
The correct generation and typesetting of an index for a Greek document prepared with

LaTeX is not a trivial task at all. First of all, the program makeindex cannot handle Greek

letters, but even if the .idx is writen using the babel latin-transcription, the generated

.ind file does not follow the order of the Greek alphabet. On the other hand, makeindex is

doing a fine job for English. This means that if we let makeindex think that the Greek

words are actually strange English words, we can use it to generate correct Greek

indices. Letʹs be more concrete. Every line of an .idx file has the following format:

\indexnetry{word}{Page number}, with the obvious meaning. If word is some Greek word,

then in order to allow correct sorting we must sort index entries by using a

transliteration that will correspond

α to a, β to b, γ to c, etc. Now, if we transform the above line into \indexentry{trans.

word@word}{Page number}, it is possible to get a correct index. So, the first thing we need is a

routine that will perform this transliteration. The following routine, g2e, accepts one

argument, a word, and returns a transliteration of it. It can handle properly words

writen with the Greek alphabet and word writen using the babel Greek transliteration.

The routine is very simple: it splits the word into an array of characters, and creates a

new word by transliterating each character of the original word. Special care has been

taken to correctly process the letter ``Capital Alpha with accuteʹʹ, since the ISO8859-7

and the Windows-1253 encodings have reserved different slots for this character.

<Routine that performs transliteration>=
sub g2e

{

 $word = $_[0];

 $tword = "";

 foreach $_ (split(//, $word))

 {

 if (/^a|^A|^α|^Α|^ά|^\xA2|^\xB6/) { $tword .= "a";}

 elsif (/^b|^B|^β|^Β/) { $tword .= "b"; }

 elsif (/^d|^D|^δ|^Δ/) { $tword .= "d"; }

 elsif (/^e|^E|^ε|^Ε|^έ|^Έ/) { $tword .= "e"; }

 elsif (/^i|^I|^ι|^Ι|^ί|^Ί|^ΐ/) { $tword .= "i"; }

 elsif (/^o|^O|^ο|^Ο|^ό|^Ό/) { $tword .= "o"; }

 elsif (/^p|^P|^π|^Π/) { $tword .= "p"; }

 elsif (/^g|^G|^γ|^Γ/) { $tword .= "c"; }

 elsif (/^z|^Z|^ζ|^Ζ/) { $tword .= "f"; }

 elsif (/^h|^H|^η|^Η|^ή|^Ή/) { $tword .= "g"; }

 elsif (/^j|^J|^θ|^Θ/) { $tword .= "h"; }

 elsif (/^k|^K|^κ|^Κ/) { $tword .= "j"; }

 elsif (/^l|^L|^λ|^Λ/) { $tword .= "k"; }

 elsif (/^m|^M|^μ|^Μ/) { $tword .= "l"; }

 elsif (/^n|^N|^ν|^Ν/) { $tword .= "m"; }

 elsif (/^x|^X|^ξ|^Ξ/) { $tword .= "n"; }

 elsif (/^r|^R|^ρ|^Ρ/) { $tword .= "q"; }

 elsif (/^s|^c|^S|^σ|^ς|^Σ/) { $tword .= "r"; }

 elsif (/^t|^T|^τ|^Τ/) { $tword .= "s"; }

 elsif (/^u|^U|^υ|^Υ|^ύ|^Ύ|^ΰ/) { $tword .= "t"; }

 elsif (/^f|^F|^φ|^Φ/) { $tword .= "u"; }

 elsif (/^q|^Q|^χ|^Χ/) { $tword .= "v"; }

 elsif (/^y|^Y|^ψ|^Ψ/) { $tword .= "w"; }

 elsif (/^w|^W|^ω|^Ω|^ώ|^Ώ/) { $tword .= "x"; }

 elsif (/^'|^`|^~|^<|^>/) { }

mkgrkindex.nw file:///export/home/apostolo/work/tex/mkindex/mkgrki...

1 of 9 25/08/2009 02:17 µ.µ.

 else { $tword .= $_ }

 }

 return $tword;

}

Now, that we have solved one problem we must face the others, namely the

modification of the .idx file and the subsequent modification of the .ind file. (This of

course means that we use makeindex to actually generate the index.) Before we do

anything we must get the various command line arguments. Our program accepts at

most three command line arguments: mkgrkindex.pl [-s A|a] [-l] index. With the -s switch

one can specify which index style he wants to be used: A stands for an index where each

group of entries that start with the same letter has as group-header this letter in

uppercase form; and a means that the group-headers are lowercase letter. The absence

of this switch denotes that the index will be just an ordinary LaTeX index, i.e., without a

group-header. The -l specifies that this is an index that has only Latin words. The

absence of this switch means that the index is a Greek one. Finally, index denotes the

name of the .idx file; users may omit the file extension. The first think we do is to check

whether there any command line arguments. In case there arenʹt or there more than

three, we just print a usage message and exit. Otherwise, we print the version number

and we process the command line arguments.

<Check for command line arguments>=
$argc = @ARGV;

if ($argc == 0 || $argc > 4) # no command line arguments or more than 3

{ # arguments

 die "Usage: mkgrkindex.pl [-s A|a] [-l] index\n";

}

else

{

 print "This is mkgrkindex (previously known as mkindex) version 2.2\n";

 <Process command line arguments>
}

Since we donʹt know apriori the number of arguments we set the following global

variables: $style and $is_latin. For variable $style a negative value means that a

lowercase letter will precede each group of words beginning with the same letter, a

positive value means that the letter will be uppercase and the value 0 means that there

will be no letter preceding each group of words. While for variable $is_latin a positive

value means that the index is non-Greek script index and a negative or zero means it is

a Greek script index. The last thing we must do is to check whether the index file exists.

<Process command line arguments>=

 $style = 0;

 $is_latin = 0;

 <Get command line arguments>
 <Check if .idx file exists>

mkgrkindex.nw file:///export/home/apostolo/work/tex/mkindex/mkgrki...

2 of 9 25/08/2009 02:17 µ.µ.

In order to get the various command line arguments we use a simple while loop that

check each element of the array @ARGV. We check for both switches and we get the name

of the file that contains the index.

<Get command line arguments>=

 SWITCHES:

 while($_ = $ARGV[0])

 {

 shift;

 if (/^-s/)

 {

 if ($ARGV[0] eq "a")

 {

 $style = -1;

 }

 elsif ($ARGV[0] eq "A")

 {

 $style = 1;

 }

 else

 {

 die "$ARGV[0]: Illegal argument for switch -s\n";

 }

 shift;

 }

 elsif (/^-l/)

 {

 $is_latin = 1;

 }

 elsif (/^-\w+/)

 {

 die "$_: Illegal command line switch!\n";

 }

 else

 {

 $file = $_;

 }

 }

 die "No index file name specified!\n" if $file eq "";

In order to check whether the index file exists, we simply use the -e operator. First we

check if $file exits, if doesnʹt then probably file $file.idx exists, i.e., the user hasnʹt typed

the filename extension. In case this doesnʹt exist, then we are sure there is no index file.

After these checks, variable $file contains the file name without extension.

<Check if .idx file exists>=
 if (! (-e $file))

 {

 die "$file: no such file!\n" if $file =~ /.+\..+/;

 die "$file.idx: no such file!\n" if (! (-e "$file.idx"));

 $index_file = "$file.idx";

 }

 else

 {

mkgrkindex.nw file:///export/home/apostolo/work/tex/mkindex/mkgrki...

3 of 9 25/08/2009 02:17 µ.µ.

 $index_file = $file;

 $file = $1 if $index_file =~ /(.+)\..+/;

 }

We have now all the information we need in order to modify the index file. First we

must rename the index file, since we are going to modify it. Next, we open the renamed

file for reading and we open a fresh file into which we will write the modified index.

These changes must be done only if this is a Greek index, i.e., if the value of $is_latin is

equal to zero. The next think we do is to modify the index entries. If an index entry

appears in the \frontmatter of a LaTeX document, then its page number comes out as a

Latin number. Since we are preparing a document with the greek option of the babel

package this number comes out as an argument of the command \textlatin, e.g.,

\textlatin{ix}. This means that we must modify the page information too. However, this

change requires to rescan the whole index file. So, we delete the original index file,

rename the modified one and then correct the page numbers, by using the same

method.

<Modify LaTeX index file>=

$old_file="$index_file.old";

if ($is_latin == 0)

{

 rename $index_file, $old_file;

 open(OLD, "<$old_file") || die "Can't open file $old_file\n";

 open(NEW, ">$index_file") || die "Can't open file $index_file\n";

 <Modify index entries>
 close OLD;

 close NEW;

 unlink $old_file;

}

rename $index_file, $old_file;

open(OLD, "<$old_file") || die "Can't open file $old_file\n";

open(NEW, ">$index_file") || die "Can't open file $index_file\n";

<Correct page numbers>

close OLD;

close NEW;

unlink $old_file;

If the value of variable $is_latin is positive there is nothing to do. But, if it is zero, then

we change each index line. Nikos Platis has suggested a better method to parse

individual lines. Since this method is better, I have decided to use it. The method uses

split to split what goes inside the curly brackets into simpler parts. This function takes

two arguments, a regular expression and a string, and if the regular expression matches

somewhere in the string, the returns what goes before and after the substring that

matched. The method tries to first split the string at the | symbol. Note that the

expression (?<!")\x7C matches any | that is not preceeded by a quotation mark (the

mkgrkindex.nw file:///export/home/apostolo/work/tex/mkindex/mkgrki...

4 of 9 25/08/2009 02:17 µ.µ.

original algorithm did not take care of this detail). Then it splits what goes before | at

each occurence of the ! symbol. Finally, each part of these substrings is splitted at the

point where the @ symbol is found. The last thing is to make all necesary

transformations and to assemble the index entry.

<Modify index entries>=

while (<OLD>)

{

 #\x7B = {, \x7D = },\x40 = @, \x7C = |, \x21 = !, \x28 = (, \x29 =)

 chomp;

 #Nikos Platis has suggested the replacement of the original code with a better

 #parsing method. The code that follows is essentially Nikos's code with

 #some minnor modifications, as explained in the documentation.

 $newentry = "";

 /^\\indexentry\x7B(.+)\x7D(.+)/;

 $fullentry = $1;

 $page = $2;

 ($indexentry, $format) = split(/(?<!")\x7C/, $fullentry);

 @entryparts = split(/(?<!")\x21/, $indexentry);

 $numparts = @entryparts;

 for ($i = 0; $i < $numparts; $i++) {

 ($x, $y) = split(/(?<!")\x40/, @entryparts[$i]);

 if ($i > 0) {

 $newentry .= "!"

 }

 $tx = g2e($x);

 if ($y) {

 $newentry .= "$tx\@$y"

 }

 else {

 $newentry .= "$tx\@$x";

 }

 }

 print NEW "\\indexentry{$newentry";

 if ($format) {

 print NEW "|$format"

 }

 print NEW "}$page\n"

}

Correcting the page numbers is very easy. We check each line and if one happens to

have the form \indexentry{w}{\textlatin{p}}, then we replace it with

\indexentry{w|textlatin}{p}. Of course this does not take care of cases where the | operator

is already in use, but then we make the assumption that definitions and such stuff do

not appear in the foreword of a document.

<Correct page numbers>=
while(<OLD>)

{

 chomp($_);

 if (/\\indexentry\x7B(.+)\x7D\x7B\\textlatin\s*?\x7B(\w+)\x7D\x7D/)

 {

 print NEW "\\indexentry{$1|textlatin}{$2}\n";

 }

mkgrkindex.nw file:///export/home/apostolo/work/tex/mkindex/mkgrki...

5 of 9 25/08/2009 02:17 µ.µ.

 else

 {

 print NEW "$_\n";

 }

}

The .ind file will be generated by invoking program makeindex. In case the name of the

program is different in the userʹs installation, he/she must change the assignment at the

beginning of the program. As we said, the user can choose between three different

types of indices. Indices of type ʺA ̋and ʺa ,̋ assume that LaTeX and makeindex have access

to files uppercase-headers.ist and lowercase-headers.ist. So, make sure these files are

properly installed. Depending on the value of variable $style, we generate the

appropriate index.

<Generate .ind file>=

if ($style < 0)

{

 system("$makeindex -s lowercase-headers.ist $file");

}

elsif ($style > 0)

{

 system("$makeindex -s uppercase-headers.ist $file");

}

else

{

 system("$makeindex $file");

}

Now the we have created the .ind file, if the user has chosen either the A or a option we

must modify the file so that the English letters become Greek ones. The mechanism is

very simple: we employ the inverse of the mapping we employed in subroutine g2e. In

order to do this we use a hash table. In case the $is_latin == 1, then the only thing we

need to do is to translate the word ``symbolʹʹ into Greek. Before, we do anything

further we must open the file and to rename the old index file.

<Modify the .ind file>=

<Declare hash table>
$ind_file = "$file.ind";

$old_file="$ind_file.old";

if ($is_latin == 0)

{

 rename $ind_file, $old_file;

 open(OLD, "<$old_file") || die "Can't open file $old_file\n";

 open(NEW, ">$ind_file") || die "Can't open file $ind_file\n";

 <Correct header letters>
 close OLD;

 close NEW;

 unlink $old_file;

}

mkgrkindex.nw file:///export/home/apostolo/work/tex/mkindex/mkgrki...

6 of 9 25/08/2009 02:17 µ.µ.

rename $ind_file, $old_file;

open(OLD, "<$old_file") || die "Can't open file $old_file\n";

open(NEW, ">$ind_file") || die "Can't open file $ind_file\n";

<Translate the word symbol>
close OLD;

close NEW;

unlink $old_file;

We declare a hash table in which we will store the inverse transliteration table.

<Declare hash table>=

%e2g = (

 'a' => 'α', 'A' => 'Α',

 'b' => 'β', 'B' => 'Β',

 'c' => 'γ', 'C' => 'Γ',

 'd' => 'δ', 'D' => 'Δ',

 'e' => 'ε', 'E' => 'Ε',

 'f' => 'ζ', 'F' => 'Ζ',

 'g' => 'η', 'G' => 'Η',

 'h' => 'θ', 'H' => 'Θ',

 'i' => 'ι', 'I' => 'Ι',

 'j' => 'κ', 'J' => 'Κ',

 'k' => 'λ', 'K' => 'Λ',

 'l' => 'μ', 'L' => 'Μ',

 'm' => 'ν', 'M' => 'Ν',

 'n' => 'ξ', 'N' => 'Ξ',

 'o' => 'ο', 'O' => 'Ο',

 'p' => 'π', 'P' => 'Π',

 'q' => 'ρ', 'Q' => 'Ρ',

 'r' => 'σv', 'R' => 'Σ',

 's' => 'τ', 'S' => 'Τ',

 't' => 'υ', 'T' => 'Υ',

 'u' => 'φ', 'U' => 'Φ',

 'v' => 'χ', 'V' => 'Χ',

 'w' => 'ψ', 'W' => 'Ψ',

 'x' => 'ω', 'X' => 'Ω'

);

In order to translate the word symbol we must just scan the entire .ind file and to find

the word symbols or Symbols. This isnʹt difficult since each header line is of the form {\hfil

word \hfil}, where word is either the a letter, the word symbols or the word Symbols. Once

we find the word we replace it with its translation.

<Translate the word symbol>=

while (<OLD>)

{

 if (/^\x7B\\hfil (\w)ymbols \\hfil\x7D/)

 {

 if ($1 eq "s")

 {

 print NEW "{\\hfil \\textgreek{\\textbf{s'umbola}}";

 print NEW "\\hfil}\\nopagebreak\n";

mkgrkindex.nw file:///export/home/apostolo/work/tex/mkindex/mkgrki...

7 of 9 25/08/2009 02:17 µ.µ.

 }

 elsif ($1 eq "S")

 {

 print NEW "{\\hfil \\textgreek{\\textbf{S'umbola}}";

 print NEW "\\hfil}\\nopagebreak\n";

 }

 else

 {

 die "Illegal header $1 in .ind file\n";

 }

 }

 else

 {

 print NEW;

 }

}

Correcting the header letters means to scan the whole index file and replace the English

letters with Greek ones. We find lines of the form {\hfil a \hfil}\nopagebreak and we

replace the English letter with the corresponding Greek by using the hash %e2g.

<Correct header letters>=

while (<OLD>)

{

 if (/^{\\hfil (\w?) \\hfil}/)

 {

 $lettergr = $e2g{$1};

 print NEW "{\\hfil $lettergr \\hfil}\\nopagebreak\n";

 }

 else

 {

 print NEW ;

 }

}

Letʹs summarize. This program is makes it possible to use program makeindex as if this

program was writen for Greek people only! The program works as follows: (a) it check

the command line arguments, (b) it modifies the LaTeX generated index, (c) generates

the .ind according to the userʹs wishes, and (d) corrects the .ind file if necessary, i.e., if

the user has asked for some alphabetic headers in his/her index.

<*>=
#!/usr/bin/env perl

#

#(c) Copyright 1998-2009 Apostolos Syropoulos

asyropoulos@yahoo.com

#

The LaTeX Project Public License (lppl)

This software is copyright but you are granted a license which gives you,

the "user" of the software, legal permission to copy, distribute, and/or

modify the software. However, if you modify the software and then distribute

it (even just locally) you must change the name of the software, or use other

technical means to avoid confusion.

mkgrkindex.nw file:///export/home/apostolo/work/tex/mkindex/mkgrki...

8 of 9 25/08/2009 02:17 µ.µ.

#

$makeindex = "makeindex"; #name of the index generation utility

<Routine that performs transliteration>
<Check for command line arguments>
<Modify LaTeX index file>
<Generate .ind file>
if ($style != 0)

{

 <Modify the .ind file>
}

__END__

mkgrkindex.nw file:///export/home/apostolo/work/tex/mkindex/mkgrki...

9 of 9 25/08/2009 02:17 µ.µ.

