) then bad < 17,
if buf-size > maz_halfword then bad + 18;
if maz_quarterword — min_quarterword < 255 then bad <+ 19;

26 PART 8: PACKED DATA pdfTgX §130

130* The operation of adding or subtracting min_quarterword occurs quite frequently in TEX, so it is
convenient to abbreviate this operation by using the macros ¢i and go for input and output to and from
quarterword format.

The inner loop of TEX will run faster with respect to compilers that don’t optimize expressions like ‘xz + 0’
and ‘x — 0’, if these macros are simplified in the obvious way when min_quarterword = 0. So they have been
simplified here in the obvious way.

The WEB source for TEX defines hi(#) = # + min_halfword which can be simplified when min_halfword =
0. The Web2C implementation of TEX can use hi(#) = # together with min_halfword < 0 as long as
maz_halfword is sufficiently large.

define ¢i(#) =# {to put an eight_bits item into a quarterword }

define qo(#) =# {to take an eight_bits item from a quarterword }

define hi(#) =# {to put a sixteen-bit item into a halfword }

define ho(#) =# {to take a sixteen-bit item from a halfword }

131¥ The reader should study the following definitions closely:
define sc = int { scaled data is equivalent to integer }
(Types in the outer block 18) +=

quarterword = min_quarterword .. maz_quarterword; halfword = min_halfword .. max_halfword;
two_choices =1 ..2; {used when there are two variants in a record }

four_choices =1 ..4; {used when there are four variants in a record }
’#include,_,"texmfmem.h"; word_file = gzFile;

6133 pdfIExX PART 9: DYNAMIC MEMORY ALLOCATION 27

134¥ The mem array is divided into two regions that are allocated separately, but the dividing line between
these two regions is not fixed; they grow together until finding their “natural” size in a particular job.
Locations less than or equal to lo_mem_max are used for storing variable-length records consisting of two
or more words each. This region is maintained using an algorithm similar to the one described in exercise
2.5-19 of The Art of Computer Programming. However, no size field appears in the allocated nodes; the
program is responsible for knowing the relevant size when a node is freed. Locations greater than or equal
to hi_mem_min are used for storing one-word records; a conventional AVAIL stack is used for allocation in
this region.

Locations of mem between mem_bot and mem_top may be dumped as part of preloaded format files, by
the INITEX preprocessor. Production versions of TEX may extend the memory at both ends in order to
provide more space; locations between mem_min and mem_bot are always used for variable-size nodes, and
locations between mem_top and mem_max are always used for single-word nodes.

The key pointers that govern mem allocation have a prescribed order:

null < mem_min < mem_bot < lo_mem_maz < hi_mem_min < mem_top < mem_end < mem_mazx.

Empirical tests show that the present implementation of TEX tends to spend about 9% of its running time
allocating nodes, and about 6% deallocating them after their use.

{ Global variables 13) +=

yzmem: Tmemory-word; {the big dynamic storage area }

zmem: tmemory_word; {the big dynamic storage area }

loomem_maz: pointer; {the largest location of variable-size memory in use }
hi_mem_min: pointer; {the smallest location of one-word memory in use }

143* A call to get_node with argument s returns a pointer to a new node of size s, which must be 2 or
more. The link field of the first word of this new node is set to null. An overflow stop occurs if no suitable
space exists.

If get_node is called with s = 239

, it simply merges adjacent free areas and returns the value maz_halfword.

function get_node(s : integer): pointer; { variable-size node allocation }
label found, exit, restart;
var p: pointer; {the node currently under inspection }
q: pointer; {the node physically after node p }
r: integer; {the newly allocated node, or a candidate for this honor }
t: integer; {temporary register }
begin restart: p < rover; {start at some free node in the ring }
repeat (Try to allocate within node p and its physical successors, and goto found if allocation was
possible 145);
p < rlink(p); {move to the next node in the ring }
until p = rover; {repeat until the whole list has been traversed }
if s = 10000000000 then
begin get_node < max_halfword; return;
end;
if loomem_max + 2 < hi_mem_min then
if lo_mem_maz + 2 < mem_bot + mazx_halfword then
(Grow more variable-size memory and goto restart 144);
overflow ("main memory size", mem_max + 1 — mem_min); {sorry, nothing satisfactory is left }
found: link(r) < null; {this node is now nonempty }
stat var_used < var_used + s; {maintain usage statistics }
tats
(Initialize bigger nodes with SyncTEX information 1917*);
get_node < r;
exit: end;

28 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS pdfTEX 8151

153* An hlist_node stands for a box that was made from a horizontal list. Each hlist_node is seven words
long, and contains the following fields (in addition to the mandatory type and link, which we shall not
mention explicitly when discussing the other node types): The height and width and depth are scaled
integers denoting the dimensions of the box. There is also a shift_amount field, a scaled integer indicating
how much this box should be lowered (if it appears in a horizontal list), or how much it should be moved to
the right (if it appears in a vertical list). There is a list_ptr field, which points to the beginning of the list
from which this box was fabricated; if list_ptr is null, the box is empty. Finally, there are three fields that
represent the setting of the glue: glue_set(p) is a word of type glue_ratio that represents the proportionality
constant for glue setting; glue_sign(p) is stretching or shrinking or normal depending on whether or not the
glue should stretch or shrink or remain rigid; and glue_order(p) specifies the order of infinity to which glue
setting applies (normal, fil, fill, or filll). The subtype field is not used in TEX. In e-TEX the subtype field
records the box direction mode boz_Ir.

define synctex_field_size = 2 { Declare the SyncTgX field size to store the SyncTgX information: 2
integers for file tag and line }

define sync_tag(#) = mem[# — synctex_field_size].int { The tag subfield }

define sync_line(#) = mem[# — synctez_field_size + 1].int { The line subfield }

define hlist_-node =0 { type of hlist nodes }

define box_node_size = 7 + synctez_field_size { number of words to allocate for a box node }
define width_offset =1 {position of width field in a box node }

define depth_offset =2 {position of depth field in a box node }

define height_offset =3 { position of height field in a box node }

define width(#) = mem[# + width_offset].sc { width of the box, in sp }

define depth(#) = mem[# + depth_offset].sc { depth of the box, in sp }

define height (#) = mem[# + height_offset].sc { height of the box, in sp }

define shift_amount(#) = mem[# + 4].sc { repositioning distance, in sp }

define list_offset =5 { position of list_ptr field in a box node }

define list_ptr(#) = link (# + list_offset) { beginning of the list inside the box }

define glue_order (#) = subtype (# + list_offset) {applicable order of infinity }

define glue_sign (#) = type (# + list-offset) { stretching or shrinking }

define normal =0 {the most common case when several cases are named }

define stretching =1 { glue setting applies to the stretch components }

define shrinking =2 {glue setting applies to the shrink components }

define glue_offset =6 { position of glue_set in a box node }

define glue_set(#) = mem[# + glue_offset].gr {a word of type glue_ratio for glue setting }

156* A rule_node stands for a solid black rectangle; it has width, depth, and height fields just as in an
hlist_node. However, if any of these dimensions is —23°, the actual value will be determined by running the
rule up to the boundary of the innermost enclosing box. This is called a “running dimension.” The width is
never running in an hlist; the height and depth are never running in a vlist.

define rule_node =2 { type of rule nodes }

define rule_node_size = 4 + synctez_field_size { number of words to allocate for a rule node }

define null_flag = — 10000000000 { —23°, signifies a missing item }

define is_running (#) = (# = null_flag) {tests for a running dimension }

8159 pdfTEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 29

159¥ A mark_node has a mark_ptr field that points to the reference count of a token list that contains the
user’s \mark text. In addition there is a mark_class field that contains the mark class.

define mark_node =4 {type of a mark node }

define small_node_size =2 {number of words to allocate for most node types }

define medium_node_size = small_node_size + synctez_field_size { number of words to allocate for
synchronized node types like math, kern, glue and penalty nodes }

define mark_ptr(#) = link(#+ 1) {head of the token list for a mark }

define mark_class(#) = info(# +1) {the mark class }

162¥ The new_ligature function creates a ligature node having given contents of the font, character, and
lig_ptr fields. We also have a new_lig_item function, which returns a two-word node having a given character
field. Such nodes are used for temporary processing as ligatures are being created.

function new_ligature(f : internal_font_number; ¢ : quarterword; q : pointer): pointer;
var p: pointer; {the new node }
begin p + get_node (small_node_size); type(p) < ligature_node; font(lig-char(p)) < f;
character (lig-char (p)) + ¢; lig-ptr(p) < q; subtype(p) < 0; new_ligature < p;
end;

function new_lig_item (c : quarterword): pointer;
var p: pointer; {the new node }
begin p « get_node(small_-node_size); character(p) + ¢; lig-ptr(p) < null; new_lig_item < p;
end;

165* A math_node, which occurs only in horizontal lists, appears before and after mathematical formulas.
The subtype field is before before the formula and after after it. There is a width field, which represents the
amount of surrounding space inserted by \mathsurround.

In addition a math_node with subtype > after and width = 0 will be (ab)used to record a regular math_node
reinserted after being discarded at a line break or one of the text direction primitives (\beginL, \endL,
\beginR, and \endR).

define math-node =9 { type of a math node }
define before =0 { subtype for math node that introduces a formula }
define after =1 { subtype for math node that winds up a formula }

define M_code =2

define begin_M_code = M_code + before { subtype for \beginM node }
define end_M_code = M_code + after { subtype for \endM node }

define L_code =4

define begin_L_code = L_code + begin_-M_code { subtype for \beginL node }
define end_L_code = L_code + end_M_code { subtype for \endL node }
define R_code = L_code + L_code

define begin_R_code = R_code + begin_M_code { subtype for \beginR node }
define end_R_code = R_code + end_M_code { subtype for \endR node }

define end_LR(#) = odd (subtype(#))
define end_LR_type(#) = (L_code * (subtype(#) div L_code) + end_M_code)
define begin_LR_type (#) = (# — after + before)
function new_math(w : scaled; s : small_number): pointer;
var p: pointer; {the new node }
begin p « get_node(medium_node_size); type(p) < math_node; subtype(p) < s; width(p) + w;
new_math < p;
end;

30 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS pdfTEX 8170

170¥ And here’s a function that creates a glue node for a given parameter identified by its code number;
for example, new_param_glue (line_skip_code) returns a pointer to a glue node for the current \lineskip.

function new_param_glue(n : small_number): pointer;
var p: pointer; {the new node }
q: pointer; {the glue specification }
begin p < get_node(medium_node_size); type(p) < glue_node; subtype(p) < n+1; leader_ptr(p) < null;
q < (Current mem equivalent of glue parameter number n 242); glue_ptr(p) + g;
incr (glue_ref-count (q)); new_param_glue <+ pj
end;

171¥ Glue nodes that are more or less anonymous are created by new_glue, whose argument points to a
glue specification.

function new_glue(q : pointer): pointer;
var p: pointer; {the new node }
begin p + get-node (medium_node_size); type(p) < glue_node; subtype(p) < normal;
leader_ptr (p) < null; glue_ptr(p) < q; incr(glue_ref-count(q)); new_glue <+ p;
end;

174% The new_kern function creates a kern node having a given width.

function new_kern(w : scaled): pointer;
var p: pointer; {the new node }
begin p + get_node(medium_node_size); type(p) < kern_node; subtype(p) < normal; width(p) <+ w;
new_kern < p;
end;

176¥ Anyone who has been reading the last few sections of the program will be able to guess what comes
next.

function new_penalty (m : integer): pointer;
var p: pointer; {the new node }
begin p + get_node(medium_node_size); type(p) < penalty_node; subtype(p) < 0;
{'the subtype is not used }
penalty (p) < m; new_penalty < p;
end;

6180 pdfIExX PART 11: MEMORY LAYOUT 31

183* If TEX is extended improperly, the mem array might get screwed up. For example, some pointers
might be wrong, or some “dead” nodes might not have been freed when the last reference to them disappeared.
Procedures check_-mem and search_mem are available to help diagnose such problems. These procedures
make use of two arrays called free and was_free that are present only if TEX’s debugging routines have been
included. (You may want to decrease the size of mem while you are debugging.)

define free = free_arr

(Global variables 13) +=
{ The debug memory arrays have not been mallocated yet. }
debug free: packed array [0..9] of boolean; {free cells}
was_free: packed array [0..9] of boolean; {previously free cells }
was-mem_end , was_lo_mazx, was_hi_min: pointer; {previous mem_end, loomem_maz, and hi_mem_min }
panicking: boolean; {do we want to check memory constantly? }
gubed

32 PART 12: DISPLAYING BOXES pdfTEX §191

192¥ Boxes, rules, inserts, whatsits, marks, and things in general that are sort of “complicated” are

indicated only by printing ‘[1’.
procedure print_font_identifier (f : internal_font_number);
begin if pdf -font_blink[f] = null_font then print_esc(font_id_text(f))
else print_esc(font_id_text (pdf_font_blink[f]));
if pdf-tracing_fonts > 0 then
begin print(",("); print(font_name[f]);
if font_size[f] # font_dsize[f] then
begin print("Q"); print_scaled (font_size[f]); print("pt");
end;
print(")");
end
else if pdf font_expand_ratio[f] # 0 then
begin print(",(");
if pdf-font_expand_ratio[f] > 0 then print("+");
print_int (pdf_font_expand_ratio|[f]); print(")");
end;

end;
procedure short_display(p : integer); { prints highlights of list p }

var n: integer; {for replacement counts }
begin while p > mem_min do
begin if is_char_node(p) then
begin if p < mem_end then
begin if font(p) # font_in_short_display then
begin if (font(p) > font_maz) then print_char("*")
else print_font_identifier (font(p));
print_char(","); font_in_short_display <+ font(p);
end;
print_ASCII (qo(character (p)));
end;
end
else (Print a short indication of the contents of node p 193);
p « link(p);
end;
end;

6194 pdfTExX PART 12: DISPLAYING BOXES 33

194¥ The show_node_list routine requires some auxiliary subroutines: one to print a font-and-character
combination, one to print a token list without its reference count, and one to print a rule dimension.

procedure print_font_and_char(p : integer); { prints char_node data }
begin if p > mem_end then print_esc("CLOBBERED.")
else begin if (font(p) > font_maz) then print_char("*")
else print_font_identifier (font(p));
print_char("y"); print_ASCII (go(character(p)));
end;
end;

procedure print_mark(p : integer); { prints token list data in braces }
begin print_char("{");
if (p < hiimem_min) V (p > mem_end) then print_esc("CLOBBERED.")
else show_token_list (link (p), null, maz_print_line — 10);
print_char("}");
end;

procedure print_rule_dimen(d : scaled); { prints dimension in rule node }
begin if is_running(d) then print_char("*")
else print_scaled (d);
end;

204¥* The code will have to change in this place if glue_ratio is a structured type instead of an ordinary real.
Note that this routine should avoid arithmetic errors even if the glue_set field holds an arbitrary random
value. The following code assumes that a properly formed nonzero real number has absolute value 22° or
more when it is regarded as an integer; this precaution was adequate to prevent floating point underflow on
the author’s computer.

(Display the value of glue_set (p) 204*) =
g < float(glue_set(p));
if (g # float_constant(0)) A (glue_sign(p) # normal) then
begin print(", glue sety");
if glue_sign(p) = shrinking then print("-."); { The Unix pc folks removed this restriction with a
remark that invalid bit patterns were vanishingly improbable, so we follow their example without
really understanding it. if abs(mem/|[p + glue_offset].int) < 4000000 then print(°7.7") else }
if fabs(g) > float_constant (20000) then
begin if g > float_constant(0) then print_char(">")
else print("<,-");
print_glue (20000 x unity, glue_order (p), 0);
end
else print_glue (round (unity * g), glue_order(p),0);
end

This code is used in section 202.

34

220%*

PART 13: DESTROYING BOXES

pdfTEX

§217

Now we are ready to delete any node list, recursively. In practice, the nodes deleted are usually
charnodes (about 2/3 of the time), and they are glue nodes in about half of the remaining cases.

procedure flush-node_list(p : pointer); {erase list of nodes starting at p }
label done; {go here when node p has been freed }
var ¢: pointer; {successor to node p }
begin while p # null do
begin g « link(p);
if is_char_node(p) then free_avail (p)
else begin case type(p) of

hlist_node, vlist_node, unset_node: begin flush_node_list (list_ptr(p)); free_node(p, boz_node_size);

goto done;
end;
rule_node: begin free_node(p, rule_node_size); goto done;
end;
ins_node: begin flush_node_list (ins_ptr(p)); delete_glue_ref (split_top_ptr(p));
free_node (p, ins_node_size); goto done;
end;
whatsit_node: (Wipe out the whatsit node p and goto done 1606);
glue_node: begin fast_delete_glue_ref (glue_ptr(p));
if leader_ptr(p) # null then flush_node_list (leader_ptr(p));
free_node (p, medium_node_size); goto done;
end;
kern_node, math_node, penalty_node: begin free_node(p, medium_node_size); goto done;
end;
margin_kern_node: begin free_avail(margin_char(p)); free_node(p, margin_kern_node_size);
goto done;
end;
ligature_node: flush_node_list (lig_ptr(p));
mark_node: delete_token_ref (mark_ptr(p));
disc_node: begin flush-node_list(pre_break (p)); flush-node_list(post_break (p));
end;
adjust_node: flush_node_list (adjust_ptr(p));
(Cases of flush_node_list that arise in mlists only 874)
othercases confusion("flushing")
endcases;

free_node (p, small_node_size);

done: end;
p<q;
end;

end;

6221 pdfTExX PART 14: COPYING BOXES 35

224% (Case statement to copy different types and set words to the number of initial words not yet
copied 224*) =
case type(p) of
hlist_node , vlist_node, unset_node: begin r + get_node(box_node_size);
(Copy the box SyncTgX information 1936*);
mem/|r + 6] < mem/[p + 6]; mem[r + 5] < mem[p+5]; {copy the last two words }
list_ptr (r) < copy-node_list (list_ptr(p)); {this affects mem[r + 5] }
words < b;
end;
rule_node: begin r < get_node (rule_node_size); words < rule_node_size — synctex_field_size;
{ SyncTgX: do not let TEX copy the SyncTgX information }
(Copy the rule SyncTgX information 1937*);
end;
ins_node: begin r < get_node(ins_node_size); mem|r + 4] < mem[p + 4]; add_glue_ref (split_top_ptr (p));
ins_ptr(r) < copy_node_list (ins_ptr(p)); { this affects mem[r + 4] }
words + ins_node_size — 1;
end;
whatsit_node: (Make a partial copy of the whatsit node p and make r point to it; set words to the
number of initial words not yet copied 1605);
glue_node: begin r < get_node(medium_node_size); add_glue_ref (glue_ptr(p));
(Copy the medium sized node SyncTEX information 1938*);
glue_ptr(r) < glue_ptr(p); leader_ptr(r) < copy-node_list (leader_ptr(p));
end;
kern_node, math_node, penalty_node: begin r « get_node (medium_node_size);
words <+ medium_node_size;
end;
margin_kern_node: begin r < get_node(margin_kern_node_size); fast_get_avail (margin_char(r));
font(margin_char (r)) < font(margin_char(p));
character (margin_char (r)) < character (margin_char(p)); words < small_node_size;
end;
ligature_node: begin r < get_node(small_node_size); mem|lig_char(r)] - mem/|lig_char(p)];
{ copy font and character }
lig_ptr (r) < copy-node_list (lig_ptr(p));
end;
disc_node: begin r < get_node(small_node_size); pre_break (r) < copy_node_list (pre_break (p));
post_break (r) < copy_node_list (post_break (p));
end;
mark_node: begin r < get_node(small_node_size); add_token_ref (mark_ptr(p));
words < small_node_size;
end;
adjust_node: begin r + get_node(small_node_size); adjust_ptr(r) < copy_node_list (adjust_ptr(p));
end; {words =1= small_node_size — 1}
othercases confusion("copying")
endcases

This code is used in section 223.

36 PART 15 THE COMMAND CODES pdfTEX §225

227¥ The next codes are special; they all relate to mode-independent assignment of values to TEX’s internal
registers or tables. Codes that are max_internal or less represent internal quantities that might be expanded
by ‘\the’.
define toks_register =71 {token list register (\toks) }
define assign_toks = 72 {special token list (\output, \everypar, etc.) }
define assign_int = 73 { user-defined integer (\tolerance, \day, etc.)}
define assign_-dimen =74 {user-defined length (\hsize, etc.)}
define assign_glue =75 { user-defined glue (\baselineskip, etc.)}
define assign-mu_glue =76 { user-defined muglue (\thinmuskip, etc.) }
define assign_font_dimen = 77 {user-defined font dimension (\fontdimen) }
define assign_font_int = 78 { user-defined font integer (\hyphenchar, \skewchar) }
define set_aux =79 {specify state info (\spacefactor, \prevdepth) }
define set_prev_graf =80 {specify state info (\prevgraf)}
define set_page_dimen =81 {specify state info (\pagegoal, etc.) }
define set_page_int = 82 {specify state info (\deadcycles, \insertpenalties)}
{(or \interactionmode) }
define set_bor_dimen = 83 {change dimension of box (\wd, \ht, \dp) }
define set_shape = 84 {specify fancy paragraph shape (\parshape)
{(or \interlinepenalties, etc.) }
define def-code =85 {define a character code (\catcode, etc.) }
define def_family = 86 { declare math fonts (\textfont, etc.) }
define set_font =87 {set current font (font identifiers) }
define def_font =88 {define a font file (\font) }
define register =89 {internal register (\count, \dimen, etc.) }
define maz_internal =89 {the largest code that can follow \the }
define advance =90 {advance a register or parameter (\advance) }
define multiply =91 { multiply a register or parameter (\multiply)}
define divide =92 {divide a register or parameter (\divide) }
define prefir =93 { qualify a definition (\global, \long, \outer)}
{(or \protected) }
define let =94 {assign a command code (\let, \futurelet)}
define shorthand_def =95 {code definition (\chardef, \countdef, etc.) }
{or \charsubdef }
define read_to_cs =96 {read into a control sequence (\read) }
{(or \readline)}
define def =97 {macro definition (\def, \gdef, \xdef, \edef) }
define set_box =98 {set a box (\setbox)}
define hyph_data =99 {hyphenation data (\hyphenation, \patterns)}
define set_interaction = 100 { define level of interaction (\batchmode, etc.) }
define letterspace_font = 101 {letterspace a font (\letterspacefont) }
define pdf_copy_font =102 {create a new font instance (\pdfcopyfont) }
define partoken_name = 103 {set par_token name }
define maz_command = 103 {the largest command code seen at big_switch }

)
}

6229 pdfTEX PART 16: THE SEMANTIC NEST 37

229*% The semantic nest. TEX is typically in the midst of building many lists at once. For example,
when a math formula is being processed, TEX is in math mode and working on an mlist; this formula has
temporarily interrupted TEX from being in horizontal mode and building the hlist of a paragraph; and this
paragraph has temporarily interrupted TEX from being in vertical mode and building the vlist for the next
page of a document. Similarly, when a \vbox occurs inside of an \hbox, TEX is temporarily interrupted from
working in restricted horizontal mode, and it enters internal vertical mode. The “semantic nest” is a stack
that keeps track of what lists and modes are currently suspended.
At each level of processing we are in one of six modes:

vmode stands for vertical mode (the page builder);

hmode stands for horizontal mode (the paragraph builder);
mmode stands for displayed formula mode;

—wvmode stands for internal vertical mode (e.g., in a \vbox);
—hmode stands for restricted horizontal mode (e.g., in an \hbox);
—mmode stands for math formula mode (not displayed).

The mode is temporarily set to zero while processing \write texts.

Numeric values are assigned to vmode, hmode, and mmode so that TEX’s “big semantic switch” can select
the appropriate thing to do by computing the value abs(mode) + cur_cmd, where mode is the current mode
and cur_cmd is the current command code.

define vmode =1 {vertical mode }
define hmode = vmode + maz_command +1 { horizontal mode }
define mmode = hmode + maz_command +1 {math mode }

procedure print_mode(m : integer); {prints the mode represented by m }
begin if m > 0 then
case m div (maz_command + 1) of
0: print("vertical mode");
1: print("horizontal mode");
2: print("display math mode");
end
else if m =0 then print("no_mode")
else case (—m) div (max_command + 1) of
0: print("internal vertical mode");
1: print("restricted horizontal mode");
2: print("math mode");
end;
end;
procedure print_in_-mode(m : integer); { prints the mode represented by m }
begin if m > 0 then
case m div (maz_command + 1) of
0: print(" uin,vertical mode");
1: print("“Lin horizontal mode");
2: print(" "Lin display_ math mode");
end
else if m =0 then print(" Lin no mode")
else case (—m) div (maz_command + 1) of
0: print(" _in internal vertical mode");
1: print("“Lin restricted horizontal mode");
2: print (" "uin math mode");
end;
end;

38 PART 16: THE SEMANTIC NEST pdfTEX

231* define mode = cur_list.mode_field { current mode }
define head = cur_list.head_field {header node of current list }
define tail = cur_list.tail_field {final node on current list }
define eTeX aur = cur_list.eTeX_aux_field {auxiliary data for e-TEX }
define LR_save = eTeX_aur {LR stack when a paragraph is interrupted }
define LR_box = eTeX_aux {prototype box for display }
define delim_ptr = eTeX_auz {most recent left or right noad of a math left group }
define prev_graf = cur_list.pg_field {number of paragraph lines accumulated }
define auz = cur_list.auz_field {auxiliary data about the current list }
define prev_depth = auxz.sc {the name of aux in vertical mode }
define space_factor = auz.hh.lh {part of aux in horizontal mode }
define clang = auz.hh.rh {the other part of auz in horizontal mode }
define incompleat_noad = auz.int {the name of auzr in math mode }
define mode_line = cur_list.ml_field {source file line number at beginning of list }

(Global variables 13) +=

nest: Tlist_state_record;

nest_ptr: 0 .. nest_size; {first unused location of nest }

maz_nest_stack: 0 .. nest_size; {maximum of nest_ptr when pushing }

cur_list: list_state_record; {the “top” semantic state }

shown_mode: —mmode .. mmode; {most recent mode shown by \tracingcommands }
save_tail: pointer; {save tail so we can examine whether we have an auto kern before a glue }
prev_tail: pointer; {value of tail before the last call to tail_append }

§231

233* We will see later that the vertical list at the bottom semantic level is split into two parts; the “current
page” runs from page_head to page_tail, and the “contribution list” runs from contrib_head to tail of semantic
level zero. The idea is that contributions are first formed in vertical mode, then “contributed” to the current
page (during which time the page-breaking decisions are made). For now, we don’t need to know any more

details about the page-building process.

(Set initial values of key variables 21) +=
nest_ptr < 0; maz_nest_stack < 0; mode < vmode; head < contrib_head; tail <— contrib_head;
eTeX_aux < null; save_tail <— null; prev_depth < ignore_depth; mode_line < 0; prev_graf < 0;
shown_mode < 0;
{ The following piece of code is a copy of module 991: }
page_contents < empty; page_tail < page_head; {link(page_head) < null;}

last_glue < maz_halfword; last_penalty < 0; last_kern < 0; last_node_type < —1; page_depth < 0;

page_maz_depth < 0;

6237 pdfIExX PART 16: THE SEMANTIC NEST 39

237* (Show the auxiliary field, a 237*) =
case abs(m) div (maz_command + 1) of
0: begin print_nl("prevdepth,");
if a.sc < pdf-ignored_dimen then print("ignored")
else print_scaled (a.sc);
if nest[p|.pg-field # 0 then
begin print(",_prevgraf "); print_int(nest[p].pg_field);
if nest[p].pg_field # 1 then print(" lines")
else print(" line");
end;
end;
1: begin print_nl("spacefactor,"); print_int(a.hh.lh);
if m > 0 then if a.hh.rh > 0 then
begin print (", current language.,"); print_int(a.hh.rh); end;
end;
2: if a.int # null then
begin print("this will begin denominator of:"); show_boz (a.int); end;
end {there are no other cases }

This code is used in section 236.

40 PART 17: THE TABLE OF EQUIVALENTS pdfTEX §238

238*% The table of equivalents. Now that we have studied the data structures for TEX’s semantic
routines, we ought to consider the data structures used by its syntactic routines. In other words, our next
concern will be the tables that TEX looks at when it is scanning what the user has written.

The biggest and most important such table is called eqthb. It holds the current “equivalents” of things;
i.e., it explains what things mean or what their current values are, for all quantities that are subject to the
nesting structure provided by TEX’s grouping mechanism. There are six parts to eqtb:

1) egtb[active_base .. (hash_base — 1)] holds the current equivalents of single-character control sequences.

2) eqtb[hash_-base .. (glue_base — 1)] holds the current equivalents of multiletter control sequences.

3) eqtb[glue_base .. (local_-base — 1)] holds the current equivalents of glue parameters like the current
baselineskip.

4) eqtb[local_base .. (int_base — 1)] holds the current equivalents of local halfword quantities like the current

box registers, the current “catcodes,” the current font, and a pointer to the current paragraph shape.
Additionally region 4 contains the table with MLTEX’s character substitution definitions.

5) eqtb[int_base .. (dimen_base — 1)] holds the current equivalents of fullword integer parameters like the
current hyphenation penalty.

6) eqtb[dimen_base .. eqtb_size] holds the current equivalents of fullword dimension parameters like the
current hsize or amount of hanging indentation.

Note that, for example, the current amount of baselineskip glue is determined by the setting of a particular

location in region 3 of eqth, while the current meaning of the control sequence ‘\baselineskip’ (which might

have been changed by \def or \let) appears in region 2.

6240 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 41

240*% Many locations in eqtb have symbolic names. The purpose of the next paragraphs is to define these
names, and to set up the initial values of the equivalents.

In the first region we have 256 equivalents for “active characters” that act as control sequences, followed
by 256 equivalents for single-character control sequences.

Then comes region 2, which corresponds to the hash table that we will define later. The maximum address
in this region is used for a dummy control sequence that is perpetually undefined. There also are several
locations for control sequences that are perpetually defined (since they are used in error recovery).

define active_base =1 {beginning of region 1, for active character equivalents }

define single_base = active_base + 256 { equivalents of one-character control sequences }
define null_cs = single_base + 256 { equivalent of \csname\endcsname }

define hash_base = null_cs +1 {beginning of region 2, for the hash table }

define frozen_control_sequence = hash_base + hash_size { for error recovery }

define frozen_protection = frozen_control_sequence {inaccessible but definable }

define frozen_cr = frozen_control_sequence +1 { permanent ‘\cr’}

define frozen_end_group = frozen_control_sequence + 2 { permanent ‘\endgroup’}

define frozen_right = frozen_control_sequence +3 { permanent ‘\right’}

define frozen_fi = frozen_control_sequence + 4 { permanent ‘\fi’ }

define frozen_end_template = frozen_control_sequence +5 { permanent ‘\endtemplate’}
define frozen_endv = frozen_control_sequence + 6 { second permanent ‘\endtemplate’}
define frozen_relax = frozen_control_sequence +7 { permanent ‘\relax’}

define end_write = frozen_control_sequence + 8 { permanent ‘\endwrite’}

define frozen_dont_expand = frozen_control_sequence +9 { permanent ‘\notexpanded:’}
define prim_size = 2100 {maximum number of primitives }

define frozen_special = frozen_control_sequence + 10 { permanent ‘\special’}

define frozen_null_font = frozen_control_sequence + 12 + prim_size ~ { permanent ‘\nullfont’}
define frozen_primitive = frozen_control_sequence + 11 { permanent ‘\pdfprimitive’}
define prim_eqtb_base = frozen_primitive + 1

define font_id_base = frozen_null_font — font_base {begins table of 257 permanent font identifiers }
define undefined_control_sequence = frozen_null_font + maz_font_-maz + 1 {dummy location }
define glue_base = undefined_control_sequence +1 { beginning of region 3 }

(Initialize table entries (done by INITEX only) 182) +=
eq-type (undefined_control_sequence) < undefined_cs; equiv(undefined_control_sequence) < null;
eq_level (undefined_control_sequence) < level_zero;
for k < active_base to eqtb_top do eqtb[k] < eqtb|undefined_control_sequence];

42 PART 17: THE TABLE OF EQUIVALENTS pdfTEX

248* Region 4 of eqth contains the local quantities defined here. The bulk of this region is taken up by
five tables that are indexed by eight-bit characters; these tables are important to both the syntactic and
semantic portions of TEX. There are also a bunch of special things like font and token parameters, as well

as the tables of \toks and \box registers.

define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define
define

define
define
define

define

define
define
define
define
define
define

define
define
define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define

par_shape_loc = local_base { specifies paragraph shape }
output_routine_loc = local_base + 1 { points to token list for \output }
every_par_loc = local_base + 2 { points to token list for \everypar }
every_math_loc = local_base + 3 { points to token list for \everymath }
every_display_loc = local_base +4 { points to token list for \everydisplay }
every_hbox_loc = local_base +5 { points to token list for \everyhbox }
every_vboz_loc = local_base + 6 { points to token list for \everyvbox }
every_job_loc = local_base +7 { points to token list for \everyjob }
every_cr_loc = local_base +8 { points to token list for \everycr }
err_help_loc = local_base +9 { points to token list for \errhelp }
tex_toks = local_base + 10 {end of TEX’s token list parameters }

pdftex_first_loc = tex_toks {base for pdfTEX’s token list parameters }

pdf-pages_attr_loc = pdftex_first_-loc + 0 {points to token list for \pdfpagesattr }
pdf-page_attr_loc = pdftex_first_-loc +1 { points to token list for \pdfpageattr }
pdf-page_resources_loc = pdftex_first_loc +2 { points to token list for \pdfpageresources }
pdf-pk_mode_loc = pdftex_first_loc +3 { points to token list for \pdfpkmode }

pdf_toks = pdftex_first_loc +4 {end of pdfTEX’s token list parameters }

etex_toks_base = pdf-toks {base for e-TEX’s token list parameters }
every-eof-loc = etex_toks_base { points to token list for \everyeof }
etex_toks = etex_toks_base +1 {end of e-TEX’s token list parameters }

toks_base = etex_toks {table of 256 token list registers }

etex_pen_base = toks_base + 256 { start of table of e-TEX’s penalties }
inter_line_penalties_loc = etex_pen_base {additional penalties between lines }
club_penalties_loc = etex_pen_base +1 { penalties for creating club lines }
widow_penalties_loc = etex_pen_base +2 { penalties for creating widow lines }
display-widow_penalties_loc = etex_pen_base + 3 { ditto, just before a display }
etex_pens = etex_pen_base +4 {end of table of e-TEX’s penalties }

box_base = etex_pens {table of 256 box registers }

cur_font_loc = box_base + 256 {internal font number outside math mode }
zord_code_base = cur_font_loc + 1

xchr_code_base = vord_code_base + 1

rprn_code_base = xchr_code_base + 1

math_font_base = xprn_code_base + 1

cat_code_base = math_font_base + 48 {table of 256 command codes (the “catcodes”) }
le_code_base = cat_code_base + 256 { table of 256 lowercase mappings }
uc_code_base = lc_code_base + 256 { table of 256 uppercase mappings }
sf-code_base = uc_code_base + 256 { table of 256 spacefactor mappings }
math_code_base = sf-code_base + 256 { table of 256 math mode mappings }
char_sub_code_base = math_code_base + 256 { table of character substitutions }
int_base = char_sub_code_base + 256 { beginning of region 5 }

par_shape_ptr = equiv (par_shape_loc)
output_routine = equiv (output_routine_loc)
every-par = equiv (every_par-loc)
every-math = equiv(every-math_loc)
every_display = equiv (every_display_loc)
every_hbox = equiv (every_hbox_loc)
every_vbox = equiv (every_vbox_loc)

6248 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 43

define every_job = equiv(every_job_loc)
define every_cr = equiv(every_cr_loc)
define err_help = equiv (err_help_loc)
define pdf_pages_attr = equiv (pdf_pages_attr_loc)
define pdf-page_attr = equiv (pdf-page_attr_loc)
define pdf_page_resources = equiv (pdf-page_resources_loc)
define pdf-pk_mode = equiv (pdf-pk-mode_loc)
define toks(#) = equiv(toks_base + #)
define bozx (#) = equiv (box_base + #)
define cur_font = equiv (cur_font_loc)
define fam_fnt(#) = equiv(math_font_base + #)
define cat_code (#) = equiv(cat_code_base + #)
define lc_code(#) = equiv (lc_code_base + #)
define wuc_code (#) = equiv(uc_code_base + #)
define sf code (#) = equiv(sf_code_base + #)
define math_code (#) = equiv (math_code_base + #)
{ Note: math_code(c) is the true math code plus min_halfword }
define char_sub_code(#) = equiv (char_sub_code_base + #)
{Note: char_sub_code(c) is the true substitution info plus min_halfword }

(Put each of TEX’s primitives into the hash table 244) +=
primitive ("output", assign_toks, output_routine_loc); primitive("everypar", assign_toks, every_par_loc);

primitive ("everymath", assign_toks, every_math_loc);

primitive ("everydisplay", assign_toks, every_display_loc);

primitive ("everyhbox", assign_toks, every_hboxz_loc); primitive ("everyvbox", assign_toks, every_vbox_loc);

primitive ("everyjob", assign_toks, every_job_loc); primitive ("everycr", assign_toks, every_cr_loc);

primitive ("errhelp", assign_toks, err_help_loc);
(
(
(
(

primitive ("pdfpagesattr", assign_toks, pdf_pages_atir_loc);
primitive ("pdfpageattr", assign_toks, pdf_page_attr_loc);
primitive ("pdfpageresources", assign_toks, pdf-page_resources_loc);

primitive ("pdfpkmode", assign_toks, pdf-pk-mode_loc);

44 PART 17: THE TABLE OF EQUIVALENTS

254% Region 5 of eqtb contains the integer parameters and registers defined here, as well as the del_code
math_code tables that precede it, since delimiter codes
are fullword integers while the other kinds of codes occupy at most a halfword. This is what makes region 5
different from region 4. We will store the eq_level information in an auxiliary array of quarterwords that will

table. The latter table differs from the cat_code ..

be defined later.

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

pretolerance_code =0 { badness tolerance before hyphenation }
tolerance_code =1 { badness tolerance after hyphenation }
line_penalty-code =2 {added to the badness of every line }
hyphen_penalty_code = 3 { penalty for break after discretionary hyphen }
ex_hyphen_penalty_code = 4 { penalty for break after explicit hyphen }
club_penalty_code =5 { penalty for creating a club line }
widow_penalty_code = 6 { penalty for creating a widow line }
display_widow_penalty_code =7 { ditto, just before a display }
broken_penalty_code =8 { penalty for breaking a page at a broken line }
bin_op_penalty_code =9 { penalty for breaking after a binary operation }
rel_penalty_code = 10 { penalty for breaking after a relation }

pre_display_penalty_code = 11 { penalty for breaking just before a displayed formula }
post_display_penalty_code = 12 { penalty for breaking just after a displayed formula }

inter_line_penalty_code = 13 { additional penalty between lines }
double_hyphen_demerits_code = 14 { demerits for double hyphen break }
final_hyphen_demerits_code = 15 { demerits for final hyphen break }
adj_demerits_code = 16 { demerits for adjacent incompatible lines }
mag-code = 17 { magnification ratio }

delimiter_factor_code = 18 {ratio for variable-size delimiters }
looseness_code =19 { change in number of lines for a paragraph }
time_code = 20 { current time of day }

day-code = 21 { current day of the month }

month_code = 22 { current month of the year }

year_code = 23 { current year of our Lord }

show_boz_breadth_code = 24 {nodes per level in show_box }
show_boz_depth_code = 25 {maximum level in show_boz }

hbadness_code = 26 { hboxes exceeding this badness will be shown by hpack }
vbadness_code = 27 { vboxes exceeding this badness will be shown by wpack }
pausing-code = 28 { pause after each line is read from a file }
tracing-online_code = 29 { show diagnostic output on terminal }
tracing_macros_code = 30 { show macros as they are being expanded }
tracing_stats_code = 31 { show memory usage if TEX knows it }
tracing_paragraphs_code = 32 { show line-break calculations }
tracing_pages_code = 33 {show page-break calculations }
tracing-output_code = 34 { show boxes when they are shipped out }
tracing_lost_chars_code = 35 {show characters that aren’t in the font }
tracing_commands_code = 36 {show command codes at big_switch }
tracing_restores_code = 37 {show equivalents when they are restored }
uc_hyph_code = 38 { hyphenate words beginning with a capital letter }
output_penalty_code = 39 { penalty found at current page break }
maz-dead_cycles_code = 40 { bound on consecutive dead cycles of output }
hang_after_code = 41 { hanging indentation changes after this many lines }
floating_penalty_code = 42 { penalty for insertions held over after a split }
global_defs_code = 43 { override \global specifications }

cur_fam_code = 44 { current family }

escape_char_code = 45 { escape character for token output }
default_hyphen_char_code = 46 { value of \hyphenchar when a font is loaded }

8254 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 45

define
define
define
define
define
define
define
define
define

define
define
define
define
define

define
define
define
define
define
define
define

define
define
define
define

define
define
define
define
define

define

define

define

define

define
define

define
define
define
define
define
define

define

default_skew_char_code = 47 { value of \skewchar when a font is loaded }
end_line_char_code = 48 { character placed at the right end of the buffer }
new_line_char_code = 49 { character that prints as print_In }
language_code = 50 { current hyphenation table }

left_hyphen_min_code = 51 { minimum left hyphenation fragment size }
right_hyphen_min_code = 52 { minimum right hyphenation fragment size }
holding_inserts_.code = 53 { do not remove insertion nodes from \box255 }
error_context_lines_.code = 54 { maximum intermediate line pairs shown }
tez_int_pars = 55 {total number of TEX’s integer parameters }

web2c_int_base = tex_int_pars { base for web2c’s integer parameters }
char_sub_def-min_code = web2c_int_base {smallest value in the charsubdef list }
char_sub_def-maz_code = web2c_int_base +1 {largest value in the charsubdef list }
tracing-char_sub_def-code = web2c_int_base + 2 { traces changes to a charsubdef def }
tracing_stack_levels_code = web2c_int_base + 3

{ tracing input_stack level if tracingmacros positive }
partoken_context_code = web2c_int_base +4 { controlling where partoken inserted }
show_stream_code = web2c_int_base +5 {stream to output xray commands to }
mubyte_in_code = web2c_int_base + 6 {if positive then reading mubytes is active }
mubyte_out_code = web2c_int_base + 7 {if positive then printing mubytes is active }
mubyte_log_code = web2c_int_base + 8 {if positive then print mubytes to log and terminal }
spec_out_code = web2c_int_base +9 {if positive then print specials by mubytes }
web2c_int_pars = web2c¢_int_base + 10 { total number of web2c’s integer parameters }

pdftex_first_integer_code = web2c_int_pars { base for pdf TEX’s integer parameters }
pdf-output_code = pdftex_first_integer_code +0 {switch on PDF output if positive }
pdf_compress_level_code = pdftex_first_integer_code +1 { compress level of streams }
pdf-decimal_digits_code = pdftex_first_integer_code + 2

{ digits after the decimal point of numbers }
pdf-move_chars_code = pdftex_first_integer_code +3 { move chars 0..31 to higher area if possible }
pdf-image_resolution_code = pdftex_first_integer_code + 4 { default image resolution }
pdf_pk_resolution_code = pdftex_first_integer_code + 5 { default resolution of PK font }
pdf_unique_resname_code = pdftex_first_integer_code + 6 { generate unique names for resouces }
pdf-option_always_use_pdfpagebox_code = pdftex_first_integer_code + 7

{if the PDF inclusion should always use a specific PDF page box }
pdf_option_pdf-inclusion_errorlevel_code = pdftex_first_integer_code + 8

{if the PDF inclusion should treat pdfs newer than pdf-minor_version as an error }
pdf-magjor_version_code = pdftex_first_integer_code + 9

{integer part of the PDF version produced }
pdf-minor_version_code = pdftex_first_integer_code + 10

{ fractional part of the PDF version produced }
pdf_force_pagebox_code = pdftex_first_integer_code + 11

{if the PDF inclusion should always use a specific PDF page box }
pdf_pageboz_code = pdftex_first_integer_code + 12 { default pagebox to use for PDF inclusion }
pdf-inclusion_errorlevel_code = pdftex_first_integer_code + 13

{if the PDF inclusion should treat pdfs newer than pdf-minor_version as an error }
pdf_gamma_code = pdftex_first_integer_code + 14
pdf_image_gamma_code = pdftex_first_integer_code + 15
pdf_image_hicolor_code = pdftex_first_integer_code + 16
pdf-image_apply_gamma_code = pdftex_first_integer_code + 17
pdf-adjust_spacing_code = pdftex_first_integer_code + 18 {level of spacing adjusting }
pdf_protrude_chars_code = pdftex_first_integer_code + 19

{ protrude chars at left/right edge of paragraphs }
pdf_tracing_fonts_code = pdftex_first_integer_code + 20 {level of font detail in log }

46 PART 17: THE TABLE OF EQUIVALENTS pdfTEX §254

define
define
define
define
define
define
define
define

define

define

define

define

define

define

define

define

define
define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define

define
define
define
define
define
define
define
define
define
define
define

pdf-objcompresslevel_code = pdftex_first_integer_code + 21 { activate object streams }
pdf-adjust_interword_glue_code = pdftex_first_integer_code + 22 { adjust interword glue? }
pdf_prepend_kern_code = pdftex_first_integer_code +23 { prepend kern before certain characters? }
pdf_append_kern_code = pdftex_first_integer_code + 24 { append kern before certain characters? }
pdf-gen_tounicode_code = pdftex_first_integer_code + 25 { generate ToUnicode for fonts? }
pdf-draftmode_code = pdftex_first_integer_code + 26 { switch on draftmode if positive }
pdf-inclusion_copy_font_code = pdftex_first_integer_code + 27 { generate ToUnicode for fonts? }
pdf_suppress_warning_dup_dest_code = pdftex_first_integer_code + 28

{ suppress warning about duplicated destinations }
pdf_suppress_warning_dup_map_code = pdftex_first_integer_code + 29

{ suppress warning about duplicated map lines }
pdf_suppress_warning_page_group_code = pdftex_first_integer_code + 30

{ suppress warning about multiple pdfs with page group }
pdf_info_omit_date_code = pdftez_first_integer_code + 31

{ omit generating CreationDate and ModDate }
pdf_suppress_ptex_info_code = pdftex_first_integer_code + 32

{ suppress /PTEX.* entries in PDF dictionaries }
pdf-omit_charset_code = pdftex_first_integer_code + 33

{ suppress /PTEX.* entries in PDF dictionaries }
pdf_omit_info_dict_code = pdftex_first_integer_code + 34

{ suppress /PTEX.* entries in PDF dictionaries }
pdf-omit_procset_code = pdftex_first_integer_code + 35

{ suppress /PTEX.* entries in PDF dictionaries }
pdf-int_pars = pdftex_first_integer_code + 36 { total number of pdfTEX’s integer parameters }

etex_int_base = pdf-int_pars {base for e-TEX’s integer parameters }
tracing_assigns_code = etex_int_base {show assignments }

tracing_groups_code = etex_int_base + 1 {show save/restore groups }

tracing_ifs_code = etex_int_-base +2 { show conditionals }

tracing_scan_tokens_code = etex_int_base +3 {show pseudo file open and close }
tracing-nesting_code = etex_int_base +4 {show incomplete groups and ifs within files }
pre_display_direction_code = etex_int_base +5 {text direction preceding a display }
last_line_fit_code = etex_int_base + 6 {adjustment for last line of paragraph }
saving-vdiscards_code = etex_int_base +7 {save items discarded from vlists }
saving-hyph_codes_code = etex_int_base + 8 { save hyphenation codes for languages }
eTeX _state_code = etex_int_base +9 {e-TEX state variables }

etex_int_pars = eTeX _state_code + eTeX_states {total number of e-TEX’s integer parameters }

synctex_code = etex_int_pars

int_pars = synctez_code + 1 { total number of integer parameters }
count_base = int_base + int_pars {256 user \count registers }
del_code_base = count_base + 256 {256 delimiter code mappings }
dimen_base = del_code_base + 256 { beginning of region 6 }

del_code (#) = eqtb|del_code_base + #].int

count (#) = eqth|[count_base + #].int

int_par (#) = eqtb[int_base + #].int { an integer parameter }
pretolerance = int_par (pretolerance_code)

tolerance = int_par (tolerance_code)

line_penalty = int_par (line_penalty_code)

hyphen_penalty = int_par (hyphen_penalty_code)
ex_hyphen_penalty = int_par (ex_hyphen_penalty_code)
club_penalty = int_par (club_penalty_code)

widow_penalty = int_par (widow_penalty_code)
display_widow_penalty = int_par (display_widow_penalty_code)

6254 pdfTEX PART 17: THE TABLE OF EQUIVALENTS

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

define

define
define
define
define

broken_penalty = int_par (broken_penalty_code)
bin_op_penalty = int_par (bin_op_penalty_code)
rel_penalty = int_par (rel_penalty_code)
pre_display_penalty = int_par (pre_display_penalty_code)
post_display_penalty = int_par (post_display-penalty_code)
inter_line_penalty = int_par (inter_line_penalty_code)
double_hyphen_demerits = int_par (double_hyphen_demerits_code)
final_hyphen_demerits = int_par (final_hyphen_demerits_code)
adj_demerits = int_par (adj_-demerits_code)

mag = int_par(mag_code)

delimiter_factor = int_par (delimiter_factor_code)
looseness = int_par (looseness_code)

time = int_par(time_code)

day = int_par(day_code)

month = int_par (month_code)

year = int_par (year_code)

show_boz_breadth = int_par (show_box_breadth_code)
show_boz_depth = int_par (show_box_depth_code)
hbadness = int_par (hbadness_code)

vbadness = int_par (vbadness_code)

pausing = int_par (pausing-code)

tracing-online = int_par (tracing-online_code)
tracing-macros = int_par (tracing-macros_code)
tracing_stats = int_par (tracing_stats_code)
tracing_paragraphs = int_par (tracing_paragraphs_code)
tracing_pages = int_par (tracing_pages_code)
tracing_output = int_par (tracing-output_code)
tracing_lost_chars = int_par (tracing-lost_chars_code)
tracing-commands = int_par (tracing-commands_code)
tracing_restores = int_par (tracing_restores_code)
uc_hyph = int_par (uc_hyph_code)

output_penalty = int_par (output_penalty-code)
maz-dead_cycles = int_par(max_dead_cycles_code)
hang_after = int_par (hang_after_code)

floating_penalty = int_par (floating_penalty_code)
global_defs = int_par (global_defs_code)

cur_fam = int_par (cur_fam_code)

escape_char = int_par (escape_char_code)
default_hyphen_char = int_par (default_hyphen_char_code)
default_skew_char = int_par (default_skew_char_code)
end_line_char = int_par (end_line_char_code)
new_line_char = int_par (new_line_char_code)

language = int_par (language_code)
left_hyphen_min = int_par (left_hyphen_min_code)
right_hyphen_min = int_par (right_hyphen_min_code)
holding_inserts = int_par (holding_inserts_code)
error_context_lines = int_par (error_context_lines_code)

syncter = int_par (synctez_code)

char_sub_def-min = int_par (char_sub_def-min_code)
char_sub_def-max = int_par (char_sub_def-maz_code)
tracing_char_sub_def = int_par (tracing_char_sub_def_code)
mubyte_in = int_par (mubyte_in_code)

47

48 PART 17: THE TABLE OF EQUIVALENTS pdfTEX

define
define
define
define
define
define

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define
define
define

(Assign the values depth_threshold < show_box_depth and breadth_max < show_box_breadth 254*) =

mubyte_out = int_par (mubyte_out_code)

mubyte_log = int_par (mubyte_log_code)

spec_out = int_par (spec_out_code)

tracing_stack_levels = int_par (tracing_stack_levels_code)
partoken_context = int_par (partoken_context_code)
show_stream = int_par (show_stream_code)

pdf-adjust_spacing = int_par (pdf-adjust_spacing_code)
pdf-protrude_chars = int_par (pdf_protrude_chars_code)
pdf_tracing_fonts = int_par (pdf_tracing_fonts_code)
pdf-adjust_interword_glue = int_par (pdf-adjust_interword_glue_code)
pdf_prepend_kern = int_par (pdf_prepend_kern_code)
pdf-append_kern = int_par (pdf-append_kern_code)
pdf-gen_tounicode = int_par (pdf-gen_tounicode_code)

pdf-output = int_par (pdf-output_code)

pdf-compress_level = int_par (pdf-compress_level_code)
pdf-objcompresslevel = int_par (pdf-objcompresslevel_code)
pdf_decimal_digits = int_par (pdf_decimal_digits_code)
pdf-move_chars = int_par (pdf-move_chars_code)
pdf-image_resolution = int_par (pdf-image_resolution_code)
pdf_pk_resolution = int_par (pdf-pk_resolution_code)
pdf_unique_resname = int_par (pdf_unique_resname_code)
pdf_option_always_use_pdfpagebox = int_par (pdf-option_always_use_pdfpageboz_code)
pdf-option_pdf-inclusion_errorlevel = int_par (pdf-option_pdf-inclusion_errorlevel_code)
pdf-major_version = int_par (pdf-major_version_code)
pdf-minor_version = int_par (pdf-minor_version_code)
pdf_force_pagebox = int_par (pdf_force_pagebox_code)

pdf_pagebozx = int_par (pdf-pageboz_code)

pdf-inclusion_errorlevel = int_par (pdf-inclusion_errorlevel_code)
pdf-gamma = int_par (pdf-gamma-code)

pdf-image_gamma = int_par (pdf-image_gamma_code)
pdf-image_hicolor = int_par (pdf-image_hicolor_code)
pdf_image_apply_gamma = int_par (pdf-image_apply_gamma_code)
pdf_draftmode = int_par (pdf_draftmode_code)
pdf-inclusion_copy_font = int_par (pdf-inclusion_copy-font_code)
pdf_suppress_warning-dup_dest = int_par (pdf-suppress_warning_dup_dest_code)
pdf_suppress_warning_dup-map = int_par (pdf_suppress_warning_dup_map_code)
pdf_suppress_warning_page_group = int_par (pdf_suppress_warning_page_group_code)
pdf_info_omit_date = int_par (pdf-info_omit_date_code)
pdf-suppress_ptex_info = int_par (pdf-suppress_ptex_info_code)
pdf-omit_charset = int_par (pdf-omit_charset_code)
pdf-omit_info_dict = int_par (pdf-omit_info_dict_code)
pdf-omit_procset = int_par (pdf-omit_procset_code)

tracing_assigns = int_par (tracing_assigns_code)

tracing_groups = int_par (tracing_groups_code)

tracing_ifs = int_par (tracing_ifs_code)

tracing_scan_tokens = int_par (tracing-scan_tokens_code)
tracing_nesting = int_par (tracing-nesting_code)
pre_display_direction = int_par (pre_display_direction_code)
last_line_fit = int_par (last_line_fit_code)

saving_vdiscards = int_par (saving_vdiscards_code)
saving_hyph_codes = int_par (saving_hyph_codes_code)

§254

8254 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 49

depth_threshold < show_box_depth; breadth-max < show_box_breadth

This code is used in section 216.

50 PART 17: THE TABLE OF EQUIVALENTS pdfTEX 8255

255% We can print the symbolic name of an integer parameter as follows.

procedure print_param(n : integer);
begin case n of
pretolerance_code: print_esc("pretolerance");
tolerance_code: print_esc("tolerance");
line_penalty_code: print_esc("linepenalty");
hyphen_penalty_code: print_esc("hyphenpenalty");
ex_hyphen_penalty_code: print_esc("exhyphenpenalty");
club_penalty_code: print_esc("clubpenalty");
widow_penalty_code: print_esc("widowpenalty");
display-widow_penalty_code: print_esc("displaywidowpenalty");
broken_penalty_code: print_esc("brokenpenalty");
bin_op_penalty_code: print_esc("binoppenalty");
rel_penalty_code: print_esc("relpenalty");
pre_display_penalty_code: print_esc("predisplaypenalty");
post_display_penalty_code: print_esc("postdisplaypenalty");
inter_line_penalty_code: print_esc("interlinepenalty");
double_hyphen_demerits_code: print_esc("doublehyphendemerits");
final_hyphen_demerits_code: print_esc("finalhyphendemerits");
adj_demerits_code: print_esc("adjdemerits");
mag-code: print_esc("mag");
delimiter_factor_code: print_esc("delimiterfactor");
looseness_code: print_esc("looseness");
time_code: print_esc("time");
day_code: print_esc("day");
month_code: print_esc("month");
year_code: print_esc("year");
show_box_breadth_code: print_esc("showboxbreadth");
show_box_depth_code: print_esc("showboxdepth");
hbadness_code: print_esc("hbadness");
vbadness_code: print_esc("vbadness");
pausing_code: print_esc("pausing");
tracing_online_code: print_esc("tracingonline");
tracing-macros_code: print_esc("tracingmacros");
tracing_stats_code: print_esc("tracingstats");
tracing_paragraphs_code: print_esc("tracingparagraphs");
tracing_pages_code: print_esc("tracingpages");
tracing_output_code: print_esc("tracingoutput");
tracing_lost_chars_code: print_esc("tracinglostchars");
tracing_commands_code: print_esc("tracingcommands");
tracing_restores_code: print_esc("tracingrestores");
uc_hyph_code: print_esc("uchyph");
output_penalty_code: print_esc("outputpenalty");
maz_dead_cycles_code: print_esc("maxdeadcycles");
hang_after_code: print_esc("hangafter");
floating_penalty_code: print_esc("floatingpenalty");
global_defs_code: print_esc("globaldefs");
cur_fam_code: print_esc("fam");
escape_char_code: print_esc("escapechar");
default_hyphen_char_code: print_esc("defaulthyphenchar");
default_skew_char_code: print_esc("defaultskewchar");
end_line_char_code: print_esc("endlinechar");

8255 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 51

new_line_char_code: print_esc("newlinechar");
language_code: print_esc("language");

left_hyphen_min_code: print_esc("lefthyphenmin");
right_hyphen_min_code: print_esc("righthyphenmin");
holding_inserts_code: print_esc("holdinginserts");
error_context_lines_code: print_esc("errorcontextlines");
char_sub_def-min_code: print_esc("charsubdefmin");
char_sub_def-maz_code: print_esc("charsubdefmax");
tracing_char_sub_def_code: print_esc("tracingcharsubdef");
mubyte_in_code: print_esc("mubytein");

mubyte_out_code: print_esc("mubyteout");

mubyte_log_code: print_esc("mubytelog");

spec_out_code: print_esc("specialout");
tracing_stack_levels_code: print_esc("tracingstacklevels");
partoken_context_code: print_esc("partokencontext");
show_stream_code: print_esc("showstream");

pdf-output_code: print_esc("pdfoutput");

pdf_compress_level_code: print_esc("pdfcompresslevel");
pdf-objcompresslevel_code: print_esc("pdfobjcompresslevel");
pdf_decimal_digits_code: print_esc("pdfdecimaldigits");

pdf-move_chars_code: print_esc("pdfmovechars");

pdf-image_resolution_code: print_esc("pdfimageresolution");
pdf_pk_resolution_code: print_esc("pdfpkresolution");
pdf-unique_resname_code: print_esc("pdfuniqueresname");
pdf-option_always_use_pdfpagebox_code: print_esc("pdfoptionalwaysusepdfpagebox");
pdf-option_pdf-inclusion_errorlevel_code: print_esc("pdfoptionpdfinclusionerrorlevel");
pdf-major_version_code: print_esc("pdfmajorversion");

pdf-minor_version_code: print_esc("pdfminorversion");

pdf-_force_pagebox_code: print_esc("pdfforcepagebox");

pdf-pagebox_code: print_esc("pdfpagebox");

pdf-inclusion_errorlevel_code: print_esc("pdfinclusionerrorlevel");
pdf-gamma_code: print_esc("pdfgamma");

pdf-image_gamma_code: print_esc("pdfimagegamma");

pdf-image_hicolor_code: print_esc("pdfimagehicolor");
pdf-image_apply_gamma_code: print_esc("pdfimageapplygamma");
pdf-adjust_spacing_code: print_esc("pdfadjustspacing");
pdf-protrude_chars_code: print_esc("pdfprotrudechars");

pdf-tracing_fonts_code: print_esc("pdftracingfonts");
pdf-adjust_interword_glue_code: print_esc("pdfadjustinterwordglue");
pdf-prepend_kern_code: print_esc("pdfprependkern");

pdf-append_kern_code: print_esc("pdfappendkern");

pdf_gen_tounicode_code: print_esc("pdfgentounicode");

pdf-draftmode_code: print_esc("pdfdraftmode");

pdf-inclusion_copy_font_code: print_esc("pdfinclusioncopyfonts");
pdf_suppress_warning_dup_dest_code: print_esc("pdfsuppresswarningdupdest");
pdf_suppress_warning_dup_map_code: print_esc("pdfsuppresswarningdupmap");
pdf_suppress_warning_page_group_code: print_esc("pdfsuppresswarningpagegroup");
pdf-info_omit_date_code: print_esc("pdfinfoomitdate");
pdf-suppress_ptex_info_code: print_esc("pdfsuppressptexinfo");
pdf-omit_charset_code: print_esc("pdfomitcharset");

pdf-omit_info_dict_code: print_esc("pdfomitinfodict");

pdf-omit_procset_code: print_esc("pdfomitprocset");

52 PART 17: THE TABLE OF EQUIVALENTS pdfTEX 8255

(synctex case for print_param 1910*)

(Cases for print_param 1660)
othercases print(" [unknown, integer parameter!]")
endcases;
end;

§256 pdfTEX PART 17: THE TABLE OF EQUIVALENTS

256* The integer parameter names must be entered into the hash table.

(Put each of TEX’s primitives into the hash table 244) +=
primitive ("pretolerance", assign_int, int_base + pretolerance_code);
primitive ("tolerance", assign_int, int_base + tolerance_code);
primitive("llnepenalty" assign_int , int_base + line_penalty_code);
primitive ("hyphenpenalty", assign_int, int_base + hyphen_penalty_code);
primitive ("exhyphenpenalty", assign_int, int_base + ex_hyphen_penalty_code);
primitive ("clubpenalty", assign_int, int_ base + club_penalty_code);
primitive ("widowpenalty", assign_int, int_base + widow_penalty_code);
primitive ("displaywidowpenalty", assign_int, int_base + display widow_penalty_code);
primitive ("brokenpenalty", assign_int, int_ base + broken_penalty_code);
primitive ("binoppenalty", assign_int, int_base + bin_op_penalty_code);
primitive ("relpenalty", assign_int, int_base + rel_penalty_code);
primitive ("predisplaypenalty", assign_int, int_base + pre_display_penalty_code);
primitive ("postdisplaypenalty", assign_int, int_base + post_display_penalty_code);
primitive ("interlinepenalty", assign_int, int_base + inter_line_penalty_code);
primitive ("doublehyphendemerits", assign_int, int_base + double_hyphen_demerits_code);
primitive ("finalhyphendemerits", assign_int, int_base + final_hyphen_demerits_code);
primitive ("adjdemerits", assign_int, int_base + adj_demerits_code);
primitive ("mag", assign_int, int_base + mag_code);
primitive ("delimiterfactor", assign_int, int_base + delimiter_factor_code);
primitive ("looseness", assign_int, int_ base + looseness_code);
primitive ("time", assign_int, int_ base + time_code);
primitive ("day", assign_int, int_base + day_code);
primitive ("month", assign_int, int_base + month_code);
primitive ("year", assign_int, int_base + year_code);
primitive ("showboxbreadth", assign_int, int_base + show_boz_breadth_code);
primitive ("showboxdepth", assign_int, int_base + show_boz_depth_code);
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
("
("f
(
(
(
(
("

primitive ("hbadness", assign_int, int_ base + hbadness-code);
primitive ("vbadness", assign_int, int_base + vbadness_code);
primitive ("pausing", assign_int, int_base + pausing_code);

primitive ("tracingonline", assign_int, int_base + tracing_online_code);
primitive ("tracingmacros", assign_int, int_base + tracing-macros_code);
primitive ("tracingstats", assign_int, int_base + tracing_stats_code);

primitive ("tracingparagraphs", assign_int, int_base + tracing_paragraphs_code);
primitive ("tracingpages", assign_int, int_ base + tracing_pages_code);
primitive ("tracingoutput", assign_int, int_base + tracing_output_code);
primitive ("tracinglostchars", assign_int, int_base + tracing_lost_chars_code);
primitive ("tracingcommands", assign_int, int_base + tracing_-commands_code);
primitive ("tracingrestores", assign_int, int_base + tracing_restores_code);
primitive ("uchyph", assign_int, int_base + uc_hyph_code);

primitive ("outputpenalty", assign_int, int_base + output_penalty_code);
primitive ("maxdeadcycles", assign_int, int_base + maz_dead_cycles_code);
primitive ("hangafter", assign_int, int_ base + hang_after_code);

primitive ("floatingpenalty", assign_int, int_base + floating_penalty_code);

primitive globaldefs" assign_int , int_ base + global_defs_code);

primitive , assign_int, int_ base + cur_fam_code);

primitive "escapechar" assign_int , int_base + escape_char_code);

primitive ("defaulthyphenchar", assign_int, int_base + default_hyphen_char_code);
primitive ("defaultskewchar", assign_int, int_base + default_skew_char_code);
primitive ("endlinechar", assign_int, int_ base + end_line_char_code);

Q. Q

primitive ("newlinechar", assign_int, int_base + new_line_char_code);

54 PART 17: THE TABLE OF EQUIVALENTS pdfTEX §256

primitive ("language", assign_int, int_base + language_code);
primitive ("lefthyphenmin", assign_int, int_base + left_hyphen_min_code);
primitive ("righthyphenmin", assign_int, int_base + right_hyphen_min_code);
primitive ("holdinginserts", assign_int, int_base + holding_inserts_code);
primitive ("errorcontextlines", assign_int, int_base + error_context_lines_code);
if mlitex_p then
begin mitex_enabled_p < true; {enable character substitution }
if false then {remove the if-clause to enable \charsubdefmin }
primitive ("charsubdefmin", assign_int, int_base + char_sub_def-min_code);
primitive ("charsubdefmax", assign_int, int_base + char_sub_def-max_code);
primitive ("tracingcharsubdef", assign_int, int_base + tracing-char_sub_def-code);
end;
if encter_p then
begin enctex_enabled_p < true; primitive("mubytein", assign_int, int_base + mubyte_in_code);
primitive ("mubyteout", assign_int, int_base + mubyte_out_code);
primitive ("mubytelog", assign_int, int_base + mubyte_log_code);
primitive ("specialout", assign_int, int_base + spec_out_code);
end;
primitive ("tracingstacklevels", assign_int, int_base + tracing_stack_levels_code);
primitive ("partokenname", partoken_name,0);
primitive ("partokencontext", assign_int, int_base + partoken_context_code);
primitive ("showstream", assign_int, int_base + show_stream_code);
primitive ("pdfoutput", assign_int, int_base + pdf-output_code);
primitive ("pdfcompresslevel", assign_int, int_base + pdf-compress_level_code);
primitive ("pdfobjcompresslevel", assign_int, int_base + pdf_objcompresslevel_code);
(
(
(
(
(
(

p
p
p
primitive ("pdfdecimaldigits", assign_int, int_base + pdf_decimal_digits_code);
primitive ("pdfmovechars", assign_int, int_base + pdf-move_chars_code);
primitive ("pdfimageresolution", assign_int, int_base + pdf-image_resolution_code);
primitive ("pdfpkresolution", assign_int, int_base + pdf-pk_resolution_code);
primitive ("pdfuniqueresname", assign_int, int_base + pdf_unique_resname_code);
primitive ("pdfoptionpdfminorversion", assign_int, int_base + pdf-minor_version_code);
primitive ("pdfoptionalwaysusepdfpagebox", assign_int,
int_base + pdf-option_always_use_pdfpagebox_code);
primitive ("pdfoptionpdfinclusionerrorlevel", assign_int,
int_base + pdf_option_pdf-inclusion_errorlevel_code);
primitive ("pdfmajorversion", assign_int, int_base + pdf-major_version_code
primitive ("pdfminorversion", assign_int, int_base + pdf-minor_version_code
primitive ("pdfforcepagebox", assign_int, int_base + pdf-force_pageboz_code);
primitive ("pdfpagebox", assign_int, int_base + pdf-pagebox_code);
primitive ("pdfinclusionerrorlevel", assign_int, int_base + pdf-inclusion_errorlevel_code);
primitive ("pdfgamma", assign_int, int_base + pdf_gamma_code);
primitive ("pdf imagegamma", assign_int , int_base + pdf_image_gamma_code);
primitive ("pdfimagehicolor", assign_int, int_base + pdf-image_hicolor_code);
primitive ("pdf imageapplygamma", assign_int, int_base + pdf-image_apply_gamma_code);
primitive ("pdfadjustspacing", assign_int, int_base + pdf-adjust_spacing_code);
(
(
(
(
(
(
(

);
).

)

1
primitive ("pdfprotrudechars", assign_int, int_base + pdf_protrude_chars_code);

primitive ("pdftracingfonts", assign_int, int_base + pdf_tracing_fonts_code);

primitive ("pdfadjustinterwordglue", assign_int, int_base + pdf-adjust_interword_glue_code);
primitive ("pdfprependkern", assign_int, int_base + pdf_prepend_kern_code);

primitive ("pdfappendkern", assign_int, int_base + pdf_append_kern_code);

primitive ("pdfgentounicode", assign_int, int_base + pdf_gen_tounicode_code);

"pdfdraftmode", assign_int, int_base + pdf_draftmode_code);

primitive

§256 pdfTEX PART 17: THE TABLE OF EQUIVALENTS 55

primitive ("pdfinclusioncopyfonts", assign_int, int_base + pdf-inclusion_copy_font_code);

primitive ("pdfsuppresswarningdupdest", assign_int, int_base + pdf_suppress_warning-dup_dest_code);
primitive ("pdfsuppresswarningdupmap", assign_int, int_base + pdf_suppress_warning_dup_map_code);
primitive ("pdfsuppresswarningpagegroup", assign_int, int_base + pdf_suppress_warning_page_group_code);
primitive ("pdf infoomitdate", assign_int, int_base + pdf-info_omit_date_code);

primitive ("pdf suppressptexinfo", assign_int, int_base + pdf_suppress_ptez_info_code);

primitive ("pdfomitcharset", assign_int, int_base + pdf-omit_charset_code);

primitive ("pdfomitinfodict", assign_int, int_base + pdf-omit_info_dict_code);

primitive ("pdfomitprocset", assign_int, int_base + pdf_omil_procset_code);

258% The integer parameters should really be initialized by a macro package; the following initialization

does the minimum to keep TEX from complete failure.

(Initialize table entries (done by INITEX only) 182) +=
for k < int_base to del_code_base — 1 do eqtb[k].int + 0;
char_sub_def-min <+ 256; char_sub_def-max < —1; {allow \charsubdef for char 0}
{ tracing_char_sub_def < 0 is already done }
mag < 1000; tolerance <— 10000; hang_after <— 1; maz_dead_cycles < 25; escape_char < "\";
end_line_char < carriage_return;
for k < 0to 255 do del_code (k) < —1,;
del_code(".") + 0; {this null delimiter is used in error recovery }
show_stream < —1;

259* The following procedure, which is called just before TEX initializes its input and output, establishes
the initial values of the date and time. It calls a date_and_time C macro (a.k.a. dateandtime), which calls the
C function get_date_and_time, passing it the addresses of sys_time, etc., so they can be set by the routine.
get_date_and_time also sets up interrupt catching if that is conditionally compiled in the C code.

We have to initialize the sys_ variables because that is what gets output on the first line of the log file.
(New in 2021.)

procedure fiz_date_and_time;
begin date_and_time (sys_time, sys_day, sys_-month, sys_year); time < sys_time;
{ minutes since midnight }
day + sys_day; {day of the month }
month < sys.month; {month of the year }
year < sys_year; {Anno Domini }
end;

)

270% Here is a procedure that displays the contents of eqtb[n] symbolically.

(Declare the procedure called print_cmd_chr 320)
stat procedure show_eqth(n : pointer);
begin if n < active_base then print_char("?") {this can’t happen }
else if (n < glue_base) V ((n > eqtb_size) A (n < eqtb_top)) then (Show equivalent n, in region 1 or 2 241)
else if n < local_base then (Show equivalent n, in region 3 247)
else if n < int_base then (Show equivalent n, in region 4 251)
else if n < dimen_base then (Show equivalent n, in region 5 260)
else if n < egtb_size then (Show equivalent n, in region 6 269)
else print_char("?"); {this can’t happen either }
end;
tats

56 PART 17: THE TABLE OF EQUIVALENTS pdfTEX §271

271% The last two regions of eqtb have fullword values instead of the three fields eq_level, eq_type, and
equiv. An eq_type is unnecessary, but TEX needs to store the eq_level information in another array called
zeq_level.

(Global variables 13) +=

zeqth: Tmemory_word;

zeq_level: array [int_base .. eqtb_size] of quarterword;

8274 pdfTEX PART 18: THE HASH TABLE 57

274¥% The hash table. Control sequences are stored and retrieved by means of a fairly standard hash
table algorithm called the method of “coalescing lists” (cf. Algorithm 6.4C in The Art of Computer Pro-
gramming). Once a control sequence enters the table, it is never removed, because there are complicated
situations involving \gdef where the removal of a control sequence at the end of a group would be a mistake
preventable only by the introduction of a complicated reference-count mechanism.

The actual sequence of letters forming a control sequence identifier is stored in the str_pool array together
with all the other strings. An auxiliary array hash consists of items with two halfword fields per word. The
first of these, called next(p), points to the next identifier belonging to the same coalesced list as the identifier
corresponding to p; and the other, called text(p), points to the str_start entry for p’s identifier. If position p
of the hash table is empty, we have text(p) = 0; if position p is either empty or the end of a coalesced hash
list, we have next(p) = 0. An auxiliary pointer variable called hash_used is maintained in such a way that
all locations p > hash_used are nonempty. The global variable cs_count tells how many multiletter control
sequences have been defined, if statistics are being kept.

A global boolean variable called no_new_control_sequence is set to true during the time that new hash
table entries are forbidden.

define next(#) = hash[#].lh {link for coalesced lists }

define text(#) = hash[#].rh { string number for control sequence name }

define hash_is_full = (hash_-used = hash_base) {test if all positions are occupied }
define font_id_text(#) = text(font_id_base +#) {a frozen font identifier’s name }

{ Global variables 13) +=

hash: Ttwo_halves; {the hash table }

yhash: Ttwo_halves; {auxiliary pointer for freeing hash }
hash_used: pointer; { allocation pointer for hash }

hash_extra: pointer; { hash_extra = hash above eqtb_size }
hash_top: pointer; {maximum of the hash array }

eqtb_top: pointer; {maximum of the eqtb }

hash_high: pointer; { pointer to next high hash location }
no_new_control_sequence: boolean; { are new identifiers legal? }
cs_count: integer; {total number of known identifiers }

276* (Set initial values of key variables 21) +=
no_new_control_sequence < true; {new identifiers are usually forbidden }
prim_next(0) < 0; prim_text(0) + 0;
for k < 1 to prim_size do prim[k] + prim[0];

277* (Initialize table entries (done by INITEX only) 182) +=
prim_used < prim_size; {nothing is used }
hash_used < frozen_control_sequence; {nothing is used }
hash_high < 0; cs_count < 0; eq_type(frozen_dont_expand) < dont_expand;
text (frozen_dont_expand) < "notexpanded:"; eq_type(frozen_primitive) < ignore_spaces;
equiv (frozen_primitive) < 1; eq_level (frozen_primitive) + level_one;
text (frozen_primitive) < "pdfprimitive";

58 PART 18: THE HASH TABLE pdfTEX

279% (Insert a new control sequence after p, then make p point to it 279*) =
begin if text(p) > 0 then
begin if hash_high < hash_extra then
begin incr(hash_high); next(p) < hash_high + eqtb_size; p < hash_high + eqtb_size;
end
else begin repeat if hash_is_full then overflow("hash size", hash_size + hash_eztra);
decr (hash_used);
until text(hash_used) = 0; {search for an empty location in hash }
next (p) < hash_used; p < hash_used;
end;
end;
str_room(l); d < cur_length;
while pool_ptr > str_start[str_ptr] do
begin decr(pool_ptr); str_pool[pool_ptr + 1] < str_pool [pool_ptr];
end; {move current string up to make room for another }
for k< jto j+1—1do append_char(buffer[k]);
text(p) < make_string; pool_ptr < pool_ptr + d;
stat incr(cs_count); tats
end

This code is used in section 278.

§279

6284 pdfTExX PART 18: THE HASH TABLE 59

284¥* Single-character control sequences do not need to be looked up in a hash table, since we can use
the character code itself as a direct address. The procedure print_cs prints the name of a control sequence,
given a pointer to its address in eqtb. A space is printed after the name unless it is a single nonletter or an
active character. This procedure might be invoked with invalid data, so it is “extra robust.” The individual
characters must be printed one at a time using print, since they may be unprintable.

The conversion from control sequence to byte sequence for encTEXis implemented here. Of course, the
simplest way is to implement an array of string pointers with hash_size length, but we assume that only a
few control sequences will need to be converted. So mubyte_cswrite, an array with only 128 items, is used.
The items point to the token lists. First token includes a csname number and the second points the string
to be output. The third token includes the number of another csname and fourth token its pointer to the
string etc. We need to do the sequential searching in one of the 128 token lists.

(Basic printing procedures 57) +=
procedure print_cs(p : integer); {prints a purported control sequence }
var q: pointer; s: str_number;
begin if active_noconvert A (—no_convert) A (eq-type(p) = let) A (equiv(p) = normal + 11) then
{ noconvert }
begin no_convert < true; return;
end;
s+ 0;
if cs_converting A (—no_convert) then
begin g + mubyte_cswrite [p mod 128];
while ¢ # null do
if info(q) = p then
begin s <« info(link(q)); q < null;
end
else q « link(link(q));
end;
no_convert < false;
if s> 0 then print(s)
else if p < hash_base then {single character }
if p > single_base then
if p = null_cs then
begin print_esc("csname"); print_esc("endcsname"); print_char("y");
end
else begin print_esc(p — single_base);
if cat_code(p — single_base) = letter then print_char(",");
end
else if p < active_base then print_esc("IMPOSSIBLE. ")
else print(p — active_base)
else if ((p > undefined_control_sequence) A (p < eqtb_size)) V (p > eqtb_top) then
print_esc("IMPOSSIBLE. ")
else if (text(p) > str_ptr) then print_esc("NONEXISTENT.")
else begin if (p > prim_eqtb_base) A (p < frozen_null_font) then
print_esc(prim_text (p — prim_eqtb_base) — 1)
else print_esc(text(p));
print_char (",");
end;
exrit: end;

60 PART 18: THE HASH TABLE pdfTEX

287*¥ Many of TEX’s primitives need no equiv, since they are identifiable by their eq_type alone.

primitives are loaded into the hash table as follows:

(Put each of TEX’s primitives into the hash table 244) +=
primiative (",", ex_space, 0);
primitive (" /", ital_corr,0);
primitive ("accent", accent, 0);
primitive ("advance", advance, 0);
primitive ("afterassignment", after_assignment,0);
primitive ("aftergroup", after_group,0);
primitive ("begingroup", begin_group, 0);
primitive ("char", char_num, 0);
primitive ("csname", cs_name, 0);
primitive ("delimiter", delim_num,0);
primitive ("divide", divide, 0);
primitive ("endcsname", end_cs_name, 0);
if encter_p then
begin primitive ("endmubyte", end_cs_name, 10);
end;
primitive ("endgroup", end_group,0); text(frozen_end_group) < "endgroup";
eqth[frozen_end_group| < eqtb[cur_val];
primitive ("expandafter", expand_after,0);
primitive ("font", def_font, 0);
primitive ("letterspacefont", letterspace_font,0);
primitive ("pdfcopyfont", pdf_copy_font,0);
primitive ("fontdimen", assign_font_dimen, 0);
primitive("halign", halign,0);
primitive ("hrule", hrule,0);
primitive ("ignorespaces", ignore_spaces, 0);
primitive ("insert", insert,0);
primitive ("mark", mark,0);
primitive ("mathaccent", math_accent,0);
primitive ("mathchar", math_char-num, 0);
primitive ("mathchoice", math_choice, 0);
primitive ("multiply", multiply,0);
(
(
(
(
(
(
(
(
(
(
(

primitive ("noalign", no_align,0);
primitive ("noboundary", no_boundary, 0);
primitive ("noexpand", no_expand, 0);
primitive ("pdfprimitive", no_expand, 1);
primitive ("nonscript", non_script,0);
primitive ("omit", omit, 0);
primitive ("parshape", set_shape, par_shape_loc);
primitive ("penalty", break_penalty,0);
primitive ("prevgraf", set_prev_graf , 0);
primitive ("radical", radical,0);
primitive ("read", read_to_cs,0);
primitive ("relax", relaz,256); {cf. scan_file_name }
text(frozen_relax) < "relax"; eqth|frozen_relax| < eqtb[cur_vall;
primitive ("setbox", set_box,0);
primitive ("the", the,0);
primitive ("toks", toks_register, mem_bot);
primitive ("vadjust", vadjust,0);

(

primitive ("valign", valign,0);

§287

These

6287 pdfTExX PART 18: THE HASH TABLE 61

primitive ("vcenter", vcenter, 0);
primitive ("vrule", vrule,0);

62 PART 18: THE HASH TABLE pdfTEX §288

288* FEach primitive has a corresponding inverse, so that it is possible to display the cryptic numeric
contents of eqtb in symbolic form. Every call of primitive in this program is therefore accompanied by some
straightforward code that forms part of the print_cmd_chr routine below.

(Cases of print_cmd_chr for symbolic printing of primitives 245) +=
accent: print_esc("accent");
advance: print_esc("advance");
after_assignment: print_esc("afterassignment");
after_group: print_esc("aftergroup");
assign_font_dimen: print_esc("fontdimen");
begin_group: print_esc("begingroup");
break_penalty: print_esc("penalty");
char_num: print_esc("char");
cs_name: print_esc("csname");
def_font: print_esc("font");
letterspace_font: print_esc("letterspacefont");
pdf-copy_font: print_esc("pdfcopyfont");
delim_num: print_esc("delimiter");
divide: print_esc("divide");
end_cs_name: if chr_code =10 then print_esc("endmubyte")
else print_esc("endcsname");
end_group: print_esc("endgroup");
ex_space: print_esc(",");
expand_after: if chr_code = 0 then print_esc("expandafter")
(Cases of expandafter for print_cmd_chr 1764);
halign: print_esc("halign");
hrule: print_esc("hrule");
ignore_spaces: if chr_code = 0 then print_esc("ignorespaces")
else print_esc("pdfprimitive");
insert: print_esc("insert");
ital_corr: print_esc("/");
mark: begin print_esc("mark");
if chr_code > 0 then print_char("s");
end;
math_accent: print_esc("mathaccent");
math_char_num: print_esc("mathchar");
math_choice: print_esc("mathchoice");
multiply: print_esc("multiply");
no-align: print_esc("noalign");
no_boundary: print_esc("noboundary");
no_expand: if chr_code = 0 then print_esc("noexpand")
else print_esc("pdfprimitive");
non_script: print_esc("nonscript");
omit: print_esc("omit");
radical: print_esc("radical");
read_to_cs: if chr_code =0 then print_esc("read") (Cases of read for print_cmd_chr 1761);
relaz: print_esc("relax");
set_box: print_esc("setbox");
set_prev_graf: print_esc("prevgraf");
set_shape: case chr_code of
par_shape_loc: print_esc("parshape");
(Cases of set_shape for print_cmd_chr 1866)
end; {there are no other cases }

6288 pdfTExX PART 18: THE HASH TABLE 63

the: if chr_code = 0 then print_esc("the") (Cases of the for print_cmd_chr 1688);
toks_register: (Cases of toks_register for print_cmd_chr 1834);
vadjust: print_esc("vadjust");
valign: if chr_code = 0 then print_esc("valign")
(Cases of wvalign for print_cmd_chr 1703);
veenter: print_esc("vcenter");
vrule: pm’nt,esc("vrule");
partoken_name: print_esc("partokenname");

64 PART 19: SAVING AND RESTORING EQUIVALENTS pdfTEX §290

293¥ (Global variables 13) +=

save_stack: Tmemory_word;

save_ptr: 0 .. save_size; {first unused entry on save_stack }
maz_save_stack: 0 .. save_size; {maximum usage of save stack }
cur_level: quarterword; {current nesting level for groups }
cur_group: group_code; { current group type }

cur_boundary: 0 .. save_size; { where the current level begins }

305*% A global definition, which sets the level to level_one, will not be undone by unsave. If at least one
global definition of eqtb[p] has been carried out within the group that just ended, the last such definition
will therefore survive.

(Store save_stack[save_ptr] in eqth[p], unless eqth[p] holds a global value 305*) =
if (p < int_base) V (p > eqtb_size) then

if eq_level(p) = level_one then
begin eq_destroy (save_stack[save_ptr]); {destroy the saved value }
stat if tracing_restores > 0 then restore_trace(p, "retaining");
tats
end

else begin eq_destroy(eqth[p]); {destroy the current value }
eqth[p] <+ save_stack[save_ptr]|; {restore the saved value }
stat if tracing_restores > 0 then restore_trace(p, "restoring");
tats
end

else if zeq_level[p] # level_one then

begin eqtb[p] «+ save_stack [save_ptr]; zeq_level[p] + I;
stat if tracing_restores > 0 then restore_trace(p, "restoring");
tats
end

else begin stat if tracing_restores > 0 then restore_trace(p, "retaining");
tats
end

This code is used in section 304.

§311 pdfTEX

312¥ (Check the “constant” values for consistency 14) +=
if cs_token_flag + eqtb_size + hash_extra > maz_halfword then bad + 21;
if (hash_offset < 0)V (hash_offset > hash_base) then bad « 42;

PART 20: TOKEN LISTS

65

66 PART 21: INTRODUCTION TO THE SYNTACTIC ROUTINES pdfTEX 8319

322* Input stacks and states. This implementation of TEX uses two different conventions for repre-
senting sequential stacks.

1) If there is frequent access to the top entry, and if the stack is essentially never empty, then the top entry
is kept in a global variable (even better would be a machine register), and the other entries appear in
the array stack[0 .. (ptr — 1)]. For example, the semantic stack described above is handled this way,
and so is the input stack that we are about to study.

2) If there is infrequent top access, the entire stack contents are in the array stack[0 .. (ptr — 1)]. For
example, the save_stack is treated this way, as we have seen.

The state of TEX’s input mechanism appears in the input stack, whose entries are records with six fields,
called state, index, start, loc, limit, and name. This stack is maintained with convention (1), so it is declared
in the following way:

(Types in the outer block 18) +=
in_state_record = record state_field , indez_field: quarterword;
start_field, loc_field, limit_field , name_field: halfword;
synctez_tag_field: integer; {stack the tag of the current file }
end;

323* (Global variables 13) +=

input_stack: Tin_state_record;

input_ptr: 0 .. stack_size; {first unused location of input_stack }

maz_in_stack: O .. stack_size; {largest value of input_ptr when pushing }
cur_input: in_state_record; {the “top” input state, according to convention (1) }

324*% We've already defined the special variable loc = cur_input.loc_field in our discussion of basic input-
output routines. The other components of cur_input are defined in the same way:

define state = cur_input.state_field { current scanner state }

define index = cur_input.indez_field {reference for buffer information }

define start = cur_input.start_field { starting position in buffer }

define limit = cur_input.limit_field {end of current line in buffer }

define name = cur_input.name_field {name of the current file }

define synctex_tag = cur_input.synctez_tag_field { SyncTgX tag of the current file }

6326 pdfTExX PART 22: INPUT STACKS AND STATES 67

326* Additional information about the current line is available via the inder variable, which counts how
many lines of characters are present in the buffer below the current level. We have inder = 0 when reading
from the terminal and prompting the user for each line; then if the user types, e.g., ‘\input paper’, we will
have index = 1 while reading the file paper.tex. However, it does not follow that indez is the same as the
input stack pointer, since many of the levels on the input stack may come from token lists. For example,
the instruction ‘\input paper’ might occur in a token list.

The global variable in_open is equal to the index value of the highest non-token-list level. Thus, the
number of partially read lines in the buffer is in_open + 1, and we have in_open = index when we are not
reading a token list.

If we are not currently reading from the terminal, or from an input stream, we are reading from the file
variable input_file[index]. We use the notation terminal_input as a convenient abbreviation for name = 0,
and cur_file as an abbreviation for input_file [indez].

The global variable line contains the line number in the topmost open file, for use in error messages. If
we are not reading from the terminal, line_stack [indez] holds the line number for the enclosing level, so that
line can be restored when the current file has been read. Line numbers should never be negative, since the
negative of the current line number is used to identify the user’s output routine in the mode_line field of the
semantic nest entries.

If more information about the input state is needed, it can be included in small arrays like those shown
here. For example, the current page or segment number in the input file might be put into a variable
page, maintained for enclosing levels in ‘page_stack: array [l .. maz_in_open] of integer’ by analogy with
line_stack.

define terminal_input = (name = 0) {are we reading from the terminal? }
define cur_file = input_file[index] {the current alpha_file variable }

(Global variables 13) +=

in_open: 0 .. maz_in_open; {the number of lines in the buffer, less one }
open_parens: 0 .. maz_in_open; {the number of open text files }
input_file: Talpha_file;

line: integer; {current line number in the current source file }
line_stack: Tinteger;

source_filename_stack: Tstr_number;

full_source_filename_stack: 1 str_number;

68 PART 22: INPUT STACKS AND STATES pdfTEX §328

328* Here is a procedure that uses scanner_status to print a warning message when a subfile has ended,
and at certain other crucial times:

(Declare the procedure called runaway 328*) =
procedure runaway;
var p: pointer; {head of runaway list }
begin if scanner_status > skipping then
begin case scanner_status of
defining: begin print_nl("Runaway_ definition"); p < def-ref;
end;
matching: begin print_nl("Runaway_argument"); p < temp_head;
end;
aligning: begin print_nl("Runaway preamble"); p « hold_head;
end;
absorbing: begin print_nl("Runaway text"); p < def-ref;
end;
end; {there are no other cases }
print_char("?"); print_ln; show_token_list (link (p), null, error_line — 10);
end;
end;

This code is used in section 137.

330* The param_stack is an auxiliary array used to hold pointers to the token lists for parameters at the
current level and subsidiary levels of input. This stack is maintained with convention (2), and it grows at a
different rate from the others.

(Global variables 13) +=

param_stack: Tpointer; {token list pointers for parameters }

param_ptr: 0 .. param_size; {first unused entry in param_stack }
maz_param_stack: integer; {largest value of param_ptr, will be < param_size + 9 }

340* But the trick is distracting us from our current goal, which is to understand the input state. So let’s
concentrate on the data structures that are being pseudoprinted as we finish up the show_context procedure.

(Pseudoprint the line 340%) =
begin_pseudoprint;
if buffer[limit] = end_line_char then j «+ limit
else j < limit + 1; {determine the effective end of the line }
1 < start; mubyte_skeep < mubyte_keep; mubyte_sstart < mubyte_start; mubyte_start < false;
if j > 0 then
while i < j do
begin if i = loc then set_trick_count;
print_buffer (i);
end;
mubyte_keep < mubyte_skeep; mubyte_start <— mubyte_sstart

This code is used in section 334.

6343 pdfIExX PART 23: MAINTAINING THE INPUT STACKS 69

350*% The begin_file_reading procedure starts a new level of input for lines of characters to be read from a
file, or as an insertion from the terminal. It does not take care of opening the file, nor does it set loc or limit
or line.

procedure begin_file_reading;
begin if in_open = maz_in_open then overflow("text input levels", maz_in_open);
if first = buf_size then overflow("buffer size", buf size);
incr (in_open); push_input; index < in_open; source_filename_stack [index] + 0;
full_source_filename_stack[index] + 0; eof-seen|index| + false; grp-stack[index] + cur_boundary;
if-stack[index] < cond_ptr; line_stack[index] < line; start « first; state < mid_line; name <+ 0;
{ terminal_input is now true }
(Prepare terminal input SyncTgX information 1920*);
end;

353*% To get TEX’s whole input mechanism going, we perform the following actions.

(Initialize the input routines 353*) =
begin input_ptr < 0; maz_in_stack < 0; source_filename_stack[0] + 0;
full_source_filename_stack[0] <— 0; in_open + 0; open_parens + 0; maz_buf-stack < 0; grp_stack[0] + 0;
if-stack[0] < null; param_ptr < 0; maz_param_stack < 0; first < buf_size;
repeat buffer|first] < 0; decr(first);
until first = 0;
scanner_status < normal; warning_index <— null; first < 1; state < new_line; start < 1; index < 0;
line < 0; name < 0; force_eof <+ false; align_state < 1000000;
if —init_terminal then goto final_end;
limit < last; first < last +1; {init_terminal has set loc and last }
end

This code is used in section 1518*.

70 PART 24: GETTING THE NEXT TOKEN pdfTEX §354

354*% Getting the next token. The heart of TEX’s input mechanism is the get_next procedure, which
we shall develop in the next few sections of the program. Perhaps we shouldn’t actually call it the “heart,”
however, because it really acts as TEX’s eyes and mouth, reading the source files and gobbling them up. And
it also helps TEX to regurgitate stored token lists that are to be processed again.

The main duty of get_next is to input one token and to set cur_cmd and cur_chr to that token’s command
code and modifier. Furthermore, if the input token is a control sequence, the eqtb location of that control
sequence is stored in cur_cs; otherwise cur_cs is set to zero.

Underlying this simple description is a certain amount of complexity because of all the cases that need to
be handled. However, the inner loop of get_next is reasonably short and fast.

When get_next is asked to get the next token of a \read line, it sets cur_cmd = cur_chr = cur_cs =0 in
the case that no more tokens appear on that line. (There might not be any tokens at all, if the end_line_char
has ignore as its catcode.)

Some additional routines used by the encTEXextension have to be declared at this point.

{Declare additional routines for encTEX 1901*)

360* (Tell the user what has run away and try to recover 360*) =
begin runaway; {print a definition, argument, or preamble }
if cur_cs =0 then print_err("File ended")
else begin cur_cs < 0; print_err("Forbidden control sequence found");
end;
(Print either ‘definition’ or ‘use’ or ‘preamble’ or ‘text’, and insert tokens that should lead to
recovery 361*);
print ("yofyu"); sprint_cs(warning_index);
help/ ("I suspect you have forgotten a, } , causing me")
("touread past_ where you wanted me_ to,stop.")
(" I°11,try to recover; but,if the error is;;serious, ")
("you"d _better type, E Lor, X unow,and, fix your, file.");
error;
end

This code is used in section 358.

361* The recovery procedure can’t be fully understood without knowing more about the TEX routines that
should be aborted, but we can sketch the ideas here: For a runaway definition or a runaway balanced text
we will insert a right brace; for a runaway preamble, we will insert a special \cr token and a right brace;
and for a runaway argument, we will set long_state to outer_call and insert \par.

(Print either ‘definition’ or ‘use’ or ‘preamble’ or ‘text’, and insert tokens that should lead to
recovery 361*) =
p < get_avail;
case scanner_status of
defining: begin print("_while scanning definition"); info(p) < right_brace_token + "3}";
end;
matching: begin print (" while_ scanning use"); info(p) < par_token; long_state < outer_call;
end;
aligning: begin print("_while scanning preamble"); info(p) + right_brace_token + "}"; q + p;
p < get_avail; link(p) « ¢; info(p) < cs_token_flag + frozen_cr; align_state < —1000000;
end;
absorbing: begin print (" while_ scanning text"); info(p) < right_brace_token + "}";
end;
end; {there are no other cases }
ins_list (p)

This code is used in section 360*.

6363 pdfIExX PART 24: GETTING THE NEXT TOKEN 71

363* Now we're ready to take the plunge into get_next itself. Parts of this routine are executed more often
than any other instructions of TEX.

define switch =25 {a label in get_next }
define start_cs =26 {another }

procedure get_next; {sets cur_cmd, cur_chr, cur_-cs to next token }
label restart, {go here to get the next input token }
switch, {go here to eat the next character from a file }
reswitch, {go here to digest it again }
start_cs, {go here to start looking for a control sequence }
found, {go here when a control sequence has been found }
exit; {go here when the next input token has been got }
var k: 0 .. buf_size; {an index into buffer }
t: halfword; {a token }
i,7: 0.. buf-size; {more indexes for encTeX }
mubyte_incs: boolean; { control sequence is converted by mubyte }
p: pointer; {for encTeX test if noexpanding }
cat: 0 .. maz_char_code; { cat_code(cur_chr), usually }
¢, cc: ASCIIcode; { constituents of a possible expanded code }
d: 2..3; {number of excess characters in an expanded code }
begin restart: cur_cs < 0;
if state # token_list then (Input from external file, goto restart if no input found 365*)
else (Input from token list, goto restart if end of list or if a parameter needs to be expanded 379*);
(If an alignment entry has just ended, take appropriate action 364);
erit: end;

365* (Input from external file, goto restart if no input found 365*) =
begin switch: if loc < limit then {current line not yet finished }
begin { Use k instead of loc for type correctness. }
k < loc; cur_chr < read_buffer(k); loc « k; incr(loc);
if (mubyte_token > 0) then
begin state < mid_line; cur_cs < mubyte_token — cs_token_flag; goto found;
end;
reswitch: cur_cmd « cat_code(cur_chr); (Change state if necessary, and goto switch if the current
character should be ignored, or goto reswitch if the current character changes to another 366);
end
else begin state < new_line;
(Move to next line of file, or goto restart if there is no next line, or return if a \read line has
finished 382);
check_interrupt; goto switch;
end;
end

This code is used in section 363*.

72 PART 24: GETTING THE NEXT TOKEN pdfTEX §376

376* Control sequence names are scanned only when they appear in some line of a file; once they have
been scanned the first time, their eqtb location serves as a unique identification, so TEX doesn’t need to refer
to the original name any more except when it prints the equivalent in symbolic form.

The program that scans a control sequence has been written carefully in order to avoid the blowups that
might otherwise occur if a malicious user tried something like ‘\catcode “15=0’. The algorithm might look
at buffer[limit + 1], but it never looks at buffer[limit + 2].

If expanded characters like ‘~~A’ or ‘~~df’ appear in or just following a control sequence name, they are
converted to single characters in the buffer and the process is repeated, slowly but surely.

(Scan a control sequence and set state < skip_blanks or mid_line 376*) =
begin if loc > limit then cur_cs < null_cs { state is irrelevant in this case }
else begin start_cs: mubyte_incs < false; k < loc; mubyte_skeep < mubyte_keep;
cur_chr « read_buffer(k); cat < cat_code(cur_chr);
if (mubyte_in > 0) A (-mubyte_incs) A ((mubyte_skip > 0) V (cur_chr # buffer[k])) then
mubyte_incs < true;
incr (k);
if mubyte_token > 0 then
begin state < mid_line; cur_cs <— mubyte_token — cs_token_flag; goto found;
end;
if cat = letter then state < skip_blanks
else if cat = spacer then state < skip_blanks
else state < mid_line;
if (cat = letter) A (k < limit) then (Scan ahead in the buffer until finding a nonletter; if an expanded
code is encountered, reduce it and goto start_cs; otherwise if a multiletter control sequence is
found, adjust cur_cs and loc, and goto found 378*)
else (If an expanded code is present, reduce it and goto start_cs 377*);
mubyte_keep < mubyte_skeep; cur_cs < single_base + read_buffer (loc); incr(loc);
end;
found: cur_cmd + eq_type(cur_cs); cur_chr < equiv(cur_cs);
if cur_ecmd > outer_call then check_outer_validity;
if write_noexpanding then
begin p « mubyte_cswrite[cur_-cs mod 128];
while p # null do
if info(p) = cur_cs then
begin cur_cmd < relaz; cur_chr < 256; p < null;
end
else p « link (link(p));
end;
end

This code is used in section 366.

6377 pdfIExX PART 24: GETTING THE NEXT TOKEN 73

377* Whenever we reach the following piece of code, we will have cur_chr = buffer[k—1] and k < limit +1
and cat = cat_code(cur_chr). If an expanded code like “~A or ~"df appears in buffer[(k — 1) .. (k+ 1)] or
buffer[(k—1) .. (k+2)], we will store the corresponding code in buffer[k — 1] and shift the rest of the buffer
left two or three places.

(If an expanded code is present, reduce it and goto start_cs 377%) =
begin if buffer[k] = cur_chr then if cat = sup_mark then if k < limit then
begin ¢ + buffer[k + 1]; if ¢ < 200 then {yes, one is indeed present }
begin d + 2;
if is_hez(c) then if k + 2 < limit then
begin cc + buffer[k + 2]; if is_hex(cc) then incr(d);
end;
if d > 2 then
begin hexz_to_cur_chr; buffer[k — 1] < cur_chr;
end
else if ¢ < 100 then buffer[k — 1] < ¢+ 100
else buffer(k — 1] < ¢ — "100;
limit < limit — d; first < first — d;
if mubyte_in > 0 then mubyte_keep < k — loc;
while k£ < limit do
begin buffer[k] < buffer[k + d]; incr(k);
end;
goto start_cs;
end;
end;
end

This code is used in sections 376* and 378*.

74 PART 24: GETTING THE NEXT TOKEN pdfTEX 8378

378% (Scan ahead in the buffer until finding a nonletter; if an expanded code is encountered, reduce it
and goto start_cs; otherwise if a multiletter control sequence is found, adjust cur_cs and loc, and
goto found 378*) =

begin repeat cur_chr < read_buffer(k); cat < cat_code(cur_chr);
if mubyte_token > 0 then cat < escape;
if (mubyte_in > 0) A (-mubyte_incs) A (cat = letter) A ((mubyte_skip > 0) V (cur-chr # buffer[k]))
then mubyte_incs < true;
incr (k);
until (cat # letter) Vv (k > limit);
(If an expanded code is present, reduce it and goto start_cs 377*);
if cat # letter then
begin decr(k); k < k — mubyte_skip;
end;
if k> loc +1 then { multiletter control sequence has been scanned }
begin if mubyte_incs then { multibyte in csname occurrs }
begin i + loc; j « first; mubyte_keep < mubyte_skeep;
if j — loc + k > maz_buf-stack then
begin maz_buf_stack < j — loc + k;
if maz_buf_stack > buf_size then
begin maz_buf_stack < buf_size; overflow ("buffer size", buf size);
end;
end;
while i < k do
begin buffer[j] < read_buffer(i); incr(i); incr(j);
end;
if j = first + 1 then cur_cs « single_base + buffer|first]
else cur_cs « id_lookup (first,j — first);
end
else cur_cs + id_lookup (loc, k — loc);
loc < k; goto found;
end;
end

This code is used in section 376%*.

6379 pdfIExX PART 24: GETTING THE NEXT TOKEN

379% Let’s consider now what happens when get_next is looking at a token list.

(Input from token list, goto restart if end of list or if a parameter needs to be expanded 379*) =
if loc # null then {list not exhausted }
begin t + info(loc); loc + link(loc); {move to next }
if t > cs_token_flag then {a control sequence token }
begin cur_cs « t — cs_token_flag; cur_cmd < eq_type(cur_cs); cur_chr < equiv(cur_cs);
if cur_cmd > outer_call then
if cur_emd = dont_expand then (Get the next token, suppressing expansion 380)
else check_outer_validity;
if write_noexpanding then
begin p « mubyte_cswrite[cur_cs mod 128];
while p # null do
if info(p) = cur_cs then
begin cur_cmd < relax; cur_chr < 256; p < null;
end
else p « link (link (p));
end;
end
else begin cur_-cmd < tdiv 400; cur_chr < tmod 400,
case cur_cmd of
left_brace: incr(align_state);
right_brace: decr (align_state);
out_param: (Insert macro parameter and goto restart 381);
othercases do_nothing
endcases;
end;
end
else begin { we are done with this token list }
end_token_list; goto restart; {resume previous level }
end

This code is used in section 363*.

0]

76 PART 24: GETTING THE NEXT TOKEN pdfTEX §385

385¥* If the user has set the pausing parameter to some positive value, and if nonstop mode has not been
selected, each line of input is displayed on the terminal and the transcript file, followed by ‘=>’. TEX waits
for a response. If the response is simply carriage_return, the line is accepted as it stands, otherwise the line
typed is used instead of the line in the file.

procedure firm_up_the_line;
var k: 0 .. buf size; {an index into buffer }
begin limit < last;
if pausing > 0 then
if interaction > nonstop-mode then
begin wake_up_terminal; print_ln; k < start;
while k£ < limit do
begin print_buffer (k)
end;
first < limit; prompt_input("=>"); { wait for user response }
if last > first then
begin for k < first to last — 1 do {move line down in buffer }
buffer [k + start — first] < buffer[k];
limit < start + last — first;
end;
end;
end;

6388 pdfTEX PART 25: EXPANDING THE NEXT TOKEN 77

388* Expanding the next token. Only a dozen or so command codes > maz_command can possibly
be returned by get_next; in increasing order, they are undefined_cs, expand_after, no_expand, input, if_test,
fiior_else, cs_name, convert, the, top_bot_mark, call, long_call, outer_call, long_outer_call, and end_template.

The expand subroutine is used when cur_cmd > maz_command. It removes a “call” or a conditional or
one of the other special operations just listed. It follows that ezpand might invoke itself recursively. In all
cases, expand destroys the current token, but it sets things up so that the next get_next will deliver the
appropriate next token. The value of cur_tok need not be known when expand is called.

Since several of the basic scanning routines communicate via global variables, their values are saved as
local variables of expand so that recursive calls don’t invalidate them.

(Declare the procedure called macro_call 415)
(Declare the procedure called insert_relax 405)
(Declare e-TEX procedures for expanding 1753)
procedure pass_text; forward;
procedure start_input; forward;
procedure conditional; forward;
procedure get_z_token; forward;
procedure conv_toks; forward;
procedure ins_the_toks; forward;
procedure expand;
label reswitch;
var t: halfword; {token that is being “expanded after” }
b: boolean; {keep track of nested csnames }
p,q,r: pointer; {for list manipulation }
j: 0.. buf_size; {index into buffer }
cv_backup: integer; {to save the global quantity cur_val }
cvl_backup , radiz_backup, co_backup: small_number; {to save cur_val_level, etc. }
backup_backup: pointer; {to save link(backup_head) }
save_scanner_status: small_number; {temporary storage of scanner_status }
begin incr(expand_depth_count);
if expand_depth_count > expand_depth then overflow("expansion depth", expand_depth);
cv_backup < cur_val; cvl_backup < cur_val_level; radix_backup < radiz; co_backup < cur_order;
backup_backup < link (backup_head);
reswitch: if cur_cmd < call then (Expand a nonmacro 391)
else if cur_cmd < end_template then macro_call
else (Insert a token containing frozen_endv 401);
cur-val < cv_backup; cur_vallevel < cvl_backup; radix < radix_backup; cur_order < co_backup;
link (backup_head) < backup_backup; decr(expand_depth_count);
end;

b

78 PART 25: EXPANDING THE NEXT TOKEN pdfTEX 8393

393*¥ The implementation of \noexpand is a bit trickier, because it is necessary to insert a special
‘dont_expand’ marker into TEX’s reading mechanism. This special marker is processed by get_next, but it
does not slow down the inner loop.

Since \outer macros might arise here, we must also clear the scanner_status temporarily.

{ Suppress expansion of the next token 393*) =
begin save_scanner_status < scanner_status; scanner_status <— normal; get_token;
scanner_status < save_scanner_status; t < cur_tok; back_input;
{now start and loc point to the backed-up token ¢ }
if (¢t > cs_token_flag) A (t # end_write_token) then
begin p < get_avail; info(p) < cs_-token_flag + frozen_dont_expand; link(p) < loc; start + p;
loc + p;
end;
end

This code is used in section 391.

398* (Manufacture a control sequence name 398*) =
begin r « get_avail; p < r; {head of the list of characters }
b < is_in_csname; is_in_csname < true;
repeat get_x_token;
if cur_cs =0 then store_new_token (cur_tok);
until cur_cs # 0;
if (cur_emd # end_cs_name) V (cur_chr # 0) then (Complain about missing \endcsname 399);
is_in_csname < b; (Look up the characters of list r in the hash table, and set cur_cs 400);
flush_list(r);
if eq_type(cur_cs) = undefined_cs then
begin eq_define(cur_cs, relax,256); {N.B.: The save_stack might change }
end; {the control sequence will now match ‘\relax’}
cur_tok < cur_cs + cs_token_flag; back_input;
end

This code is used in section 391.

426%* If the parameter consists of a single group enclosed in braces, we must strip off the enclosing braces.
That’s why rbrace_ptr was introduced.

(Tidy up the parameter just scanned, and tuck it away 426*) =
begin if (m = 1) A (info(p) < right_brace_limit) then
begin link(rbrace_ptr) < null; free_avail (p); p < link (temp_head); pstack[n] < link(p); free_avail (p);
end
else pstack[n] < link (temp_head);
incr(n);
if tracing-macros > 0 then
if (tracing_stack_levels = 0) V (input_ptr < tracing_stack_levels) then
begin begin_diagnostic; print_nl(match_chr); print_int(n); print("<=");
show_token_list (pstack[n — 1], null,1000); end_diagnostic(false);
end;
end

This code is used in section 418.

6427 pdfTExX PART 25: EXPANDING THE NEXT TOKEN

427* (Show the text of the macro being expanded 427*) =
begin begin_diagnostic;
if tracing_stack_levels > 0 then
if input_ptr < tracing_stack_levels then
begin v + input_ptr; println; print_char("~");
while v > 0 do
begin print_char("."); decr(v);
end;
print_cs(warning-index); token_show (ref-count);
end
else begin print_char("~"); print_char("~"); print_cs(warning_indez);
end
else begin print_in; print_cs(warning_index); token_show (ref_count);
end;
end_diagnostic(false);
end

This code is used in section 415.

79

80 PART 26: BASIC SCANNING SUBROUTINES

440%* (Fetch a character code from some table 440*) =
begin scan_char_num;
if m = zord_code_base then scanned_result (zord[cur_val])(int_val)
else if m = xchr_code_base then scanned_result(xchr|cur_val])(int_val)
else if m = azprn_code_base then scanned_result(zprn|cur_vall)(int-val)
else if m = math_code_base then scanned_result(ho(math_code(cur-val)))(int-val)
else if m < math_code_base then scanned_result(equiv(m + cur_val))(int_val)
else scanned_result (eqth[m + cur_val].int)(int_val);
end

This code is used in section 439.

pdfTEX

§428

6490 pdfTExX PART 27: BUILDING TOKEN LISTS 81

510*% Here we input on-line into the buffer array, prompting the user explicitly if n > 0. The value of n is
set negative so that additional prompts will not be given in the case of multi-line input.

(Input for \read from the terminal 510*) =
if interaction > nonstop-mode then
if n <0 then prompt_input("")
else begin wake_up_terminal; print_ln; sprint_cs(r); prompt_input("="); n + —1;
end
else begin limit < 0; fatal_error("*x*,(cannot \read from terminal,in nonstop modes)");
end

This code is used in section 509.

82 PART 28: CONDITIONAL PROCESSING pdfTEX 8513

527% (Either process \ifcase or set b to the value of a boolean condition 527*) =
case this_if of
if_char_code, if_cat_code: (Test if two characters match 532);
if_int_code, if_dim_code: (Test relation between integers or dimensions 529);
if-odd_code: (Test if an integer is odd 530);
if-vmode_code: b < (abs(mode) = vmode);
if-hmode_code: b < (abs(mode) = hmode);
if-mmode_code: b < (abs(mode) = mmode);
if_inner_code: b < (mode < 0);
if_void_code, if_hboz_code, if-vboz_code: { Test box register status 531);
ifz_code: (Test if two tokens match 533);
if_eof_code: begin scan_four_bit_int_or_18;
if cur_val = 18 then b < —shellenabledp
else b < (read_open[cur-val] = closed);
end;
if_true_code: b < true;
if_false_code: b < false;
(Cases for conditional 1767)
if-case_code: (Select the appropriate case and return or goto common_ending 535);
if_pdfprimitive_code: begin save_scanner_status < scanner_status; scanner_status <— normal; get_next;
scanner_status < save_scanner_status;
if cur_cs < hash_base then m < prim_lookup (cur_-cs — single_base)
else m «+ prim_lookup (text(cur_cs));
b+ ((cur-emd # undefined_cs) A (m # undefined_primitive) A (cur_cmd = prim_eq_type (m)) A(cur_chr =
prim_equiv(m)));
end;
end {there are no other cases }

This code is used in section 524.

6537 pdfTEX PART 29: FILE NAMES 83

539*% The file names we shall deal with have the following structure: If the name contains ¢/’ or ‘:’ (for
Amiga only), the file area consists of all characters up to and including the final such character; otherwise
the file area is null. If the remaining file name contains ‘.’ the file extension consists of all such characters
from the last ‘.’ to the end, otherwise the file extension is null.

We can scan such file names easily by using two global variables that keep track of the occurrences of area
and extension delimiters:

{ Global variables 13) +=
area_delimiter: pool_pointer; {the most recent ‘/’, if any }
ext_delimiter: pool_pointer; {the most recent ‘.’ if any }

540* Input files that can’t be found in the user’s area may appear in a standard system area called
TEX _area. Font metric files whose areas are not given explicitly are assumed to appear in a standard system
area called TEX font_area. These system area names will, of course, vary from place to place.

In C, the default paths are specified separately.

541* Here now is the first of the system-dependent routines for file name scanning.

procedure begin_name;
begin area_delimiter < 0; ext_delimiter < 0; quoted_filename < false;
end;

542*% And here’s the second. The string pool might change as the file name is being scanned, since a new
\csname might be entered; therefore we keep area_delimiter and ext_delimiter relative to the beginning of
the current string, instead of assigning an absolute address like pool_ptr to them.

function more_name(c : ASCII_code): boolean;

begin if (¢ = ",") A stop_at_space N (—quoted_filename) then more_name + false

else if c="""" then
begin quoted_filename < —quoted_filename; more_name < true;
end

else begin str_room(1); append_char(c); {contribute ¢ to the current string }
if IS_DIR_SEP (c) then
begin area_delimiter < cur_length; ext_delimiter < 0;

end
else if ¢ ="." then ext_delimiter < cur_length;
more_name < true;
end;

end;

84 PART 29: FILE NAMES pdfTEX 8543

543% The third. If a string is already in the string pool, the function slow_make_string does not create a
new string but returns this string number, thus saving string space. Because of this new property of the
returned string number it is not possible to apply flush_string to these strings.

procedure end_name;
var temp_str: str-number; {result of file name cache lookups }
j,8,t: pool_pointer; {running indices }
must_quote: boolean; { whether we need to quote a string }
begin if str_ptr + 3 > maz_strings then overflow ("number of strings", max_strings — init_str_ptr);
str_room (6); {Room for quotes, if needed. }
{add quotes if needed }
if area_delimiter # 0 then
begin {maybe quote cur_area }
must_quote < false; s < str_start[str_ptr|; t « str_start[str_ptr] + area_delimiter; j < s;
while (—must_quote) A (j < t) do
begin must_quote < str_pool[j] = "u"; incr(j);
end;
if must_quote then
begin for j < pool_ptr — 1 downto t do str_pool[j + 2] < str_pool[j];
str_pool[t + 1] <= """,
for j <t — 1 downto s do str_pool[j + 1] < str_pool|[j];
str_pool[s] «— "
if ext_delimiter # 0 then ext_delimiter < ext_delimiter + 2;
area_delimiter <— area_delimiter + 2; pool_ptr < pool_ptr + 2;
end;
end; {maybe quote cur_name }
s < str_start[str_ptr] + area_delimiter;
if ext_delimiter = 0 then t < pool_ptr
else t « str_start[str_ptr]| + ext_delimiter — 1;
must_quote < false; j < s;
while (—must_quote) A (j < t) do
begin must_quote < str_pool[j] = "u"; incr(j);
end;
if must_quote then
begin for j < pool_ptr — 1 downto t do str_pool[j + 2] + str_pool[j];
str_pool [t + 1] = """,
for j + t — 1 downto s do str_pool[j + 1] < str_pool[j];
str_pool[s] <= "
if ext_delimiter # 0 then ext_delimiter < ext_delimiter + 2;
pool_ptr < pool_ptr + 2;
end;
if ext_delimiter # 0 then
begin {maybe quote cur_ext }
s « str_start[str_ptr] + ext_delimiter — 1; t < pool_ptr; must_quote < false; j + s;
while (—must_quote) A (j < t) do
begin must_quote < str_pool[j] = ","; incr(j);
end;
if must_quote then
begin str_pool[t + 1] < """";
for j + t — 1 downto s do str_pool[j + 1] + str_pool[j;
str_pool[s] <= """"; pool_ptr + pool_ptr + 2;
end;
end;

3

6543 pdfTEX PART 29: FILE NAMES 85

if area_delimiter = 0 then cur_area < ""
else begin cur_area « str_ptr; str_start[str_ptr + 1] < str_start[str_ptr] + area_delimiter; incr(str_ptr);
temp_str < search_string (cur_area);
if temp_str > 0 then
begin cur_area < temp_str; decr(str_ptr); {no flush_string, pool_ptr will be wrong! }
for j < str_start[str_ptr + 1] to pool_ptr — 1 do
begin str_pool[j — area_delimiter] < str_pool[j];

end;
pool_ptr < pool_ptr — area_delimiter; {update pool_ptr }
end;
end;
if ext_delimiter = 0 then
begin cur_ext < ""; cur_name < slow_make_string;
end

else begin cur_name < str_ptr;
str_start [str_ptr + 1] < str_start[str_ptr] + ext_delimiter — area_delimiter — 1; incr(str_ptr);
cur_ext < make_string; decr(str_ptr); {undo extension string to look at name part }
temp_str < search_string (cur_name);
if temp_str > 0 then
begin cur_name temp_str; decr(str_ptr); {no flush_string, pool_ptr will be wrong! }
for j « str_start[str_ptr + 1] to pool_ptr — 1 do
begin str_pool[j — ext_delimiter + area_delimiter + 1] + str_pool[j];

end;
pool_ptr < pool_ptr — ext_delimiter + area_delimiter + 1; {update pool_ptr }
end;
cur_ext < slow_make_string; {remake extension string }
end;

end;

86 PART 29: FILE NAMES pdfTEX 8544

544% Conversely, here is a routine that takes three strings and prints a file name that might have produced
them. (The routine is system dependent, because some operating systems put the file area last instead of
first.)

define check_quoted (#) = {check if string # needs quoting }
if ## 0 then
begin j < str_start[#];
while (—must_quote) A (j < str_start[# + 1]) do
begin must_quote < str_pool[j] = ""; incr(j);
end;
end
define print_quoted (#) = { print string #, omitting quotes }
if # # 0 then
for j « str_start[#] to str_start[# +1] — 1 do
if so(str_pool[j]) # """" then print(so(str_pool[j]))

(Basic printing procedures 57) +=
procedure print_file_name(n,a, e : integer);
var must_quote: boolean; { whether to quote the filename }
J: pool_pointer; {index into str_pool }
begin must_quote < false; check_quoted(a); check_quoted(n);
check_quoted (e); {FIXME: Alternative is to assume that any filename that has to be quoted has at least
one quoted component...if we pick this, a number of insertions of print_file_name should go away.
must_quote:=((aj;0)and(str_pool [str_start[a]]=""""))or ((nj;0)and(str_pool[str_start[n]]=""""))or
((eji0)and(str_pool [str_start[e]]=""7")); }
if must_quote then print_char("""");
print_quoted (a); print_quoted(n); print_quoted (e);
if must_quote then print_char("""");
end;

545% Another system-dependent routine is needed to convert three internal TEX strings into the
name_of_file value that is used to open files. The present code allows both lowercase and uppercase letters
in the file name.

define append_to_name (#) =
begin c + #;
if =(c="""") then
begin incr(k);
if k < file_name_size then name_of file[k] + xchr|c];
end
end

procedure pack_file_name(n,a, e : str_number);

var k: integer; {number of positions filled in name_of_file }

¢: ASCII code; {character being packed }

j: pool_pointer; {index into str_pool }
begin k + 0;
if name_of_file then libc_free (name_of-file);
name_of_file < xmalloc_array (ASCIIL code, length(a) + length(n) + length(e) + 1);
for j « str_start|a] to str_start[a + 1] — 1 do append_to_name (so(str_pool[j])
for j « str_start[n] to str_start[n 4+ 1] — 1 do append_to_name (so(str_pool[j])
for j < str_start[e] to str_startfe + 1] — 1 do append_to_name (so(str_pool[j]));
if k < file_name_size then name_length < k else name_length < file_name_size;
name_of-file [name_length + 1] + 0;
end;

)

)

);
)

8546 pdfTEX PART 29: FILE NAMES 87

546* A messier routine is also needed, since format file names must be scanned before TEX’s string
mechanism has been initialized. We shall use the global variable TEX_format_default to supply the text
for default system areas and extensions related to format files.

Under UNIX we don’t give the area part, instead depending on the path searching that will happen during
file opening. Also, the length will be set in the main program.

define format_area_length =0 {length of its area part }
define format_ext_length =4 {length of its ‘.fmt’ part }
define format_extension = ".fmt" {the extension, as a WEB constant }

{ Global variables 13) +=
format_default_length: integer;
TEX _format_default: cstring;

547*% We set the name of the default format file and the length of that name in C, instead of Pascal, since
we want them to depend on the name of the program.

549¥ Here is the messy routine that was just mentioned. It sets name_of_file from the first n characters
of TEX_format_default, followed by buffer[a .. b], followed by the last format_ext_length characters of
TEX_format_default.

We dare not give error messages here, since TEX calls this routine before the error routine is ready to roll.
Instead, we simply drop excess characters, since the error will be detected in another way when a strange
file name isn’t found.

procedure pack_buffered_name(n : small_number; a,b : integer);
var k: integer; {number of positions filled in name_of-file }
¢: ASCII code; { character being packed }
j: integer; {index into buffer or TEX_format_default }
begin if n+ b — a+ 1+ format_ext_length > file_name_size then
b <+ a + file_name_size —n — 1 — format_ext_length;
k « 0;
if name_of_file then libc_free(name_of_file);
name_of_file <— zmalloc_array(ASCII_code,n + (b — a + 1) + format_ext_length + 1);
for j < 1to n do append_to_name (zord [ucharcast(TEX_format_default[j])]);
for j < ato b do append_to_name (buffer[j]);
for j < format_default_length — format_ext_length + 1 to format_default_length do
append_to_name (zord [ucharcast (TEX_format_default[j])]);
if k < file_name_size then name_length <+ k else name_length < file_name_size;
name_of-file [name_length + 1] + 0;
end;

88 PART 29: FILE NAMES pdfTEX §550

550* Here is the only place we use pack_buffered_name. This part of the program becomes active when a
“virgin” TEX is trying to get going, just after the preliminary initialization, or when the user is substituting
another format file by typing ‘&’ after the initial ‘**’ prompt. The buffer contains the first line of input in
buffer[loc .. (last — 1)], where loc < last and buffer[loc] # ",".

(Declare the function called open_fmt_file 550*) =
function open_fmt_file: boolean;
label found, exit;
var j: 0.. buf_size; {the first space after the format file name }
begin j < loc;
if buffer[loc] = "&" then
begin incr(loc); j < loc; buffer[last] < "";
while buffer[j] # "," do incr(j);
pack_buffered_name (0, loc,j — 1); {Kpathsea does everything }
if w_open_in(fmt_file) then goto found;
wake_up_terminal; wterm(Sorry, I can” "t find the format,” 7);
fouts (stringcast (name_of-file + 1), stdout); wterm ("~ ; willytryy™ 7);
fouts (TEX_format_default + 1, stdout); wterm_In(~~"."); update_terminal;
end; {now pull out all the stops: try for the system plain file }
pack_buffered_name (format_default_length — format_ext_length, 1,0);
if ~w_open_in(fmt_file) then
begin wake_up_terminal; wterm(I, can” "t find, the_ format file,” ");

fouts (TEX_format_default + 1, stdout); wterm_In(~~"'"); open_fmt_file < false; return;
end;

found: loc < j; open_fmt_file < true;

exit: end;

This code is used in section 1482%*.

6551 pdfTEX PART 29: FILE NAMES 89

551* Operating systems often make it possible to determine the exact name (and possible version number)
of a file that has been opened. The following routine, which simply makes a TEX string from the value of
name_of_file, should ideally be changed to deduce the full name of file f, which is the file most recently
opened, if it is possible to do this in a Pascal program.

This routine might be called after string memory has overflowed, hence we dare not use ‘str_room’.

function make_name_string: str_number;
var k: 1.. file_name_size; {index into name_of_file }
save_area_delimiter, save_ext_delimiter: pool_pointer;
save_name_in_progress, save_stop_at_space: boolean;
begin if (pool_ptr + name_length > pool_size) \V (str_ptr = maz_strings) V (cur_length > 0) then
make_name_string < "7"
else begin for k < 1 to name_length do append_char(zord|[name_of-file[k]]);
make_name_string < make_string; { At this point we also set cur_name, cur_ext, and cur_area to
match the contents of name_of_file. }
save_area_delimiter < area_delimiter; save_ext_delimiter < ext_delimiter;
Save_name_in_progress <— name_in_progress; save_stop_at_space <— stop_at_space;
name_in_progress <— true; begin_name; stop_at_space < false; k < 1;
while (k < name_length) A (more_name (name_of-file[k])) do incr(k);
stop_at_space < save_stop_at_space; end_name; name_in_progress <— SAVE_NAME_IN_Progress;
area_delimiter < save_area_delimiter; ext_delimiter < save_ext_delimiter;
end;
end;
function a_make_name_string(var f : alpha_file): str_number;
begin a_make_name_string < make_name_string;
end;
function b_make_name_string(var f : byte_file): str_number;
begin b_make_name_string < make_name_string;
end;
function w_make_name_string(var f : word_file): str-number;
begin w_make_name_string < make_name_string;
end;

90 PART 29: FILE NAMES pdfTEX §552

552*% Now let’s consider the “driver” routines by which TEX deals with file names in a system-independent
manner. First comes a procedure that looks for a file name in the input by calling get_z_token for the
information.

procedure scan._file_name;
label done;
var save_warning_index: pointer;
begin save_warning_indexr < warning_index; warning_indezr < cur_cs;
{ store cur_cs here to remember until later }
(Get the next non-blank non-relax non-call token 430);
{ here the program expands tokens and removes spaces and \relaxes from the input. The \relax
removal follows LuaTeX”s implementation, and other cases of balanced text scanning. }
back_input; {return the last token to be read by either code path }
if cur_ecmd = left_brace then scan_file_name_braced
else begin name_in_progress < true; begin_name; (Get the next non-blank non-call token 432);
loop begin if (cur_cmd > other_char) V (cur_chr > 255) then {not a character }
begin back_input; goto done;
end; {If cur_chr is a space and we’re not scanning a token list, check whether we're at the end
of the buffer. Otherwise we end up adding spurious spaces to file names in some cases. }
if (cur_chr = "") A (state # token_list) A (loc > limit) then goto done;
if ~more_name(cur_chr) then goto done;
get_z_token;
end;
end;
done: end_name; name_in_progress < false; warning_index <+ save_warning_index;
{ restore warning_indez }
end;

6556 pdfTEX PART 29: FILE NAMES 91

556* If some trouble arises when TEX tries to open a file, the following routine calls upon the user to
supply another file name. Parameter s is used in the error message to identify the type of file; parameter e
is the default extension if none is given. Upon exit from the routine, variables cur_name, cur_area, cur_ext,
and name_of_file are ready for another attempt at file opening.

procedure prompt_file_name (s, e : str-number);
label done;
var k: 0 .. buf_size; {index into buffer }
saved_cur_name: str_number; {to catch empty terminal input }
saved_cur_ext: stronumber; {to catch empty terminal input }
saved_cur_area: str_number; {to catch empty terminal input }
begin if interaction = scroll_mode then wake_up_terminal,;

if s = "input file name" then print_err("I can "t find file ")
else print_err("I can "t write on, file ™ ");

print_file_name (cur_name, cur_area, cur-ext); print("”.");

if (e=".tex")V (e="")then show_context;

print_In; print_c_string (prompt_file_name_help_msg);
if (e#"") then

begin print("; default, file extension is, "); print(e); print(" ");

end;
print(")"); print_ln; print_nl("Please type another "); print(s);
if interaction < scroll_mode then fatal_error("*x*,(job_aborted, file error,in nonstop_mode)");
saved_cur_name < cur_name; saved_cur_ext < cur_ext; saved_cur_area < cur_area; clear_terminal;
prompt_input (":,"); (Scan file name in the buffer 557);

if (length(cur-name) = 0) A (cur_ext = "") A (cur_area = "") then
begin cur_name < saved_cur_name; cur_ext < saved_cur_ext; cur_area <— saved_cur_-area;
end

else if cur_ext = "" then cur_ext < e;

pack_cur_name;

end;

558* Here’s an example of how these conventions are used. Whenever it is time to ship out a box of stuff,
we shall use the macro ensure_dvi_open.

define log_name = texmf_log_name
define ensure_dvi_open =
if output_file_name = 0 then
begin if job_name = 0 then open_log._file;
pack_job_name (" .dvi");
while —b_open_out(dvi_file) do prompt_file_name("file name for output",".dvi");
output_file_name < b_make_name_string (dvi_file);
end

(Global variables 13) +=

dvi_file: byte_file; {the device-independent output goes here }
output_file_name: str_number; {full name of the output file }
log_name: str_number; { full name of the log file }

92 PART 29: FILE NAMES pdfTEX §560

560* The open_log_file routine is used to open the transcript file and to help it catch up to what has
previously been printed on the terminal.

procedure open_log._file;

var old_setting: 0 .. max_selector; {previous selector setting }

k: 0.. buf-size; {index into months and buffer }

I: 0..bufsize; {end of first input line }

months: const_cstring;
begin old_setting < selector;
if job_name = 0 then job_name <« get_job_name("texput");
pack_job_name (" .£1s"); recorder_change_filename (stringcast(name_of-file +1)); pack_job_name(".log");
while —a_open_out (log_file) do (Try to get a different log file name 561);
log_name < a_make_name_string (log_file); selector < log_only; log_opened <+ true;
(Print the banner line, including the date and time 562*);
if mlitex_enabled_p then

begin wlog_cr; wlog(MLTeX v2.2 enabled”);

end;
if encter_enabled_p then

begin wlog_cr; wlog(encTeX _banner); wlog(~, reencoding enabled”);

if translate_filename then

begin wlog_cr; wlog(L, (\xordcode, \xchrcode, \xprncode overridden by, TCX));
end;

end;
input_stack[input_ptr] < cur_input; {make sure bottom level is in memory }
print_nl ("*+*"); | < input_stack[0].limit_field; {last position of first line }
if buffer[l] = end_line_char then decr(l);
for k < 1tol do print(buffer|k]);
print_In; {now the transcript file contains the first line of input }
selector < old_setting + 2; {log_only or term_and_log }
end;

6562 pdfTEX PART 29: FILE NAMES 93

562* (Print the banner line, including the date and time 562*) =
begin if src_specials_p V file_line_error_style_p \V parse_first_line_p then wlog(banner_k)
else wlog (banner);
wlog (version_string); slow_print(format_ident); print("uy,"); print_int(sys_day); print_char(",");
months < ~JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC *;
for k < 3 x sys_month — 2 to 3 * sys_month do wlog(months|k]);
print_char("y"); print_int (sys_year); print_char(","); print_two (sys_time div 60); print_char(":");
print_two (sys_time mod 60);
if eTeX_ex then
begin ; wlog_cr; wlog(entering extended mode”);
end;
if shellenabledp then
begin wlog_cr; wlog(”y");
if restrictedshell then
begin wlog(restricted,”);
end;
wlog(“\writel8 enabled. ")
end;
if src_specials_p then
begin wlog_cr; wlog(~Source specials enabled. ")
end;
if file_line_error_style_p then
begin wlog_cr; wlog(" file:line:error, style messages enabled. ")
end;
if parse_first_line_p then
begin wlog_cr; wlog(~%&-1line parsing enabled. ");
end;
if translate_filename then
begin wlog_cr; wlog("L("); fputs(translate_filename, log_file); wlog(~) 7);
end;
end

This code is used in section 560%*.

94 PART 29: FILE NAMES pdfTEX §563

563*% Let’s turn now to the procedure that is used to initiate file reading when an ‘\input’ command is
being processed. Beware: For historic reasons, this code foolishly conserves a tiny bit of string pool space;
but that can confuse the interactive ‘E’ option.

procedure start_input; {TEX will \input something }
label done;
var temp_str: str_number; v: pointer;
begin scan_file_name; {set cur_name to desired file name }
pack_cur_name;
loop begin begin_file_reading; {set up cur_file and new level of input }
tez_input_type < 1; { Tell open_input we are \input. }
{Kpathsea tries all the various ways to get the file. }
if kpse_in_name_ok (stringcast (name_of_file + 1)) A a_open_in(cur_file, kpse_tex_format) then

goto done;
end_file_reading; {remove the level that didn’t work }
prompt,ﬁle,name("input._,f ile name"," ");
end;

done: name <+ a_make_name_string (cur_file); source_filename_stack[in_open] <— name;
full_source_filename_stack [in_open| < make_full_name_string;
if name = str_ptr — 1 then {we can try to conserve string pool space now }
begin temp_str + search_string (name);
if temp_str > 0 then
begin name <« temp_str; flush_string;
end;
end;
if job_name = 0 then
begin job_name < get_job_name(cur_name); open_log_file;
end; {open_log_file doesn’t show_context, so limit and loc needn’t be set to meaningful values yet }
if term_offset + length (full_source_filename_stack[in_open]) > maz_print_line — 2 then print_in
else if (term_offset > 0) V (file_offset > 0) then print_char(",");
print_char (" ("); incr(open_parens); slow_print (full_source_filename_stack[in_open)); update_terminal;
if tracing_stack_levels > 0 then
begin begin_diagnostic; print_ln; print_char("~"); v < input_ptr — 1;
if v < tracing_stack_levels then
while v > 0 do
begin print_char("."); decr(v);
end
else print_char("~");
slow_print ("INPUT"); slow_print(cur_name); slow_print(cur_ext); print_ln; end_diagnostic(false);
end;
state < new_line; (Prepare new file SyncTgX information 1919*);
(Read the first line of the new file 564);
end;

6565 pdfTEX PART 30: FONT METRIC DATA 95

574% So that is what TFM files hold. Since TEX has to absorb such information about lots of fonts, it stores
most of the data in a large array called font_info. Each item of font_info is a memory_word; the fix_word
data gets converted into scaled entries, while everything else goes into words of type four_quarters.

When the user defines \font\f, say, TEX assigns an internal number to the user’s font \f. Adding this
number to font_id_base gives the eqtb location of a “frozen” control sequence that will always select the font.

(Types in the outer block 18) +=
internal_font_number = integer; { font in a char_node }
font_index = integer; {index into font_info }
nine_bits = min_quarterword .. non_char;

575% Here now is the (rather formidable) array of font arrays.

define non_char = ¢i(256) {a halfword code that can’t match a real character }
define non_address =0 {a spurious bchar_label }

(Global variables 13) +=
font_info: Tfmemory-word; {the big collection of font data }
fmem_ptr: font_index; {first unused word of font_info }
font_ptr: internal_font_number; {largest internal font number in use }
font_check: 1four_quarters; {check sum }
font_size: Tscaled; { “at” size}
font_dsize: Tscaled; { “design” size }
font_params: Tfont_indexr; {how many font parameters are present }
font_name: Tstr_number; {mname of the font }
font_area: Tstr-number; {area of the font }
font_bc: Teight_bits; {beginning (smallest) character code }
font_ec: Teight_bits; {ending (largest) character code }
font_glue: Tpointer; { glue specification for interword space, null if not allocated }
font_used: Tboolean; {has a character from this font actually appeared in the output? }
hyphen_char: finteger; {current \hyphenchar values }
skew_char: tinteger; { current \skewchar values }
bchar_label: Tfont_index;
{start of lig_kern program for left boundary character, non_address if there is none }
font_bchar: tnine_bits; {boundary character, non_char if there is none }
font_false_bchar: Tnine_bits; { font_bchar if it doesn’t exist in the font, otherwise non_char }

576* Besides the arrays just enumerated, we have directory arrays that make it easy to get at the
individual entries in font_info. For example, the char_info data for character ¢ in font f will be in
font_info[char_base[f] + c].qqqq; and if w is the width_index part of this word (the b0 field), the width of
the character is font_info[width_base[f] + w].sc. (These formulas assume that min_quarterword has already
been added to ¢ and to w, since TEX stores its quarterwords that way.)

(Global variables 13) +=

char_base: Tinteger; {base addresses for char_info }

width_base: Tinteger; {base addresses for widths }

height_base: Tinteger; {base addresses for heights }

depth_base: Tinteger; {base addresses for depths }

italic_base: tinteger; { base addresses for italic corrections }
lig_kern_base: Tinteger; {base addresses for ligature/kerning programs }
kern_base: finteger; {base addresses for kerns }

exten_base: Tinteger; { base addresses for extensible recipes }
param_base: Tinteger; {base addresses for font parameters }

577* (Set initial values of key variables 21) +=

96 PART 30: FONT METRIC DATA pdfTEX §578

578% TEX always knows at least one font, namely the null font. It has no characters, and its seven
parameters are all equal to zero.
(Initialize table entries (done by INITEX only) 182) +=

6580 pdfTEX PART 30: FONT METRIC DATA 97

580* Of course we want to define macros that suppress the detail of how font information is actually
packed, so that we don’t have to write things like

font_info[width_base[f] + font_info[char_base[f] + c].qqqq.b0].sc

too often. The WEB definitions here make char_info(f)(c) the four_quarters word of font information
corresponding to character ¢ of font f. If ¢ is such a word, char_width(f)(q) will be the character’s width;
hence the long formula above is at least abbreviated to

char_width (f)(char_info(f)(c)).

Usually, of course, we will fetch ¢ first and look at several of its fields at the same time.

The italic correction of a character will be denoted by char_italic(f)(q), so it is analogous to char_width.
But we will get at the height and depth in a slightly different way, since we usually want to compute both
height and depth if we want either one. The value of height_depth(q) will be the 8-bit quantity

b = height_index x 16 + depth_indez,

and if b is such a byte we will write char_height(f)(b) and char_depth(f)(b) for the height and depth of the
character ¢ for which ¢ = char_info(f)(c). Got that?

The tag field will be called char_tag(q); the remainder byte will be called rem_byte(q), using a macro that
we have already defined above.

Access to a character’s width, height, depth, and tag fields is part of TEX’s inner loop, so we want these
macros to produce code that is as fast as possible under the circumstances.

MLTEX will assume that a character c exists iff either exists in the current font or a character substitution
definition for this character was defined using \charsubdef. To avoid the distinction between these two
cases, MLTEX introduces the notion “effective character” of an input character c. If ¢ exists in the current
font, the effective character of ¢ is the character c itself. If it doesn’t exist but a character substitution
is defined, the effective character of ¢ is the base character defined in the character substitution. If there
is an effective character for a non-existing character ¢, the “virtual character” ¢ will get appended to the
horizontal lists.

The effective character is used within char_info to access appropriate character descriptions in the font.
For example, when calculating the width of a box, MLTEX will use the metrics of the effective characters.
For the case of a substitution, MLTEX uses the metrics of the base character, ignoring the metrics of the
accent character.

If character substitutions are changed, it will be possible that a character ¢ neither exists in a font nor
there is a valid character substitution for ¢. To handle these cases effective_char should be called with its
first argument set to true to ensure that it will still return an existing character in the font. If neither c
nor the substituted base character in the current character substitution exists, effective_char will output a
warning and return the character font_be[f] (which is incorrect, but can not be changed within the current
framework).

Sometimes character substitutions are unwanted, therefore the original definition of char_info can be used
using the macro orig_char_info. Operations in which character substitutions should be avoided are, for
example, loading a new font and checking the font metric information in this font, and character accesses in
math mode.

define char_list_ezists(#) = (char_sub_code (#) > hi(0))

define char_list_accent (#) = (ho(char_sub_code (#)) div 256)

define char_list_char (#) = (ho(char_sub_code (#)) mod 256)

define char_info_end (#) = #. .qqqq

define char_info(#) = font,mfo [char_base[#] + effective_char | (|true,#, char_info_end

define orig_char_info_end (#) = # | .qqqq
define orig_char_info(#) = font_info | char_base[#] + orig_char_info_end

98 PART 30: FONT METRIC DATA pdfTEX

define
define
define
define
define
define
define
define
define
define
define

char_width_end (#) = #.00 | .sc

char_width (#) = font_info | width_base[#] + char_width_end
char_exists (#) = (#.00 > min_quarterword)

char_italic_end (#) = (qo(#.02)) div 4] .sc

char_italic (#) = font_info [italic_base[#] + char_italic_end
height_depth (#) = qo (#.01)

char_height_end (#) = (#) div 16 | .sc

char_height (#) = font_info | height_base[#] + char_height_end
char_depth_end (#) = (#) mod 16 | .sc

char_depth (#) = font_info | depth_base[#] + char_depth_end
char_tag (#) = ((go(#.02)) mod 4)

§580

586* TEX checks the information of a TFM file for validity as the file is being read in, so that no further
checks will be needed when typesetting is going on. The somewhat tedious subroutine that does this is called
read_font_info. It has four parameters: the user font identifier u, the file name and area strings nom and
aire, and the “at” size s. If s is negative, it’s the negative of a scale factor to be applied to the design size;
s = —1000 is the normal case. Otherwise s will be substituted for the design size; in this case, s must be
positive and less than 2048 pt (i.e., it must be less than 227 when considered as an integer).

The subroutine opens and closes a global file variable called tfm._file. It returns the value of the internal
font number that was just loaded. If an error is detected, an error message is issued and no font information
is stored; null_font is returned in this case.

define
define

bad_tfm =11 {label for read_font_info }
abort = goto bad_tfm {do this when the TFM data is wrong }

{ Declare additional functions for MLTEX 1886*)
function read_font_info(u : pointer; nom, aire : str_number; s : scaled): internal_font_number:;

{input a TFM file }

label done, bad_tfm, not_found;
var k: font_inder; {index into font_info }
name_too_long: boolean; { mom or aire exceeds 255 bytes? }
file_opened: boolean; {was tfm_file successfully opened? }
If,lh,be, ec,nw,nh,nd,ni,nl,nk,ne,np: halfword; {sizes of subfiles }
f: internal_font_number; {the new font’s number }
g: internal_font_number; {the number to return }
a,b,c,d: eight_bits; {byte variables }
qw: four_quarters; sw: scaled; {accumulators }
beh_label: integer; {left boundary start location, or infinity }
behar: 0..256; {boundary character, or 256 }
z: scaled; {the design size or the “at” size }
alpha: integer; beta: 1..16; {auxiliary quantities used in fixed-point multiplication }
begin g < null_font;
(Read and check the font data; abort if the TFM file is malformed; if there’s no room for this font, say so
and goto done; otherwise incr(font_ptr) and goto done 588);
bad_tfm: {Report that the font won’t be loaded 587*);
done: if file_opened then b_close(tfm_file);
read_font_info < g;

end;

)

6587 pdfTEX PART 30: FONT METRIC DATA 99

587% There are programs called TFtoPL and PLtoTF that convert between the TFM format and a symbolic
property-list format that can be easily edited. These programs contain extensive diagnostic information, so
TEX does not have to bother giving precise details about why it rejects a particular TFM file.

define start_font_error_message = print_err("Font,"); sprint_cs(u); print_char("=");
print_file_name (nom, aire,"");
if s > 0 then
begin print(" at,"); print_scaled(s); print("pt");
end
else if s # —1000 then
begin print(",scaled,"); print_int(—s);
end
(Report that the font won’t be loaded 587*) =
start_font_error_message;
if file_opened then print(" not,loadable: Bad metric,(TFM) file")
else if name_too_long then print(" not, loadable: Metric, (TFM) file_ name too,long")
else print("_notloadable: Metric,(TFM) file not, found");
help5 ("I wasn t_able to read the size data_ for this font,")
("so,_,IL,willL,ignore,_,theufontuspecification. ")
("[Wizards can, fix, TFM files jusing TFtoPL/PLtoTF.]")
("You might try_ inserting a different, font spec;")
("e.g., typeu I\font<same font_id>=<substitute font, name>"."); error

This code is used in section 586*.

589* (Open tfm_file for input 589*) =
file_opened < false; name_too_long < (length(nom) > 255) V (length (aire) > 255);
if name_too_long then abort; {kpse_find_file will append the ".tfm", and avoid searching the disk
before the font alias files as well. }
pack_file_name (nom, aire,"");
if —b_open_in(tfm_file) then abort;
file_opened <+ true

This code is used in section 588.

590* Note: A malformed TFM file might be shorter than it claims to be; thus eof ({fm_file) might be true
when read_font_info refers to tfm_file1 or when it says get (¢fm_file). If such circumstances cause system error
messages, you will have to defeat them somehow, for example by defining fget to be ‘begin get(tfm_file); if
eof (tfm_file) then abort; end’.
define fget = tfm_temp <« getc(tfm_file)
define fbyte = tfm_temp
define read_sizteen (#) =
begin # « fbyte;
if # > 127 then abort;
foet; # < #x 400 + fobyte;
end
define store_four_quarters (#) =
begin fget; a < foyte; qu.b0 + gi(a); fget; b+ foyte; quw.bl < qi(b); fget; ¢ « foyte;
qw.b2 + qi(c); fget; d < foyte; quw.b3 < qi(d); # + quw;
end

100 PART 30: FONT METRIC DATA pdfTEX §596

596* We want to make sure that there is no cycle of characters linked together by list_tag entries, since
such a cycle would get TEX into an endless loop. If such a cycle exists, the routine here detects it when
processing the largest character code in the cycle.

define check_byte_range (#) =
begin if (# < bc) V (# > ec) then abort
end
define current_character_being_worked_on = k + bc — fmem_ptr

{ Check for charlist cycle 596*) =
begin check_byte_range(d);
while d < current_character_being_-worked_-on do
begin qu + orig_char_info(f)(d); {N.B.: not gi(d), since char_base[f] hasn’t been adjusted yet }
if char_tag(qw) # list_tag then goto not_found;
d + go(rem_byte(qw)); {next character on the list }
end;
if d = current_character_being-worked_on then abort; {yes, there’s a cycle }
not_found: end

This code is used in section 595.

600* define check_existence (#) =
begin check_byte_range (#); quw < orig_char_info(f)(#); {N.B.: not qi(#) }
if —char_ezists(qw) then abort;
end

(Read ligature/kern program 600*) =
beh_label < “77777; bchar < 256;
if nl > 0 then
begin for k < lig_kern_base[f] to kern_base[f] + kern_base_offset — 1 do
begin store_four_quarters(font_info[k].qqqq);
if a > 128 then
begin if 256 * ¢+ d > nl then abort;
if a =255 then
if k = lig_kern_base[f] then bchar <« b;
end
else begin if b # bchar then check_existence (b);
if ¢ < 128 then check_ezistence(d) { check ligature }
else if 256 x (¢ — 128) + d > nk then abort; {check kern }
if a < 128 then
if k — lig-kern_base[f] +a+ 1 > nl then abort;
end;
end;
if a = 255 then bch_label <+ 256 x ¢ + d;
end;
for k < kern_base[f] + kern_base_offset to exten_base[f] — 1 do store_scaled (font_info[k].sc);

This code is used in section 588.

6602 pdfTExX PART 30: FONT METRIC DATA 101

602* We check to see that the TFM file doesn’t end prematurely; but no error message is given for files
having more than [f words.

(Read font parameters 602*) =
begin for k£ < 1 to np do
if k=1 then {the slant parameter is a pure number }
begin fget; sw < foyte;
if sw > 127 then sw + sw — 256;
fget; sw < sw * 400 + foyte; fget; sw < sw * 400 + foyte; fget;
font_info[param_base[f]].sc + (sw x "20) + (foyte div "20);
end
else store_scaled (font_info[param_base[f] + k — 1].sc);
if feof (tfm_file) then abort;
for k < np +1to 7 do font_info[param_base[f] + k — 1].sc < 0;
end

This code is used in section 588.

603* Now to wrap it up, we have checked all the necessary things about the TFM file, and all we need to
do is put the finishing touches on the data for the new font.

define adjust (#) = #[f] < qo(#[f]) {correct for the excess min_quarterword that was added }

(Make final adjustments and goto done 603*) =
if np > 7 then font_params[f] < np else font_params[f] + 7;
hyphen_char[f] < default_hyphen_char; skew_char[f] < default_skew_char;
if bch_label < nl then bchar_label[f] < beh_label + lig_kern_base]f]
else bchar_label[f] < non_address;
font_bchar[f] < qi(bchar); font_false_bchar[f] + qi(bchar);
if bchar < ec then
if bchar > be then
begin qw < orig_char_info(f)(bchar); {N.B.: not gi(bchar)}
if char_exists(qw) then font_false_bchar|f] + non_char;
end;
font_name[f] < nom; font_area[f] < aire; font_be[f] + be; font_ec[f] + ec; font_glue[f] + null;
adjust (char_base); adjust(width_base); adjust(lig-kern_base); adjust(kern_base); adjust(exten_base);
decr (param_base[f]); fmem_ptr < fmem_ptr + If ; font_ptr < f; g < f; goto done

This code is used in section 588.

102 PART 30: FONT METRIC DATA pdfTEX §604

604* Before we forget about the format of these tables, let’s deal with two of TEX’s basic scanning routines
related to font information.

(Declare procedures that scan font-related stuff 604*) =
function test_no_ligatures(f : internal_font_number): integer;
label ezit;
var c: integer;
begin test_no_ligatures < 1;
for ¢ + font_bc[f] to font_ec[f] do
if char_exists(orig_char_info(f)(c)) then
if odd(char_tag(orig_char_info(f)(c))) then
begin test_no_ligatures < 0; return;
end;
exit: end;
function get_tag-code(f : internal_font_number; c : eight_bits): integer;
var i: small_number;
begin if is_valid_char(c) then
begin i < char_tag(orig_char_info(f)(c));
if ¢ = lig_tag then get_tag_code < 1
else if ¢ = list_tag then get_tag_code < 2
else if i = ext_tag then get_tag_code <+ 4
else get_tag_code + 0;
end
else get_tag_code < —1;
end;
procedure scan_font_ident;
var f: internal_font_number; m: halfword;
begin (Get the next non-blank non-call token 432);
if (cur_emd = def_font) V (cur_cmd = letterspace_font) V (cur_cmd = pdf_copy_font) then f < cur_font
else if cur_cmd = set_font then f < cur_chr
else if cur_cmd = def_family then
begin m <+ cur_chr; scan_four_bit_int; f + equiv(m + cur_val);
end
else begin print_err("Missing, font, identifier");
help2 ("I was looking for a control sequence whose")
("current_ meaning has been defined by, \font."); back_error; f < null_font;
end;
cur_val + f;
end;
See also section 605.

This code is used in section 435.

6608 pdfTEX PART 30: FONT METRIC DATA 103

608*% When TEX wants to typeset a character that doesn’t exist, the character node is not created; thus
the output routine can assume that characters exist when it sees them. The following procedure prints a
warning message unless the user has suppressed it.
procedure char-warning (f : internal_font_number; c : eight_bits);
var old_setting: integer; {saved value of tracing_online }
begin if tracing_lost_chars > 0 then
begin old_setting < tracing_online;
if eTeX_ex A (tracing-lost_chars > 1) then tracing_online < 1,
if tracing_lost_chars > 2 then print_err("Missing,character: There_ is no.")
else begin begin_diagnostic; print_nl("Missing character: There_is no.")
end;
print_ASCII (c);
if tracing_lost_chars > 2 then
begin print(",("); print_hex(c); print(")");
end;
print("uin,fonty"); slow_print (font-name|[f]);
if tracing_lost_chars < 3 then print_char("!");
tracing_online < old_setting;
if tracing_lost_chars > 2 then
begin help0; error;
end
else end_diagnostic(false);
end; {of tracing_lost_chars > 0}
end; {of procedure }

609* Here is a function that returns a pointer to a character node for a given character in a given font. If
that character doesn’t exist, null is returned instead.
This allows a character node to be used if there is an equivalent in the char_sub_code list.

function new_character (f : internal_font_number; c : eight_bits): pointer;
label ezit;
var p: pointer; {newly allocated node }
ec: quarterword; {effective character of ¢}
begin ec + effective_char (false, f, qi(c));
if font_be[f] < go(ec) then
if font_ec[f] > go(ec) then
if char_exists(orig_char_info(f)(ec)) then {N.B.: not char_info }
begin p <+ get_avail; font(p) < f; character(p) < qi(c); new_character < p; return;
end;
char_warning (f, c); new_character < null;
exrit: end;

104 PART 31: DEVICE-INDEPENDENT FILE FORMAT pdfTEX 8610

619*% Shipping pages out. After considering TEX’s eyes and stomach, we come now to the bowels.

The ship_out procedure is given a pointer to a box; its mission is to describe that box in DVI form,
outputting a “page” to dvi_file. The DVI coordinates (h,v) = (0,0) should correspond to the upper left
corner of the box being shipped.

Since boxes can be inside of boxes inside of boxes, the main work of ship_out is done by two mutually
recursive routines, hlist_out and vlist_out, which traverse the hlists and vlists inside of horizontal and vertical
boxes.

As individual pages are being processed, we need to accumulate information about the entire set of pages,
since such statistics must be reported in the postamble. The global variables total_pages, maz_v, max_h,
max_push, and last_bop are used to record this information.

The variable doing_leaders is true while leaders are being output. The variable dead_cycles contains the
number of times an output routine has been initiated since the last ship_out.

A few additional global variables are also defined here for use in vlist_out and hlist_out. They could have
been local variables, but that would waste stack space when boxes are deeply nested, since the values of
these variables are not needed during recursive calls.

(Global variables 13) +=

total_pages: integer; {the number of pages that have been shipped out }
maz_v: scaled; {maximum height-plus-depth of pages shipped so far }
maz-h: scaled; {maximum width of pages shipped so far }

maz_push: integer; { deepest nesting of push commands encountered so far }
last_bop: integer; {location of previous bop in the DVI output }

dead_cycles: integer; {recent outputs that didn’t ship anything out }
doing_leaders: boolean; { are we inside a leader box? }

{ character and font in current char_node }
c: quarterword;
f: internal_font_number;
rule_ht, rule_dp, rule_wd: scaled; {size of current rule being output }
g: pointer; {current glue specification }
lg, Ir: integer; { quantities used in calculations for leaders }

622* Some systems may find it more efficient to make dvi_buf a packed array, since output of four bytes
at once may be facilitated.

{ Global variables 13) +=

dvi_buf : Teight_bits; {buffer for DVI output }

half-buf : integer; { half of dvi_buf_size }

dvi_limit: integer; {end of the current half buffer }

dvi_ptr: integer; {the next available buffer address }

dvi_offset: integer; { dvi_buf_size times the number of times the output buffer has been fully emptied }
dvi_gone: integer; {the number of bytes already output to dvi_file }

624* The actual output of dvi_buf[a .. b] to dvi_file is performed by calling write_dvi(a, b). For best results,
this procedure should be optimized to run as fast as possible on each particular system, since it is part of
TEX’s inner loop. It is safe to assume that a¢ and b+ 1 will both be multiples of 4 when write_dvi(a,b) is
called; therefore it is possible on many machines to use efficient methods to pack four bytes per word and
to output an array of words with one system call.

In C, we use a macro to call fwrite or write directly, writing all the bytes in one shot. M