${x}^{2}+x$ +2*x+1 -[0,1] $\left( {x}^{2}+2\,\sqrt {x} \right) x$ +3*x^(1/2)*(x^(3/2)+1) -[0,1] ${\frac {1+2\,x}{\sqrt {x}}}$ +1/2*(2*x-1)/x^(3/2) -[0,1] ${x}^{2}{e^{x}}$ +2*x*exp(x)+x^2*exp(x) -[0,1] $x{e^{{x}^{2}}}$ +(1+2x^2)*exp(x^2) -[0,1] $\sqrt {{x}^{2}+1}$ +x/sqrt(x^2+1) -[0,1] $\sin \left( {x}^{3}+x \right)$ +cos(x^3+x)*(3*x^2+1) -[0,1] ${e^{\sqrt {x}}}$ +exp(x^(1/2)) /(2sqrt(x)) -[0,1] $\cos \left( 2\,x-1 \right)$ +-2*sin(2*x-1) -[0,1] ${x+{\frac 4 x}}$ +1-4/x^2 -[1,2] ${\frac x{(x+1)^2}}$ +(1-x)/(x+1)^3 -[1,2] ${x^2-2\ln x}$ +2x - 2/x -[1,2] ${2\sqrt x -x}$ +1/sqrt(x)-1 -[1,2] ${\frac x{1+x^2}}$ +(1-x^2)/(1+x^2)^2 -[1,2] ${\frac{1+x^2}{1-x^2}}$ +4x/(1-x^2)^2 -[2,3] ${e^x(x^2-2x+2)}$ +x^2 * e^x -[1,2] ${(x+1)e^x}$ +(x+2) * e^x -[1,2] ${x\ln(x+1)}$ +ln(x+1)+x/(x+1) -[1,2] ${1-\sqrt{3x+1}}$ +-3/2*(3*x+1)^(-1/2) -[1,2] ${(x^2+x+2)^2}$ +2*(x^2+x+2)*(2*x+1) -[1,2] ${\sin(2x)}$ +2*cos(2*x) -[1,2] ${{e^{x^2}}}$ +2*x*e^(x^2) -[1,2] ${(x^2+1)^3}$ +6*x*(x^2+1)^2 -[1,2] ${(x+1)\ln(x^2+1)}$ +ln(x^2+1)+(x+1)*2*x/(x^2+1) -[1,2] ${\left(\frac{x-1}{x+1}\right)^2}$ +4*(x-1)/(x+1)^3 -[1,2] ${\frac{e^x}{x+1}}$ +exp(x)*x/(x+1)^2 -[1,2] ${x\ln(x^2-1)}$ +ln(x^2-1) + 2*x^2/(x^2-1) -[2,3] ${\frac{1}{4}\ln\frac{x^2-1}{x^2+1}}$ +x/ (x^4-1) -[2,3] ${\sqrt{x+1}-\ln(1+\sqrt{x+1})}$ +1/ [ 2* (1+ (x+1)^(1/2)) ] -[1,2] ${\ln\frac{x+1}{x-2}}$ +-3/(x^2-x-2) -[1,2] $\ln(1+\sin^2x)$ +2*sin(x)*cos(x)/(1+(sin(x))^2) -[1,2] $x^2e^{-x}$ +e^(-x)*x*(2-x) -[1,2] $e^{\arctg x^2}$ +2 * x * e^( atan(x^2) ) / (1+x^4) -[1,2] $\ln \sin x$ +cos(x)/sin(x) -[1,2] ${x\sqrt{1-x^2}}$ +(1-2*x^2)/(1-x^2)^(1/2) -[0,0.5] $\arctg (x+x^2)$ +(1+2*x)/(x^4+2*x^3+x^2+1) -[1,2] $\arctg\frac{x+1}x$ +-1/(2*x^2+2*x+1) -[1,2] $x\ln^2 x$ +(ln(x))^2+2*ln(x) -[1,2] $(3-x)\sqrt x$ +3*(1-x)/(2*sqrt (x)) -[1,2] $\frac{x^2}{ 1-x}$ +x(2-x)/ (1-x)^2 -[2,3] $\left(\frac{1+x}{1-x}\right)^4$ +-8 (x+1)^3/(x-1)^5 -[2,3] $\frac{x-2}{\sqrt{x^2+1}}$ +(2x+1)/((x^2+1)^(3/2)) -[1,2] $\frac{x^2}{x^2+1}$ +2x/(1+x^2)^2 -[1,2] $\frac {\ln^2x}{x}$ +ln (x)*(2-ln (x))/ x^2 -[1,2] $\frac{\ln x}{\sqrt x}$ +(2-ln (x)) / (2*x^(3/2)) -[1,2] $x e^{\frac 1x}$ +e^(1/x)*(x-1)/x -[1,2] $(x^2+1)\arctg(x)$ +2* x* atan(x) + 1 -[1,2] $\ln(\arctg(x^2))$ +2*x/((1+x^4)*atan(x^2)) -[1,2] $\ln(\sin (2x))$ +2*cos(2*x)/sin(2*x) -[0.5,1] $\arctg\sqrt{x^2+1}$ +x/[sqrt(x^2+1)*(2+x^2)] -[1,2] $\arcsin(x)+\frac{\sqrt{1-x^2}}{x+1}$ +x/[(1+x)*sqrt(1-x^2)] -[0.2,0.8] $\sqrt{\frac{1-x}{3+x^2}}$ +(x^2-2*x-3)/(2*((1-x)/(x^2+3))^(1/2)*(3+x^2)^2) -[0,0.5] $\arcsin\sqrt{\frac {x-1}x}$ +1/(2*x*sqrt(x-1)) -[2,3]